| Line | Branch | Exec | Source | 
|---|---|---|---|
| 1 | /* | ||
| 2 | * Copyright 2018, LAAS-CNRS | ||
| 3 | * Author: Pierre Fernbach | ||
| 4 | */ | ||
| 5 | |||
| 6 | #ifndef BEZIER_COM_TRAJ_c0_dc0_ddc0_c1_H | ||
| 7 | #define BEZIER_COM_TRAJ_c0_dc0_ddc0_c1_H | ||
| 8 | |||
| 9 | #include <hpp/bezier-com-traj/data.hh> | ||
| 10 | |||
| 11 | namespace bezier_com_traj { | ||
| 12 | namespace c0_dc0_ddc0_c1 { | ||
| 13 | |||
| 14 | static const ConstraintFlag flag = INIT_POS | INIT_VEL | INIT_ACC | END_POS; | ||
| 15 | |||
| 16 | /// ### EQUATION FOR CONSTRAINts on initial position, velocity and acceleration, | ||
| 17 | /// and only final position (degree = 4) | ||
| 18 | /** | ||
| 19 | * @brief evaluateCurveAtTime compute the expression of the point on the curve | ||
| 20 | * at t, defined by the waypoint pi and one free waypoint (x) | ||
| 21 | * @param pi constant waypoints of the curve, assume p0 p1 x p2 p3 | ||
| 22 | * @param t param (normalized !) | ||
| 23 | * @return the expression of the waypoint such that wp.first . x + wp.second = | ||
| 24 | * point on curve | ||
| 25 | */ | ||
| 26 | ✗ | inline coefs_t evaluateCurveAtTime(const std::vector<point_t>& pi, double t) { | |
| 27 | ✗ | coefs_t wp; | |
| 28 | ✗ | double t2 = t * t; | |
| 29 | ✗ | double t3 = t2 * t; | |
| 30 | ✗ | double t4 = t3 * t; | |
| 31 | // equation found with sympy | ||
| 32 | ✗ | wp.first = -4.0 * t4 + 4.0 * t3; | |
| 33 | ✗ | wp.second = 1.0 * pi[0] * t4 - 4.0 * pi[0] * t3 + 6.0 * pi[0] * t2 - | |
| 34 | ✗ | 4.0 * pi[0] * t + 1.0 * pi[0] - 4.0 * pi[1] * t4 + | |
| 35 | ✗ | 12.0 * pi[1] * t3 - 12.0 * pi[1] * t2 + 4.0 * pi[1] * t + | |
| 36 | ✗ | 6.0 * pi[2] * t4 - 12.0 * pi[2] * t3 + 6.0 * pi[2] * t2 + | |
| 37 | ✗ | 1.0 * pi[4] * t4; | |
| 38 | ✗ | return wp; | |
| 39 | } | ||
| 40 | |||
| 41 | ✗ | inline coefs_t evaluateAccelerationCurveAtTime(const std::vector<point_t>& pi, | |
| 42 | double T, double t) { | ||
| 43 | ✗ | coefs_t wp; | |
| 44 | ✗ | double alpha = 1. / (T * T); | |
| 45 | ✗ | double t2 = t * t; | |
| 46 | // equation found with sympy | ||
| 47 | ✗ | wp.first = (-48.0 * t2 + 24.0 * t) * alpha; | |
| 48 | wp.second = | ||
| 49 | ✗ | (12.0 * pi[0] * t2 - 24.0 * pi[0] * t + 12.0 * pi[0] - 48.0 * pi[1] * t2 + | |
| 50 | ✗ | 72.0 * pi[1] * t - 24.0 * pi[1] + 72.0 * pi[2] * t2 - 72.0 * pi[2] * t + | |
| 51 | ✗ | 12.0 * pi[2] + 12.0 * pi[4] * t2) * | |
| 52 | ✗ | alpha; | |
| 53 | ✗ | return wp; | |
| 54 | } | ||
| 55 | |||
| 56 | ✗ | inline std::vector<point_t> computeConstantWaypoints(const ProblemData& pData, | |
| 57 | double T) { | ||
| 58 | // equation for constraint on initial position, velocity and acceleration, and | ||
| 59 | // only final position (degree = 4)(degree 4, 4 constant waypoint and one free | ||
| 60 | // (p3)) first, compute the constant waypoints that only depend on pData : | ||
| 61 | ✗ | double n = 4.; | |
| 62 | ✗ | std::vector<point_t> pi; | |
| 63 | ✗ | pi.push_back(pData.c0_); // p0 | |
| 64 | ✗ | pi.push_back((pData.dc0_ * T / n) + pData.c0_); // p1 | |
| 65 | ✗ | pi.push_back((pData.ddc0_ * T * T / (n * (n - 1))) + | |
| 66 | ✗ | (2. * pData.dc0_ * T / n) + pData.c0_); // p2 | |
| 67 | ✗ | pi.push_back(point_t::Zero()); // x | |
| 68 | ✗ | pi.push_back(pData.c1_); // p4 | |
| 69 | ✗ | return pi; | |
| 70 | ✗ | } | |
| 71 | |||
| 72 | ✗ | inline bezier_wp_t::t_point_t computeWwaypoints(const ProblemData& pData, | |
| 73 | double T) { | ||
| 74 | ✗ | bezier_wp_t::t_point_t wps; | |
| 75 | ✗ | const int DIM_POINT = 6; | |
| 76 | ✗ | const int DIM_VAR = 3; | |
| 77 | ✗ | std::vector<point_t> pi = computeConstantWaypoints(pData, T); | |
| 78 | ✗ | std::vector<Matrix3> Cpi; | |
| 79 | ✗ | for (std::size_t i = 0; i < pi.size(); ++i) { | |
| 80 | ✗ | Cpi.push_back(skew(pi[i])); | |
| 81 | } | ||
| 82 | ✗ | const Vector3 g = pData.contacts_.front().contactPhase_->m_gravity; | |
| 83 | ✗ | const Matrix3 Cg = skew(g); | |
| 84 | ✗ | const double T2 = T * T; | |
| 85 | ✗ | const double alpha = 1 / (T2); | |
| 86 | |||
| 87 | // equation of waypoints for curve w found with sympy | ||
| 88 | ✗ | waypoint_t w0 = initwp(DIM_POINT, DIM_VAR); | |
| 89 | ✗ | w0.second.head<3>() = (12 * pi[0] - 24 * pi[1] + 12 * pi[2]) * alpha; | |
| 90 | ✗ | w0.second.tail<3>() = | |
| 91 | ✗ | 1.0 * | |
| 92 | ✗ | (1.0 * Cg * T2 * pi[0] - 24.0 * Cpi[0] * pi[1] + 12.0 * Cpi[0] * pi[2]) * | |
| 93 | ✗ | alpha; | |
| 94 | ✗ | wps.push_back(w0); | |
| 95 | ✗ | waypoint_t w1 = initwp(DIM_POINT, DIM_VAR); | |
| 96 | ✗ | w1.first.block<3, 3>(0, 0) = 4.8 * alpha * Matrix3::Identity(); | |
| 97 | ✗ | w1.first.block<3, 3>(3, 0) = 4.8 * Cpi[0] * alpha; | |
| 98 | ✗ | w1.second.head<3>() = 1.0 * (7.2 * pi[0] - 9.6 * pi[1] - 2.4 * pi[2]) * alpha; | |
| 99 | ✗ | w1.second.tail<3>() = 1.0 * | |
| 100 | ✗ | (0.2 * Cg * T2 * pi[0] + 0.8 * Cg * T2 * pi[1] - | |
| 101 | ✗ | 12.0 * Cpi[0] * pi[2] + 9.6 * Cpi[1] * pi[2]) * | |
| 102 | ✗ | alpha; | |
| 103 | ✗ | wps.push_back(w1); | |
| 104 | ✗ | waypoint_t w2 = initwp(DIM_POINT, DIM_VAR); | |
| 105 | ✗ | w2.first.block<3, 3>(0, 0) = 4.8 * alpha * Matrix3::Identity(); | |
| 106 | ✗ | w2.first.block<3, 3>(3, 0) = 1.0 * (-4.8 * Cpi[0] + 9.6 * Cpi[1]) * alpha; | |
| 107 | ✗ | w2.second.head<3>() = 1.0 * (3.6 * pi[0] - 9.6 * pi[2] + 1.2 * pi[4]) * alpha; | |
| 108 | ✗ | w2.second.tail<3>() = 1.0 * | |
| 109 | ✗ | (0.4 * Cg * T2 * pi[1] + 0.6 * Cg * T2 * pi[2] + | |
| 110 | ✗ | 1.2 * Cpi[0] * pi[4] - 9.6 * Cpi[1] * pi[2]) * | |
| 111 | ✗ | alpha; | |
| 112 | ✗ | wps.push_back(w2); | |
| 113 | ✗ | waypoint_t w3 = initwp(DIM_POINT, DIM_VAR); | |
| 114 | ✗ | w3.first.block<3, 3>(3, 0) = | |
| 115 | ✗ | 1.0 * (0.4 * Cg * T2 - 9.6 * Cpi[1] + 9.6 * Cpi[2]) * alpha; | |
| 116 | ✗ | w3.second.head<3>() = | |
| 117 | ✗ | 1.0 * (1.2 * pi[0] + 4.8 * pi[1] - 9.6 * pi[2] + 3.6 * pi[4]) * alpha; | |
| 118 | ✗ | w3.second.tail<3>() = | |
| 119 | ✗ | 1.0 * | |
| 120 | ✗ | (0.6 * Cg * T2 * pi[2] - 1.2 * Cpi[0] * pi[4] + 4.8 * Cpi[1] * pi[4]) * | |
| 121 | ✗ | alpha; | |
| 122 | ✗ | wps.push_back(w3); | |
| 123 | ✗ | waypoint_t w4 = initwp(DIM_POINT, DIM_VAR); | |
| 124 | ✗ | w4.first.block<3, 3>(0, 0) = -9.6 * alpha * Matrix3::Identity(); | |
| 125 | ✗ | w4.first.block<3, 3>(3, 0) = 1.0 * (0.8 * Cg * T2 - 9.6 * Cpi[2]) * alpha; | |
| 126 | ✗ | w4.second.head<3>() = 1.0 * (4.8 * pi[1] - 2.4 * pi[2] + 7.2 * pi[4]) * alpha; | |
| 127 | ✗ | w4.second.tail<3>() = | |
| 128 | ✗ | 1.0 * | |
| 129 | ✗ | (0.2 * Cg * T2 * pi[4] - 4.8 * Cpi[1] * pi[4] + 12.0 * Cpi[2] * pi[4]) * | |
| 130 | ✗ | alpha; | |
| 131 | ✗ | wps.push_back(w4); | |
| 132 | ✗ | waypoint_t w5 = initwp(DIM_POINT, DIM_VAR); | |
| 133 | ✗ | w5.first.block<3, 3>(0, 0) = -24 * alpha * Matrix3::Identity(); | |
| 134 | ✗ | w5.first.block<3, 3>(3, 0) = 1.0 * (-24.0 * Cpi[4]) * alpha; | |
| 135 | ✗ | w5.second.head<3>() = (12 * pi[2] + 12 * pi[4]) * alpha; | |
| 136 | ✗ | w5.second.tail<3>() = | |
| 137 | ✗ | 1.0 * (1.0 * Cg * T2 * pi[4] - 12.0 * Cpi[2] * pi[4]) * alpha; | |
| 138 | ✗ | wps.push_back(w5); | |
| 139 | ✗ | return wps; | |
| 140 | ✗ | } | |
| 141 | |||
| 142 | ✗ | inline coefs_t computeFinalVelocityPoint(const ProblemData& pData, double T) { | |
| 143 | ✗ | coefs_t v; | |
| 144 | // equation found with sympy | ||
| 145 | ✗ | v.first = -4. / T; | |
| 146 | ✗ | v.second = 4. * pData.c1_ / T; | |
| 147 | ✗ | return v; | |
| 148 | } | ||
| 149 | |||
| 150 | } // namespace c0_dc0_ddc0_c1 | ||
| 151 | } // namespace bezier_com_traj | ||
| 152 | |||
| 153 | #endif | ||
| 154 |