GCC Code Coverage Report


Directory: ./
File: include/hpp/bezier-com-traj/waypoints/waypoints_c0_dc0_ddc0_c1.hh
Date: 2025-03-18 04:20:50
Exec Total Coverage
Lines: 0 101 0.0%
Branches: 0 594 0.0%

Line Branch Exec Source
1 /*
2 * Copyright 2018, LAAS-CNRS
3 * Author: Pierre Fernbach
4 */
5
6 #ifndef BEZIER_COM_TRAJ_c0_dc0_ddc0_c1_H
7 #define BEZIER_COM_TRAJ_c0_dc0_ddc0_c1_H
8
9 #include <hpp/bezier-com-traj/data.hh>
10
11 namespace bezier_com_traj {
12 namespace c0_dc0_ddc0_c1 {
13
14 static const ConstraintFlag flag = INIT_POS | INIT_VEL | INIT_ACC | END_POS;
15
16 /// ### EQUATION FOR CONSTRAINts on initial position, velocity and acceleration,
17 /// and only final position (degree = 4)
18 /**
19 * @brief evaluateCurveAtTime compute the expression of the point on the curve
20 * at t, defined by the waypoint pi and one free waypoint (x)
21 * @param pi constant waypoints of the curve, assume p0 p1 x p2 p3
22 * @param t param (normalized !)
23 * @return the expression of the waypoint such that wp.first . x + wp.second =
24 * point on curve
25 */
26 inline coefs_t evaluateCurveAtTime(const std::vector<point_t>& pi, double t) {
27 coefs_t wp;
28 double t2 = t * t;
29 double t3 = t2 * t;
30 double t4 = t3 * t;
31 // equation found with sympy
32 wp.first = -4.0 * t4 + 4.0 * t3;
33 wp.second = 1.0 * pi[0] * t4 - 4.0 * pi[0] * t3 + 6.0 * pi[0] * t2 -
34 4.0 * pi[0] * t + 1.0 * pi[0] - 4.0 * pi[1] * t4 +
35 12.0 * pi[1] * t3 - 12.0 * pi[1] * t2 + 4.0 * pi[1] * t +
36 6.0 * pi[2] * t4 - 12.0 * pi[2] * t3 + 6.0 * pi[2] * t2 +
37 1.0 * pi[4] * t4;
38 return wp;
39 }
40
41 inline coefs_t evaluateAccelerationCurveAtTime(const std::vector<point_t>& pi,
42 double T, double t) {
43 coefs_t wp;
44 double alpha = 1. / (T * T);
45 double t2 = t * t;
46 // equation found with sympy
47 wp.first = (-48.0 * t2 + 24.0 * t) * alpha;
48 wp.second =
49 (12.0 * pi[0] * t2 - 24.0 * pi[0] * t + 12.0 * pi[0] - 48.0 * pi[1] * t2 +
50 72.0 * pi[1] * t - 24.0 * pi[1] + 72.0 * pi[2] * t2 - 72.0 * pi[2] * t +
51 12.0 * pi[2] + 12.0 * pi[4] * t2) *
52 alpha;
53 return wp;
54 }
55
56 inline std::vector<point_t> computeConstantWaypoints(const ProblemData& pData,
57 double T) {
58 // equation for constraint on initial position, velocity and acceleration, and
59 // only final position (degree = 4)(degree 4, 4 constant waypoint and one free
60 // (p3)) first, compute the constant waypoints that only depend on pData :
61 double n = 4.;
62 std::vector<point_t> pi;
63 pi.push_back(pData.c0_); // p0
64 pi.push_back((pData.dc0_ * T / n) + pData.c0_); // p1
65 pi.push_back((pData.ddc0_ * T * T / (n * (n - 1))) +
66 (2. * pData.dc0_ * T / n) + pData.c0_); // p2
67 pi.push_back(point_t::Zero()); // x
68 pi.push_back(pData.c1_); // p4
69 return pi;
70 }
71
72 inline bezier_wp_t::t_point_t computeWwaypoints(const ProblemData& pData,
73 double T) {
74 bezier_wp_t::t_point_t wps;
75 const int DIM_POINT = 6;
76 const int DIM_VAR = 3;
77 std::vector<point_t> pi = computeConstantWaypoints(pData, T);
78 std::vector<Matrix3> Cpi;
79 for (std::size_t i = 0; i < pi.size(); ++i) {
80 Cpi.push_back(skew(pi[i]));
81 }
82 const Vector3 g = pData.contacts_.front().contactPhase_->m_gravity;
83 const Matrix3 Cg = skew(g);
84 const double T2 = T * T;
85 const double alpha = 1 / (T2);
86
87 // equation of waypoints for curve w found with sympy
88 waypoint_t w0 = initwp(DIM_POINT, DIM_VAR);
89 w0.second.head<3>() = (12 * pi[0] - 24 * pi[1] + 12 * pi[2]) * alpha;
90 w0.second.tail<3>() =
91 1.0 *
92 (1.0 * Cg * T2 * pi[0] - 24.0 * Cpi[0] * pi[1] + 12.0 * Cpi[0] * pi[2]) *
93 alpha;
94 wps.push_back(w0);
95 waypoint_t w1 = initwp(DIM_POINT, DIM_VAR);
96 w1.first.block<3, 3>(0, 0) = 4.8 * alpha * Matrix3::Identity();
97 w1.first.block<3, 3>(3, 0) = 4.8 * Cpi[0] * alpha;
98 w1.second.head<3>() = 1.0 * (7.2 * pi[0] - 9.6 * pi[1] - 2.4 * pi[2]) * alpha;
99 w1.second.tail<3>() = 1.0 *
100 (0.2 * Cg * T2 * pi[0] + 0.8 * Cg * T2 * pi[1] -
101 12.0 * Cpi[0] * pi[2] + 9.6 * Cpi[1] * pi[2]) *
102 alpha;
103 wps.push_back(w1);
104 waypoint_t w2 = initwp(DIM_POINT, DIM_VAR);
105 w2.first.block<3, 3>(0, 0) = 4.8 * alpha * Matrix3::Identity();
106 w2.first.block<3, 3>(3, 0) = 1.0 * (-4.8 * Cpi[0] + 9.6 * Cpi[1]) * alpha;
107 w2.second.head<3>() = 1.0 * (3.6 * pi[0] - 9.6 * pi[2] + 1.2 * pi[4]) * alpha;
108 w2.second.tail<3>() = 1.0 *
109 (0.4 * Cg * T2 * pi[1] + 0.6 * Cg * T2 * pi[2] +
110 1.2 * Cpi[0] * pi[4] - 9.6 * Cpi[1] * pi[2]) *
111 alpha;
112 wps.push_back(w2);
113 waypoint_t w3 = initwp(DIM_POINT, DIM_VAR);
114 w3.first.block<3, 3>(3, 0) =
115 1.0 * (0.4 * Cg * T2 - 9.6 * Cpi[1] + 9.6 * Cpi[2]) * alpha;
116 w3.second.head<3>() =
117 1.0 * (1.2 * pi[0] + 4.8 * pi[1] - 9.6 * pi[2] + 3.6 * pi[4]) * alpha;
118 w3.second.tail<3>() =
119 1.0 *
120 (0.6 * Cg * T2 * pi[2] - 1.2 * Cpi[0] * pi[4] + 4.8 * Cpi[1] * pi[4]) *
121 alpha;
122 wps.push_back(w3);
123 waypoint_t w4 = initwp(DIM_POINT, DIM_VAR);
124 w4.first.block<3, 3>(0, 0) = -9.6 * alpha * Matrix3::Identity();
125 w4.first.block<3, 3>(3, 0) = 1.0 * (0.8 * Cg * T2 - 9.6 * Cpi[2]) * alpha;
126 w4.second.head<3>() = 1.0 * (4.8 * pi[1] - 2.4 * pi[2] + 7.2 * pi[4]) * alpha;
127 w4.second.tail<3>() =
128 1.0 *
129 (0.2 * Cg * T2 * pi[4] - 4.8 * Cpi[1] * pi[4] + 12.0 * Cpi[2] * pi[4]) *
130 alpha;
131 wps.push_back(w4);
132 waypoint_t w5 = initwp(DIM_POINT, DIM_VAR);
133 w5.first.block<3, 3>(0, 0) = -24 * alpha * Matrix3::Identity();
134 w5.first.block<3, 3>(3, 0) = 1.0 * (-24.0 * Cpi[4]) * alpha;
135 w5.second.head<3>() = (12 * pi[2] + 12 * pi[4]) * alpha;
136 w5.second.tail<3>() =
137 1.0 * (1.0 * Cg * T2 * pi[4] - 12.0 * Cpi[2] * pi[4]) * alpha;
138 wps.push_back(w5);
139 return wps;
140 }
141
142 inline coefs_t computeFinalVelocityPoint(const ProblemData& pData, double T) {
143 coefs_t v;
144 // equation found with sympy
145 v.first = -4. / T;
146 v.second = 4. * pData.c1_ / T;
147 return v;
148 }
149
150 } // namespace c0_dc0_ddc0_c1
151 } // namespace bezier_com_traj
152
153 #endif
154