coal  3.0.1
Coal, The Collision Detection Library. Previously known as HPP-FCL, fork of FCL -- The Flexible Collision Library
intersect.hxx
Go to the documentation of this file.
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Copyright (c) 2011-2014, Willow Garage, Inc.
5  * Copyright (c) 2014-2015, Open Source Robotics Foundation
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * * Redistributions of source code must retain the above copyright
13  * notice, this list of conditions and the following disclaimer.
14  * * Redistributions in binary form must reproduce the above
15  * copyright notice, this list of conditions and the following
16  * disclaimer in the documentation and/or other materials provided
17  * with the distribution.
18  * * Neither the name of Open Source Robotics Foundation nor the names of its
19  * contributors may be used to endorse or promote products derived
20  * from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
38 #ifndef COAL_INTERSECT_HXX
39 #define COAL_INTERSECT_HXX
40 
42 #include "coal/internal/tools.h"
43 
44 #include <iostream>
45 #include <limits>
46 #include <vector>
47 #include <cmath>
48 
49 namespace coal {
50 
51 template <typename Scalar>
52 inline typename Project<Scalar>::ProjectResult Project<Scalar>::projectLine(
53  const Vec3& a, const Vec3& b, const Vec3& p) {
54  ProjectResult res;
55 
56  const Vec3 d = b - a;
57  const Scalar l = d.squaredNorm();
58 
59  if (l > 0) {
60  const Scalar t = (p - a).dot(d);
61  res.parameterization[1] = (t >= l) ? 1 : ((t <= 0) ? 0 : (t / l));
62  res.parameterization[0] = 1 - res.parameterization[1];
63  if (t >= l) {
64  res.sqr_distance = (p - b).squaredNorm();
65  res.encode = 2; /* 0x10 */
66  } else if (t <= 0) {
67  res.sqr_distance = (p - a).squaredNorm();
68  res.encode = 1; /* 0x01 */
69  } else {
70  res.sqr_distance = (a + d * res.parameterization[1] - p).squaredNorm();
71  res.encode = 3; /* 0x00 */
72  }
73  }
74 
75  return res;
76 }
77 
78 template <typename Scalar>
79 inline typename Project<Scalar>::ProjectResult Project<Scalar>::projectTriangle(
80  const Vec3& a, const Vec3& b, const Vec3& c, const Vec3& p) {
81  ProjectResult res;
82 
83  static const size_t nexti[3] = {1, 2, 0};
84  const Vec3* vt[] = {&a, &b, &c};
85  const Vec3 dl[] = {a - b, b - c, c - a};
86  const Vec3& n = dl[0].cross(dl[1]);
87  const Scalar l = n.squaredNorm();
88 
89  if (l > 0) {
90  Scalar mindist = -1;
91  for (size_t i = 0; i < 3; ++i) {
92  if ((*vt[i] - p).dot(dl[i].cross(n)) >
93  0) // origin is to the outside part of the triangle edge, then the
94  // optimal can only be on the edge
95  {
96  size_t j = nexti[i];
97  ProjectResult res_line = projectLine(*vt[i], *vt[j], p);
98 
99  if (mindist < 0 || res_line.sqr_distance < mindist) {
100  mindist = res_line.sqr_distance;
101  res.encode =
102  static_cast<unsigned int>(((res_line.encode & 1) ? 1 << i : 0) +
103  ((res_line.encode & 2) ? 1 << j : 0));
104  res.parameterization[i] = res_line.parameterization[0];
105  res.parameterization[j] = res_line.parameterization[1];
106  res.parameterization[nexti[j]] = 0;
107  }
108  }
109  }
110 
111  if (mindist < 0) // the origin project is within the triangle
112  {
113  Scalar d = (a - p).dot(n);
114  Scalar s = std::sqrt(l);
115  Vec3 p_to_project = n * (d / l);
116  mindist = p_to_project.squaredNorm();
117  res.encode = 7; // m = 0x111
118  res.parameterization[0] = dl[1].cross(b - p - p_to_project).norm() / s;
119  res.parameterization[1] = dl[2].cross(c - p - p_to_project).norm() / s;
120  res.parameterization[2] =
121  1 - res.parameterization[0] - res.parameterization[1];
122  }
123 
124  res.sqr_distance = mindist;
125  }
126 
127  return res;
128 }
129 
130 template <typename Scalar>
131 inline typename Project<Scalar>::ProjectResult
132 Project<Scalar>::projectTetrahedra(const Vec3& a, const Vec3& b, const Vec3& c,
133  const Vec3& d, const Vec3& p) {
134  ProjectResult res;
135 
136  static const size_t nexti[] = {1, 2, 0};
137  const Vec3* vt[] = {&a, &b, &c, &d};
138  const Vec3 dl[3] = {a - d, b - d, c - d};
139  Scalar vl = triple(dl[0], dl[1], dl[2]);
140  bool ng = (vl * (a - p).dot((b - c).cross(a - b))) <= 0;
141  if (ng &&
142  std::abs(vl) > 0) // abs(vl) == 0, the tetrahedron is degenerated; if ng
143  // is false, then the last vertex in the tetrahedron
144  // does not grow toward the origin (in fact origin is
145  // on the other side of the abc face)
146  {
147  Scalar mindist = -1;
148 
149  for (size_t i = 0; i < 3; ++i) {
150  size_t j = nexti[i];
151  Scalar s = vl * (d - p).dot(dl[i].cross(dl[j]));
152  if (s > 0) // the origin is to the outside part of a triangle face, then
153  // the optimal can only be on the triangle face
154  {
155  ProjectResult res_triangle = projectTriangle(*vt[i], *vt[j], d, p);
156  if (mindist < 0 || res_triangle.sqr_distance < mindist) {
157  mindist = res_triangle.sqr_distance;
158  res.encode =
159  static_cast<unsigned int>((res_triangle.encode & 1 ? 1 << i : 0) +
160  (res_triangle.encode & 2 ? 1 << j : 0) +
161  (res_triangle.encode & 4 ? 8 : 0));
162  res.parameterization[i] = res_triangle.parameterization[0];
163  res.parameterization[j] = res_triangle.parameterization[1];
164  res.parameterization[nexti[j]] = 0;
165  res.parameterization[3] = res_triangle.parameterization[2];
166  }
167  }
168  }
169 
170  if (mindist < 0) {
171  mindist = 0;
172  res.encode = 15;
173  res.parameterization[0] = triple(c - p, b - p, d - p) / vl;
174  res.parameterization[1] = triple(a - p, c - p, d - p) / vl;
175  res.parameterization[2] = triple(b - p, a - p, d - p) / vl;
176  res.parameterization[3] =
177  1 - (res.parameterization[0] + res.parameterization[1] +
178  res.parameterization[2]);
179  }
180 
181  res.sqr_distance = mindist;
182  } else if (!ng) {
183  res = projectTriangle(a, b, c, p);
184  res.parameterization[3] = 0;
185  }
186  return res;
187 }
188 
189 template <typename Scalar>
190 inline typename Project<Scalar>::ProjectResult
191 Project<Scalar>::projectLineOrigin(const Vec3& a, const Vec3& b) {
192  ProjectResult res;
193 
194  const Vec3 d = b - a;
195  const Scalar l = d.squaredNorm();
196 
197  if (l > 0) {
198  const Scalar t = -a.dot(d);
199  res.parameterization[1] = (t >= l) ? 1 : ((t <= 0) ? 0 : (t / l));
200  res.parameterization[0] = 1 - res.parameterization[1];
201  if (t >= l) {
202  res.sqr_distance = b.squaredNorm();
203  res.encode = 2; /* 0x10 */
204  } else if (t <= 0) {
205  res.sqr_distance = a.squaredNorm();
206  res.encode = 1; /* 0x01 */
207  } else {
208  res.sqr_distance = (a + d * res.parameterization[1]).squaredNorm();
209  res.encode = 3; /* 0x00 */
210  }
211  }
212 
213  return res;
214 }
215 
216 template <typename Scalar>
217 inline typename Project<Scalar>::ProjectResult
218 Project<Scalar>::projectTriangleOrigin(const Vec3& a, const Vec3& b,
219  const Vec3& c) {
220  ProjectResult res;
221 
222  static const size_t nexti[3] = {1, 2, 0};
223  const Vec3* vt[] = {&a, &b, &c};
224  const Vec3 dl[] = {a - b, b - c, c - a};
225  const Vec3& n = dl[0].cross(dl[1]);
226  const Scalar l = n.squaredNorm();
227 
228  if (l > 0) {
229  Scalar mindist = -1;
230  for (size_t i = 0; i < 3; ++i) {
231  if (vt[i]->dot(dl[i].cross(n)) >
232  0) // origin is to the outside part of the triangle edge, then the
233  // optimal can only be on the edge
234  {
235  size_t j = nexti[i];
236  ProjectResult res_line = projectLineOrigin(*vt[i], *vt[j]);
237 
238  if (mindist < 0 || res_line.sqr_distance < mindist) {
239  mindist = res_line.sqr_distance;
240  res.encode =
241  static_cast<unsigned int>(((res_line.encode & 1) ? 1 << i : 0) +
242  ((res_line.encode & 2) ? 1 << j : 0));
243  res.parameterization[i] = res_line.parameterization[0];
244  res.parameterization[j] = res_line.parameterization[1];
245  res.parameterization[nexti[j]] = 0;
246  }
247  }
248  }
249 
250  if (mindist < 0) // the origin project is within the triangle
251  {
252  Scalar d = a.dot(n);
253  Scalar s = std::sqrt(l);
254  Vec3 o_to_project = n * (d / l);
255  mindist = o_to_project.squaredNorm();
256  res.encode = 7; // m = 0x111
257  res.parameterization[0] = dl[1].cross(b - o_to_project).norm() / s;
258  res.parameterization[1] = dl[2].cross(c - o_to_project).norm() / s;
259  res.parameterization[2] =
260  1 - res.parameterization[0] - res.parameterization[1];
261  }
262 
263  res.sqr_distance = mindist;
264  }
265 
266  return res;
267 }
268 
269 template <typename Scalar>
270 inline typename Project<Scalar>::ProjectResult
271 Project<Scalar>::projectTetrahedraOrigin(const Vec3& a, const Vec3& b,
272  const Vec3& c, const Vec3& d) {
273  ProjectResult res;
274 
275  static const size_t nexti[] = {1, 2, 0};
276  const Vec3* vt[] = {&a, &b, &c, &d};
277  const Vec3 dl[3] = {a - d, b - d, c - d};
278  Scalar vl = triple(dl[0], dl[1], dl[2]);
279  bool ng = (vl * a.dot((b - c).cross(a - b))) <= 0;
280  if (ng &&
281  std::abs(vl) > 0) // abs(vl) == 0, the tetrahedron is degenerated; if ng
282  // is false, then the last vertex in the tetrahedron
283  // does not grow toward the origin (in fact origin is
284  // on the other side of the abc face)
285  {
286  Scalar mindist = -1;
287 
288  for (size_t i = 0; i < 3; ++i) {
289  size_t j = nexti[i];
290  Scalar s = vl * d.dot(dl[i].cross(dl[j]));
291  if (s > 0) // the origin is to the outside part of a triangle face, then
292  // the optimal can only be on the triangle face
293  {
294  ProjectResult res_triangle = projectTriangleOrigin(*vt[i], *vt[j], d);
295  if (mindist < 0 || res_triangle.sqr_distance < mindist) {
296  mindist = res_triangle.sqr_distance;
297  res.encode =
298  static_cast<unsigned int>((res_triangle.encode & 1 ? 1 << i : 0) +
299  (res_triangle.encode & 2 ? 1 << j : 0) +
300  (res_triangle.encode & 4 ? 8 : 0));
301  res.parameterization[i] = res_triangle.parameterization[0];
302  res.parameterization[j] = res_triangle.parameterization[1];
303  res.parameterization[nexti[j]] = 0;
304  res.parameterization[3] = res_triangle.parameterization[2];
305  }
306  }
307  }
308 
309  if (mindist < 0) {
310  mindist = 0;
311  res.encode = 15;
312  res.parameterization[0] = triple(c, b, d) / vl;
313  res.parameterization[1] = triple(a, c, d) / vl;
314  res.parameterization[2] = triple(b, a, d) / vl;
315  res.parameterization[3] =
316  1 - (res.parameterization[0] + res.parameterization[1] +
317  res.parameterization[2]);
318  }
319 
320  res.sqr_distance = mindist;
321  } else if (!ng) {
322  res = projectTriangleOrigin(a, b, c);
323  res.parameterization[3] = 0;
324  }
325  return res;
326 }
327 
328 } // namespace coal
329 
330 #endif // COAL_INTERSECT_HXX
Main namespace.
Definition: broadphase_bruteforce.h:44
double Scalar
Definition: data_types.h:68