38 #ifndef COAL_INTERSECT_HXX
39 #define COAL_INTERSECT_HXX
51 template <
typename Scalar>
52 inline typename Project<Scalar>::ProjectResult Project<Scalar>::projectLine(
53 const Vec3& a,
const Vec3& b,
const Vec3& p) {
57 const Scalar l = d.squaredNorm();
60 const Scalar t = (p - a).dot(d);
61 res.parameterization[1] = (t >= l) ? 1 : ((t <= 0) ? 0 : (t / l));
62 res.parameterization[0] = 1 - res.parameterization[1];
64 res.sqr_distance = (p - b).squaredNorm();
67 res.sqr_distance = (p - a).squaredNorm();
70 res.sqr_distance = (a + d * res.parameterization[1] - p).squaredNorm();
78 template <
typename Scalar>
79 inline typename Project<Scalar>::ProjectResult Project<Scalar>::projectTriangle(
80 const Vec3& a,
const Vec3& b,
const Vec3& c,
const Vec3& p) {
83 static const size_t nexti[3] = {1, 2, 0};
84 const Vec3* vt[] = {&a, &b, &c};
85 const Vec3 dl[] = {a - b, b - c, c - a};
86 const Vec3& n = dl[0].cross(dl[1]);
87 const Scalar l = n.squaredNorm();
91 for (
size_t i = 0; i < 3; ++i) {
92 if ((*vt[i] - p).dot(dl[i].cross(n)) >
97 ProjectResult res_line = projectLine(*vt[i], *vt[j], p);
99 if (mindist < 0 || res_line.sqr_distance < mindist) {
100 mindist = res_line.sqr_distance;
102 static_cast<unsigned int>(((res_line.encode & 1) ? 1 << i : 0) +
103 ((res_line.encode & 2) ? 1 << j : 0));
104 res.parameterization[i] = res_line.parameterization[0];
105 res.parameterization[j] = res_line.parameterization[1];
106 res.parameterization[nexti[j]] = 0;
113 Scalar d = (a - p).dot(n);
115 Vec3 p_to_project = n * (d / l);
116 mindist = p_to_project.squaredNorm();
118 res.parameterization[0] = dl[1].cross(b - p - p_to_project).norm() / s;
119 res.parameterization[1] = dl[2].cross(c - p - p_to_project).norm() / s;
120 res.parameterization[2] =
121 1 - res.parameterization[0] - res.parameterization[1];
124 res.sqr_distance = mindist;
130 template <
typename Scalar>
131 inline typename Project<Scalar>::ProjectResult
132 Project<Scalar>::projectTetrahedra(
const Vec3& a,
const Vec3& b,
const Vec3& c,
133 const Vec3& d,
const Vec3& p) {
136 static const size_t nexti[] = {1, 2, 0};
137 const Vec3* vt[] = {&a, &b, &c, &d};
138 const Vec3 dl[3] = {a - d, b - d, c - d};
139 Scalar vl = triple(dl[0], dl[1], dl[2]);
140 bool ng = (vl * (a - p).dot((b - c).cross(a - b))) <= 0;
149 for (
size_t i = 0; i < 3; ++i) {
151 Scalar s = vl * (d - p).dot(dl[i].cross(dl[j]));
155 ProjectResult res_triangle = projectTriangle(*vt[i], *vt[j], d, p);
156 if (mindist < 0 || res_triangle.sqr_distance < mindist) {
157 mindist = res_triangle.sqr_distance;
159 static_cast<unsigned int>((res_triangle.encode & 1 ? 1 << i : 0) +
160 (res_triangle.encode & 2 ? 1 << j : 0) +
161 (res_triangle.encode & 4 ? 8 : 0));
162 res.parameterization[i] = res_triangle.parameterization[0];
163 res.parameterization[j] = res_triangle.parameterization[1];
164 res.parameterization[nexti[j]] = 0;
165 res.parameterization[3] = res_triangle.parameterization[2];
173 res.parameterization[0] = triple(c - p, b - p, d - p) / vl;
174 res.parameterization[1] = triple(a - p, c - p, d - p) / vl;
175 res.parameterization[2] = triple(b - p, a - p, d - p) / vl;
176 res.parameterization[3] =
177 1 - (res.parameterization[0] + res.parameterization[1] +
178 res.parameterization[2]);
181 res.sqr_distance = mindist;
183 res = projectTriangle(a, b, c, p);
184 res.parameterization[3] = 0;
189 template <
typename Scalar>
190 inline typename Project<Scalar>::ProjectResult
191 Project<Scalar>::projectLineOrigin(
const Vec3& a,
const Vec3& b) {
194 const Vec3 d = b - a;
195 const Scalar l = d.squaredNorm();
198 const Scalar t = -a.dot(d);
199 res.parameterization[1] = (t >= l) ? 1 : ((t <= 0) ? 0 : (t / l));
200 res.parameterization[0] = 1 - res.parameterization[1];
202 res.sqr_distance = b.squaredNorm();
205 res.sqr_distance = a.squaredNorm();
208 res.sqr_distance = (a + d * res.parameterization[1]).squaredNorm();
216 template <
typename Scalar>
217 inline typename Project<Scalar>::ProjectResult
218 Project<Scalar>::projectTriangleOrigin(
const Vec3& a,
const Vec3& b,
222 static const size_t nexti[3] = {1, 2, 0};
223 const Vec3* vt[] = {&a, &b, &c};
224 const Vec3 dl[] = {a - b, b - c, c - a};
225 const Vec3& n = dl[0].cross(dl[1]);
226 const Scalar l = n.squaredNorm();
230 for (
size_t i = 0; i < 3; ++i) {
231 if (vt[i]->dot(dl[i].cross(n)) >
236 ProjectResult res_line = projectLineOrigin(*vt[i], *vt[j]);
238 if (mindist < 0 || res_line.sqr_distance < mindist) {
239 mindist = res_line.sqr_distance;
241 static_cast<unsigned int>(((res_line.encode & 1) ? 1 << i : 0) +
242 ((res_line.encode & 2) ? 1 << j : 0));
243 res.parameterization[i] = res_line.parameterization[0];
244 res.parameterization[j] = res_line.parameterization[1];
245 res.parameterization[nexti[j]] = 0;
254 Vec3 o_to_project = n * (d / l);
255 mindist = o_to_project.squaredNorm();
257 res.parameterization[0] = dl[1].cross(b - o_to_project).norm() / s;
258 res.parameterization[1] = dl[2].cross(c - o_to_project).norm() / s;
259 res.parameterization[2] =
260 1 - res.parameterization[0] - res.parameterization[1];
263 res.sqr_distance = mindist;
269 template <
typename Scalar>
270 inline typename Project<Scalar>::ProjectResult
271 Project<Scalar>::projectTetrahedraOrigin(
const Vec3& a,
const Vec3& b,
272 const Vec3& c,
const Vec3& d) {
275 static const size_t nexti[] = {1, 2, 0};
276 const Vec3* vt[] = {&a, &b, &c, &d};
277 const Vec3 dl[3] = {a - d, b - d, c - d};
278 Scalar vl = triple(dl[0], dl[1], dl[2]);
279 bool ng = (vl * a.dot((b - c).cross(a - b))) <= 0;
288 for (
size_t i = 0; i < 3; ++i) {
290 Scalar s = vl * d.dot(dl[i].cross(dl[j]));
294 ProjectResult res_triangle = projectTriangleOrigin(*vt[i], *vt[j], d);
295 if (mindist < 0 || res_triangle.sqr_distance < mindist) {
296 mindist = res_triangle.sqr_distance;
298 static_cast<unsigned int>((res_triangle.encode & 1 ? 1 << i : 0) +
299 (res_triangle.encode & 2 ? 1 << j : 0) +
300 (res_triangle.encode & 4 ? 8 : 0));
301 res.parameterization[i] = res_triangle.parameterization[0];
302 res.parameterization[j] = res_triangle.parameterization[1];
303 res.parameterization[nexti[j]] = 0;
304 res.parameterization[3] = res_triangle.parameterization[2];
312 res.parameterization[0] = triple(c, b, d) / vl;
313 res.parameterization[1] = triple(a, c, d) / vl;
314 res.parameterization[2] = triple(b, a, d) / vl;
315 res.parameterization[3] =
316 1 - (res.parameterization[0] + res.parameterization[1] +
317 res.parameterization[2]);
320 res.sqr_distance = mindist;
322 res = projectTriangleOrigin(a, b, c);
323 res.parameterization[3] = 0;
Main namespace.
Definition: broadphase_bruteforce.h:44
double Scalar
Definition: data_types.h:68