Line |
Branch |
Exec |
Source |
1 |
|
|
#ifndef _EIGEN_QUADSOLVE_HPP_ |
2 |
|
|
#define _EIGEN_QUADSOLVE_HPP_ |
3 |
|
|
|
4 |
|
|
/* |
5 |
|
|
FILE eiquadprog.hh |
6 |
|
|
|
7 |
|
|
NOTE: this is a modified of uQuadProg++ package, working with Eigen data |
8 |
|
|
structures. uQuadProg++ is itself a port made by Angelo Furfaro of QuadProg++ |
9 |
|
|
originally developed by Luca Di Gaspero, working with ublas data structures. |
10 |
|
|
|
11 |
|
|
The quadprog_solve() function implements the algorithm of Goldfarb and Idnani |
12 |
|
|
for the solution of a (convex) Quadratic Programming problem |
13 |
|
|
by means of a dual method. |
14 |
|
|
|
15 |
|
|
The problem is in the form: |
16 |
|
|
|
17 |
|
|
min 0.5 * x G x + g0 x |
18 |
|
|
s.t. |
19 |
|
|
CE^T x + ce0 = 0 |
20 |
|
|
CI^T x + ci0 >= 0 |
21 |
|
|
|
22 |
|
|
The matrix and vectors dimensions are as follows: |
23 |
|
|
G: n * n |
24 |
|
|
g0: n |
25 |
|
|
|
26 |
|
|
CE: n * p |
27 |
|
|
ce0: p |
28 |
|
|
|
29 |
|
|
CI: n * m |
30 |
|
|
ci0: m |
31 |
|
|
|
32 |
|
|
x: n |
33 |
|
|
|
34 |
|
|
The function will return the cost of the solution written in the x vector or |
35 |
|
|
std::numeric_limits::infinity() if the problem is infeasible. In the latter |
36 |
|
|
case the value of the x vector is not correct. |
37 |
|
|
|
38 |
|
|
References: D. Goldfarb, A. Idnani. A numerically stable dual method for |
39 |
|
|
solving strictly convex quadratic programs. Mathematical Programming 27 (1983) |
40 |
|
|
pp. 1-33. |
41 |
|
|
|
42 |
|
|
Notes: |
43 |
|
|
1. pay attention in setting up the vectors ce0 and ci0. |
44 |
|
|
If the constraints of your problem are specified in the form |
45 |
|
|
A^T x = b and C^T x >= d, then you should set ce0 = -b and ci0 = -d. |
46 |
|
|
2. The matrix G is modified within the function since it is used to compute |
47 |
|
|
the G = L^T L cholesky factorization for further computations inside the |
48 |
|
|
function. If you need the original matrix G you should make a copy of it and |
49 |
|
|
pass the copy to the function. |
50 |
|
|
|
51 |
|
|
|
52 |
|
|
The author will be grateful if the researchers using this software will |
53 |
|
|
acknowledge the contribution of this modified function and of Di Gaspero's |
54 |
|
|
original version in their research papers. |
55 |
|
|
|
56 |
|
|
|
57 |
|
|
LICENSE |
58 |
|
|
|
59 |
|
|
Copyright (2011) Benjamin Stephens |
60 |
|
|
Copyright (2010) Gael Guennebaud |
61 |
|
|
Copyright (2008) Angelo Furfaro |
62 |
|
|
Copyright (2006) Luca Di Gaspero |
63 |
|
|
|
64 |
|
|
|
65 |
|
|
This file is a porting of QuadProg++ routine, originally developed |
66 |
|
|
by Luca Di Gaspero, exploiting uBlas data structures for vectors and |
67 |
|
|
matrices instead of native C++ array. |
68 |
|
|
|
69 |
|
|
uquadprog is free software; you can redistribute it and/or modify |
70 |
|
|
it under the terms of the GNU General Public License as published by |
71 |
|
|
the Free Software Foundation; either version 2 of the License, or |
72 |
|
|
(at your option) any later version. |
73 |
|
|
|
74 |
|
|
uquadprog is distributed in the hope that it will be useful, |
75 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
76 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
77 |
|
|
GNU General Public License for more details. |
78 |
|
|
|
79 |
|
|
You should have received a copy of the GNU General Public License |
80 |
|
|
along with uquadprog; if not, write to the Free Software |
81 |
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
82 |
|
|
|
83 |
|
|
*/ |
84 |
|
|
|
85 |
|
|
#include <Eigen/Cholesky> |
86 |
|
|
#include <Eigen/Core> |
87 |
|
|
#include <iostream> |
88 |
|
|
|
89 |
|
|
namespace Eigen { |
90 |
|
|
enum QuadProgStatus { CONVERGED, CONSTRAINT_LINEARLY_DEPENDENT, UNBOUNDED }; |
91 |
|
|
|
92 |
|
|
// namespace internal { |
93 |
|
|
|
94 |
|
|
template <typename Scalar> |
95 |
|
✗ |
inline Scalar distance(Scalar a, Scalar b) { |
96 |
|
|
Scalar a1, b1, t; |
97 |
|
✗ |
a1 = std::abs(a); |
98 |
|
✗ |
b1 = std::abs(b); |
99 |
|
✗ |
if (a1 > b1) { |
100 |
|
✗ |
t = (b1 / a1); |
101 |
|
✗ |
return a1 * std::sqrt(1.0 + t * t); |
102 |
|
✗ |
} else if (b1 > a1) { |
103 |
|
✗ |
t = (a1 / b1); |
104 |
|
✗ |
return b1 * std::sqrt(1.0 + t * t); |
105 |
|
|
} |
106 |
|
✗ |
return a1 * std::sqrt(2.0); |
107 |
|
|
} |
108 |
|
|
|
109 |
|
|
// } |
110 |
|
|
|
111 |
|
✗ |
inline void compute_d(VectorXd& d, const MatrixXd& J, const VectorXd& np) { |
112 |
|
✗ |
d = J.adjoint() * np; |
113 |
|
|
} |
114 |
|
|
|
115 |
|
✗ |
inline void update_z(VectorXd& z, const MatrixXd& J, const VectorXd& d, |
116 |
|
|
int iq) { |
117 |
|
✗ |
z = J.rightCols(z.size() - iq) * d.tail(d.size() - iq); |
118 |
|
|
} |
119 |
|
|
|
120 |
|
✗ |
inline void update_r(const MatrixXd& R, VectorXd& r, const VectorXd& d, |
121 |
|
|
int iq) { |
122 |
|
✗ |
r.head(iq) = |
123 |
|
✗ |
R.topLeftCorner(iq, iq).triangularView<Upper>().solve(d.head(iq)); |
124 |
|
|
} |
125 |
|
|
|
126 |
|
|
bool add_constraint(MatrixXd& R, MatrixXd& J, VectorXd& d, int& iq, |
127 |
|
|
double& R_norm); |
128 |
|
|
void delete_constraint(MatrixXd& R, MatrixXd& J, VectorXi& A, VectorXd& u, |
129 |
|
|
int p, int& iq, int l); |
130 |
|
|
|
131 |
|
|
/* solve_quadprog2 is used when the Cholesky decomposition of the G matrix is |
132 |
|
|
* precomputed */ |
133 |
|
|
double solve_quadprog2(const LLT<MatrixXd, Lower>& chol, double c1, |
134 |
|
|
const VectorXd& g0, const MatrixXd& CE, |
135 |
|
|
const VectorXd& ce0, const MatrixXd& CI, |
136 |
|
|
const VectorXd& ci0, VectorXd& x, VectorXi& A, int& q, |
137 |
|
|
QuadProgStatus& status); |
138 |
|
|
|
139 |
|
|
/* solve_quadprog is used for on-demand QP solving */ |
140 |
|
|
inline double solve_quadprog(MatrixXd& G, VectorXd& g0, const MatrixXd& CE, |
141 |
|
|
const VectorXd& ce0, const MatrixXd& CI, |
142 |
|
|
const VectorXd& ci0, VectorXd& x, |
143 |
|
|
VectorXi& activeSet, int& activeSetSize, |
144 |
|
|
QuadProgStatus& status) { |
145 |
|
|
LLT<MatrixXd, Lower> chol(G.cols()); |
146 |
|
|
double c1; |
147 |
|
|
|
148 |
|
|
/* compute the trace of the original matrix G */ |
149 |
|
|
c1 = G.trace(); |
150 |
|
|
|
151 |
|
|
/* decompose the matrix G in the form LL^T */ |
152 |
|
|
chol.compute(G); |
153 |
|
|
|
154 |
|
|
return solve_quadprog2(chol, c1, g0, CE, ce0, CI, ci0, x, activeSet, |
155 |
|
|
activeSetSize, status); |
156 |
|
|
} |
157 |
|
|
|
158 |
|
|
/* solve_quadprog2 is used for when the Cholesky decomposition of G is |
159 |
|
|
* pre-computed |
160 |
|
|
* @param A Output vector containing the indexes of the active constraints. |
161 |
|
|
* @param q Output value representing the size of the active set. |
162 |
|
|
*/ |
163 |
|
✗ |
inline double solve_quadprog2(const LLT<MatrixXd, Lower>& chol, double c1, |
164 |
|
|
const VectorXd& g0, const MatrixXd& CE, |
165 |
|
|
const VectorXd& ce0, const MatrixXd& CI, |
166 |
|
|
const VectorXd& ci0, VectorXd& x, VectorXi& A, |
167 |
|
|
int& q, QuadProgStatus& status) { |
168 |
|
|
int i, j, k, l; /* indices */ |
169 |
|
|
MatrixXd::Index ip, me, mi; |
170 |
|
✗ |
VectorXd::Index n = g0.size(); |
171 |
|
✗ |
MatrixXd::Index p = CE.cols(); |
172 |
|
✗ |
MatrixXd::Index m = CI.cols(); |
173 |
|
✗ |
MatrixXd R(g0.size(), g0.size()), J(g0.size(), g0.size()); |
174 |
|
|
|
175 |
|
✗ |
VectorXd s(m + p), z(n), r(m + p), d(n), np(n), u(m + p); |
176 |
|
✗ |
VectorXd x_old(n), u_old(m + p); |
177 |
|
|
double f_value, psi, c2, sum, ss, R_norm; |
178 |
|
✗ |
const double inf = std::numeric_limits<double>::infinity(); |
179 |
|
|
double t, t1, t2; /* t is the step length, which is the minimum of the partial |
180 |
|
|
* step length t1 and the full step length t2 */ |
181 |
|
|
// VectorXi A(m + p); // Del Prete: active set is now an output |
182 |
|
|
// parameter |
183 |
|
✗ |
if (A.size() != m + p) A.resize(m + p); |
184 |
|
✗ |
VectorXi A_old(m + p), iai(m + p), iaexcl(m + p); |
185 |
|
|
// int q; |
186 |
|
✗ |
int iq, iter = 0; |
187 |
|
|
|
188 |
|
✗ |
me = p; /* number of equality constraints */ |
189 |
|
✗ |
mi = m; /* number of inequality constraints */ |
190 |
|
✗ |
q = 0; /* size of the active set A (containing the indices of the active |
191 |
|
|
constraints) */ |
192 |
|
|
|
193 |
|
|
/* |
194 |
|
|
* Preprocessing phase |
195 |
|
|
*/ |
196 |
|
|
|
197 |
|
|
/* initialize the matrix R */ |
198 |
|
✗ |
d.setZero(); |
199 |
|
✗ |
R.setZero(); |
200 |
|
✗ |
R_norm = 1.0; /* this variable will hold the norm of the matrix R */ |
201 |
|
|
|
202 |
|
|
/* compute the inverse of the factorized matrix G^-1, this is the initial |
203 |
|
|
* value for H */ |
204 |
|
|
// J = L^-T |
205 |
|
✗ |
J.setIdentity(); |
206 |
|
✗ |
J = chol.matrixU().solve(J); |
207 |
|
✗ |
c2 = J.trace(); |
208 |
|
|
#ifdef TRACE_SOLVER |
209 |
|
|
print_matrix("J", J, n); |
210 |
|
|
#endif |
211 |
|
|
|
212 |
|
|
/* c1 * c2 is an estimate for cond(G) */ |
213 |
|
|
|
214 |
|
|
/* |
215 |
|
|
* Find the unconstrained minimizer of the quadratic form 0.5 * x G x + g0 x |
216 |
|
|
* this is a feasible point in the dual space |
217 |
|
|
* x = G^-1 * g0 |
218 |
|
|
*/ |
219 |
|
✗ |
x = chol.solve(g0); |
220 |
|
✗ |
x = -x; |
221 |
|
|
/* and compute the current solution value */ |
222 |
|
✗ |
f_value = 0.5 * g0.dot(x); |
223 |
|
|
#ifdef TRACE_SOLVER |
224 |
|
|
std::cerr << "Unconstrained solution: " << f_value << std::endl; |
225 |
|
|
print_vector("x", x, n); |
226 |
|
|
#endif |
227 |
|
|
|
228 |
|
|
/* Add equality constraints to the working set A */ |
229 |
|
✗ |
iq = 0; |
230 |
|
✗ |
for (i = 0; i < me; i++) { |
231 |
|
✗ |
np = CE.col(i); |
232 |
|
✗ |
compute_d(d, J, np); |
233 |
|
✗ |
update_z(z, J, d, iq); |
234 |
|
✗ |
update_r(R, r, d, iq); |
235 |
|
|
#ifdef TRACE_SOLVER |
236 |
|
|
print_matrix("R", R, iq); |
237 |
|
|
print_vector("z", z, n); |
238 |
|
|
print_vector("r", r, iq); |
239 |
|
|
print_vector("d", d, n); |
240 |
|
|
#endif |
241 |
|
|
|
242 |
|
|
/* compute full step length t2: i.e., the minimum step in primal space s.t. |
243 |
|
|
the contraint becomes feasible */ |
244 |
|
✗ |
t2 = 0.0; |
245 |
|
✗ |
if (std::abs(z.dot(z)) > |
246 |
|
✗ |
std::numeric_limits<double>::epsilon()) // i.e. z != 0 |
247 |
|
✗ |
t2 = (-np.dot(x) - ce0(i)) / z.dot(np); |
248 |
|
|
|
249 |
|
✗ |
x += t2 * z; |
250 |
|
|
|
251 |
|
|
/* set u = u+ */ |
252 |
|
✗ |
u(iq) = t2; |
253 |
|
✗ |
u.head(iq) -= t2 * r.head(iq); |
254 |
|
|
|
255 |
|
|
/* compute the new solution value */ |
256 |
|
✗ |
f_value += 0.5 * (t2 * t2) * z.dot(np); |
257 |
|
✗ |
A(i) = -i - 1; |
258 |
|
|
|
259 |
|
✗ |
if (!add_constraint(R, J, d, iq, R_norm)) { |
260 |
|
|
// FIXME: it should raise an error |
261 |
|
|
// Equality constraints are linearly dependent |
262 |
|
✗ |
status = CONSTRAINT_LINEARLY_DEPENDENT; |
263 |
|
✗ |
return f_value; |
264 |
|
|
} |
265 |
|
|
} |
266 |
|
|
|
267 |
|
|
/* set iai = K \ A */ |
268 |
|
✗ |
for (i = 0; i < mi; i++) iai(i) = i; |
269 |
|
|
|
270 |
|
✗ |
l1: |
271 |
|
✗ |
iter++; |
272 |
|
|
#ifdef TRACE_SOLVER |
273 |
|
|
print_vector("x", x, n); |
274 |
|
|
#endif |
275 |
|
|
/* step 1: choose a violated constraint */ |
276 |
|
✗ |
for (i = me; i < iq; i++) { |
277 |
|
✗ |
ip = A(i); |
278 |
|
✗ |
iai(ip) = -1; |
279 |
|
|
} |
280 |
|
|
|
281 |
|
|
/* compute s(x) = ci^T * x + ci0 for all elements of K \ A */ |
282 |
|
✗ |
ss = 0.0; |
283 |
|
✗ |
psi = 0.0; /* this value will contain the sum of all infeasibilities */ |
284 |
|
✗ |
ip = 0; /* ip will be the index of the chosen violated constraint */ |
285 |
|
✗ |
for (i = 0; i < mi; i++) { |
286 |
|
✗ |
iaexcl(i) = 1; |
287 |
|
✗ |
sum = CI.col(i).dot(x) + ci0(i); |
288 |
|
✗ |
s(i) = sum; |
289 |
|
✗ |
psi += std::min(0.0, sum); |
290 |
|
|
} |
291 |
|
|
#ifdef TRACE_SOLVER |
292 |
|
|
print_vector("s", s, mi); |
293 |
|
|
#endif |
294 |
|
|
|
295 |
|
✗ |
if (std::abs(psi) <= |
296 |
|
✗ |
mi * std::numeric_limits<double>::epsilon() * c1 * c2 * 100.0) { |
297 |
|
|
/* numerically there are not infeasibilities anymore */ |
298 |
|
✗ |
q = iq; |
299 |
|
✗ |
status = CONVERGED; |
300 |
|
✗ |
return f_value; |
301 |
|
|
} |
302 |
|
|
|
303 |
|
|
/* save old values for u, x and A */ |
304 |
|
✗ |
u_old.head(iq) = u.head(iq); |
305 |
|
✗ |
A_old.head(iq) = A.head(iq); |
306 |
|
✗ |
x_old = x; |
307 |
|
|
|
308 |
|
✗ |
l2: /* Step 2: check for feasibility and determine a new S-pair */ |
309 |
|
✗ |
for (i = 0; i < mi; i++) { |
310 |
|
✗ |
if (s(i) < ss && iai(i) != -1 && iaexcl(i)) { |
311 |
|
✗ |
ss = s(i); |
312 |
|
✗ |
ip = i; |
313 |
|
|
} |
314 |
|
|
} |
315 |
|
✗ |
if (ss >= 0.0) { |
316 |
|
✗ |
q = iq; |
317 |
|
✗ |
status = CONVERGED; |
318 |
|
✗ |
return f_value; |
319 |
|
|
} |
320 |
|
|
|
321 |
|
|
/* set np = n(ip) */ |
322 |
|
✗ |
np = CI.col(ip); |
323 |
|
|
/* set u = (u 0)^T */ |
324 |
|
✗ |
u(iq) = 0.0; |
325 |
|
|
/* add ip to the active set A */ |
326 |
|
✗ |
A(iq) = ip; |
327 |
|
|
|
328 |
|
|
#ifdef TRACE_SOLVER |
329 |
|
|
std::cerr << "Trying with constraint " << ip << std::endl; |
330 |
|
|
print_vector("np", np, n); |
331 |
|
|
#endif |
332 |
|
|
|
333 |
|
✗ |
l2a: /* Step 2a: determine step direction */ |
334 |
|
|
/* compute z = H np: the step direction in the primal space (through J, see |
335 |
|
|
* the paper) */ |
336 |
|
✗ |
compute_d(d, J, np); |
337 |
|
✗ |
update_z(z, J, d, iq); |
338 |
|
|
/* compute N* np (if q > 0): the negative of the step direction in the dual |
339 |
|
|
* space */ |
340 |
|
✗ |
update_r(R, r, d, iq); |
341 |
|
|
#ifdef TRACE_SOLVER |
342 |
|
|
std::cerr << "Step direction z" << std::endl; |
343 |
|
|
print_vector("z", z, n); |
344 |
|
|
print_vector("r", r, iq + 1); |
345 |
|
|
print_vector("u", u, iq + 1); |
346 |
|
|
print_vector("d", d, n); |
347 |
|
|
print_ivector("A", A, iq + 1); |
348 |
|
|
#endif |
349 |
|
|
|
350 |
|
|
/* Step 2b: compute step length */ |
351 |
|
✗ |
l = 0; |
352 |
|
|
/* Compute t1: partial step length (maximum step in dual space without |
353 |
|
|
* violating dual feasibility */ |
354 |
|
✗ |
t1 = inf; /* +inf */ |
355 |
|
|
/* find the index l s.t. it reaches the minimum of u+(x) / r */ |
356 |
|
✗ |
for (k = me; k < iq; k++) { |
357 |
|
|
double tmp; |
358 |
|
✗ |
if (r(k) > 0.0 && ((tmp = u(k) / r(k)) < t1)) { |
359 |
|
✗ |
t1 = tmp; |
360 |
|
✗ |
l = A(k); |
361 |
|
|
} |
362 |
|
|
} |
363 |
|
|
/* Compute t2: full step length (minimum step in primal space such that the |
364 |
|
|
* constraint ip becomes feasible */ |
365 |
|
✗ |
if (std::abs(z.dot(z)) > |
366 |
|
✗ |
std::numeric_limits<double>::epsilon()) // i.e. z != 0 |
367 |
|
✗ |
t2 = -s(ip) / z.dot(np); |
368 |
|
|
else |
369 |
|
✗ |
t2 = inf; /* +inf */ |
370 |
|
|
|
371 |
|
|
/* the step is chosen as the minimum of t1 and t2 */ |
372 |
|
✗ |
t = std::min(t1, t2); |
373 |
|
|
#ifdef TRACE_SOLVER |
374 |
|
|
std::cerr << "Step sizes: " << t << " (t1 = " << t1 << ", t2 = " << t2 |
375 |
|
|
<< ") "; |
376 |
|
|
#endif |
377 |
|
|
|
378 |
|
|
/* Step 2c: determine new S-pair and take step: */ |
379 |
|
|
|
380 |
|
|
/* case (i): no step in primal or dual space */ |
381 |
|
✗ |
if (t >= inf) { |
382 |
|
|
/* QPP is infeasible */ |
383 |
|
|
// FIXME: unbounded to raise |
384 |
|
✗ |
q = iq; |
385 |
|
|
#ifdef TRACE_SOLVER |
386 |
|
|
std::cerr << "QP unbounded\n"; |
387 |
|
|
#endif |
388 |
|
✗ |
status = UNBOUNDED; |
389 |
|
✗ |
return inf; |
390 |
|
|
} |
391 |
|
|
/* case (ii): step in dual space */ |
392 |
|
✗ |
if (t2 >= inf) { |
393 |
|
|
/* set u = u + t * [-r 1) and drop constraint l from the active set A */ |
394 |
|
✗ |
u.head(iq) -= t * r.head(iq); |
395 |
|
✗ |
u(iq) += t; |
396 |
|
✗ |
iai(l) = l; |
397 |
|
✗ |
delete_constraint(R, J, A, u, p, iq, l); |
398 |
|
|
#ifdef TRACE_SOLVER |
399 |
|
|
std::cerr << " in dual space: " << f_value << std::endl; |
400 |
|
|
print_vector("x", x, n); |
401 |
|
|
print_vector("z", z, n); |
402 |
|
|
print_ivector("A", A, iq + 1); |
403 |
|
|
#endif |
404 |
|
✗ |
goto l2a; |
405 |
|
|
} |
406 |
|
|
|
407 |
|
|
/* case (iii): step in primal and dual space */ |
408 |
|
|
|
409 |
|
✗ |
x += t * z; |
410 |
|
|
/* update the solution value */ |
411 |
|
✗ |
f_value += t * z.dot(np) * (0.5 * t + u(iq)); |
412 |
|
|
|
413 |
|
✗ |
u.head(iq) -= t * r.head(iq); |
414 |
|
✗ |
u(iq) += t; |
415 |
|
|
#ifdef TRACE_SOLVER |
416 |
|
|
std::cerr << " in both spaces: " << f_value << std::endl; |
417 |
|
|
print_vector("x", x, n); |
418 |
|
|
print_vector("u", u, iq + 1); |
419 |
|
|
print_vector("r", r, iq + 1); |
420 |
|
|
print_ivector("A", A, iq + 1); |
421 |
|
|
#endif |
422 |
|
|
|
423 |
|
✗ |
if (t == t2) { |
424 |
|
|
#ifdef TRACE_SOLVER |
425 |
|
|
std::cerr << "Full step has taken " << t << std::endl; |
426 |
|
|
print_vector("x", x, n); |
427 |
|
|
#endif |
428 |
|
|
/* full step has taken */ |
429 |
|
|
/* add constraint ip to the active set*/ |
430 |
|
✗ |
if (!add_constraint(R, J, d, iq, R_norm)) { |
431 |
|
✗ |
iaexcl(ip) = 0; |
432 |
|
✗ |
delete_constraint(R, J, A, u, p, iq, ip); |
433 |
|
|
#ifdef TRACE_SOLVER |
434 |
|
|
print_matrix("R", R, n); |
435 |
|
|
print_ivector("A", A, iq); |
436 |
|
|
#endif |
437 |
|
✗ |
for (i = 0; i < m; i++) iai(i) = i; |
438 |
|
✗ |
for (i = 0; i < iq; i++) { |
439 |
|
✗ |
A(i) = A_old(i); |
440 |
|
✗ |
iai(A(i)) = -1; |
441 |
|
✗ |
u(i) = u_old(i); |
442 |
|
|
} |
443 |
|
✗ |
x = x_old; |
444 |
|
✗ |
goto l2; /* go to step 2 */ |
445 |
|
|
} else |
446 |
|
✗ |
iai(ip) = -1; |
447 |
|
|
#ifdef TRACE_SOLVER |
448 |
|
|
print_matrix("R", R, n); |
449 |
|
|
print_ivector("A", A, iq); |
450 |
|
|
#endif |
451 |
|
✗ |
goto l1; |
452 |
|
|
} |
453 |
|
|
|
454 |
|
|
/* a patial step has taken */ |
455 |
|
|
#ifdef TRACE_SOLVER |
456 |
|
|
std::cerr << "Partial step has taken " << t << std::endl; |
457 |
|
|
print_vector("x", x, n); |
458 |
|
|
#endif |
459 |
|
|
/* drop constraint l */ |
460 |
|
✗ |
iai(l) = l; |
461 |
|
✗ |
delete_constraint(R, J, A, u, p, iq, l); |
462 |
|
|
#ifdef TRACE_SOLVER |
463 |
|
|
print_matrix("R", R, n); |
464 |
|
|
print_ivector("A", A, iq); |
465 |
|
|
#endif |
466 |
|
|
|
467 |
|
✗ |
s(ip) = CI.col(ip).dot(x) + ci0(ip); |
468 |
|
|
|
469 |
|
|
#ifdef TRACE_SOLVER |
470 |
|
|
print_vector("s", s, mi); |
471 |
|
|
#endif |
472 |
|
✗ |
goto l2a; |
473 |
|
|
} |
474 |
|
|
|
475 |
|
✗ |
inline bool add_constraint(MatrixXd& R, MatrixXd& J, VectorXd& d, int& iq, |
476 |
|
|
double& R_norm) { |
477 |
|
✗ |
MatrixXd::Index n = J.rows(); |
478 |
|
|
#ifdef TRACE_SOLVER |
479 |
|
|
std::cerr << "Add constraint " << iq << '/'; |
480 |
|
|
#endif |
481 |
|
|
int i, j, k; |
482 |
|
|
double cc, ss, h, t1, t2, xny; |
483 |
|
|
|
484 |
|
|
/* we have to find the Givens rotation which will reduce the element |
485 |
|
|
d(j) to zero. |
486 |
|
|
if it is already zero we don't have to do anything, except of |
487 |
|
|
decreasing j */ |
488 |
|
✗ |
for (j = n - 1; j >= iq + 1; j--) { |
489 |
|
|
/* The Givens rotation is done with the matrix (cc cs, cs -cc). |
490 |
|
|
If cc is one, then element (j) of d is zero compared with |
491 |
|
|
element (j - 1). Hence we don't have to do anything. If cc is zero, then |
492 |
|
|
we just have to switch column (j) and column (j - 1) of J. Since we only |
493 |
|
|
switch columns in J, we have to be careful how we update d depending on |
494 |
|
|
the sign of gs. Otherwise we have to apply the Givens rotation to these |
495 |
|
|
columns. The i - 1 element of d has to be updated to h. */ |
496 |
|
✗ |
cc = d(j - 1); |
497 |
|
✗ |
ss = d(j); |
498 |
|
✗ |
h = distance(cc, ss); |
499 |
|
✗ |
if (h == 0.0) continue; |
500 |
|
✗ |
d(j) = 0.0; |
501 |
|
✗ |
ss = ss / h; |
502 |
|
✗ |
cc = cc / h; |
503 |
|
✗ |
if (cc < 0.0) { |
504 |
|
✗ |
cc = -cc; |
505 |
|
✗ |
ss = -ss; |
506 |
|
✗ |
d(j - 1) = -h; |
507 |
|
|
} else |
508 |
|
✗ |
d(j - 1) = h; |
509 |
|
✗ |
xny = ss / (1.0 + cc); |
510 |
|
✗ |
for (k = 0; k < n; k++) { |
511 |
|
✗ |
t1 = J(k, j - 1); |
512 |
|
✗ |
t2 = J(k, j); |
513 |
|
✗ |
J(k, j - 1) = t1 * cc + t2 * ss; |
514 |
|
✗ |
J(k, j) = xny * (t1 + J(k, j - 1)) - t2; |
515 |
|
|
} |
516 |
|
|
} |
517 |
|
|
/* update the number of constraints added*/ |
518 |
|
✗ |
iq++; |
519 |
|
|
/* To update R we have to put the iq components of the d vector |
520 |
|
|
into column iq - 1 of R |
521 |
|
|
*/ |
522 |
|
✗ |
R.col(iq - 1).head(iq) = d.head(iq); |
523 |
|
|
#ifdef TRACE_SOLVER |
524 |
|
|
std::cerr << iq << std::endl; |
525 |
|
|
#endif |
526 |
|
|
|
527 |
|
✗ |
if (std::abs(d(iq - 1)) <= std::numeric_limits<double>::epsilon() * R_norm) |
528 |
|
|
// problem degenerate |
529 |
|
✗ |
return false; |
530 |
|
✗ |
R_norm = std::max<double>(R_norm, std::abs(d(iq - 1))); |
531 |
|
✗ |
return true; |
532 |
|
|
} |
533 |
|
|
|
534 |
|
✗ |
inline void delete_constraint(MatrixXd& R, MatrixXd& J, VectorXi& A, |
535 |
|
|
VectorXd& u, int p, int& iq, int l) { |
536 |
|
✗ |
MatrixXd::Index n = R.rows(); |
537 |
|
|
#ifdef TRACE_SOLVER |
538 |
|
|
std::cerr << "Delete constraint " << l << ' ' << iq; |
539 |
|
|
#endif |
540 |
|
|
int i, j, k, qq; |
541 |
|
|
double cc, ss, h, xny, t1, t2; |
542 |
|
|
|
543 |
|
|
/* Find the index qq for active constraint l to be removed */ |
544 |
|
✗ |
for (i = p; i < iq; i++) |
545 |
|
✗ |
if (A(i) == l) { |
546 |
|
✗ |
qq = i; |
547 |
|
✗ |
break; |
548 |
|
|
} |
549 |
|
|
|
550 |
|
|
/* remove the constraint from the active set and the duals */ |
551 |
|
✗ |
for (i = qq; i < iq - 1; i++) { |
552 |
|
✗ |
A(i) = A(i + 1); |
553 |
|
✗ |
u(i) = u(i + 1); |
554 |
|
✗ |
R.col(i) = R.col(i + 1); |
555 |
|
|
} |
556 |
|
|
|
557 |
|
✗ |
A(iq - 1) = A(iq); |
558 |
|
✗ |
u(iq - 1) = u(iq); |
559 |
|
✗ |
A(iq) = 0; |
560 |
|
✗ |
u(iq) = 0.0; |
561 |
|
✗ |
for (j = 0; j < iq; j++) R(j, iq - 1) = 0.0; |
562 |
|
|
/* constraint has been fully removed */ |
563 |
|
✗ |
iq--; |
564 |
|
|
#ifdef TRACE_SOLVER |
565 |
|
|
std::cerr << '/' << iq << std::endl; |
566 |
|
|
#endif |
567 |
|
|
|
568 |
|
✗ |
if (iq == 0) return; |
569 |
|
|
|
570 |
|
✗ |
for (j = qq; j < iq; j++) { |
571 |
|
✗ |
cc = R(j, j); |
572 |
|
✗ |
ss = R(j + 1, j); |
573 |
|
✗ |
h = distance(cc, ss); |
574 |
|
✗ |
if (h == 0.0) continue; |
575 |
|
✗ |
cc = cc / h; |
576 |
|
✗ |
ss = ss / h; |
577 |
|
✗ |
R(j + 1, j) = 0.0; |
578 |
|
✗ |
if (cc < 0.0) { |
579 |
|
✗ |
R(j, j) = -h; |
580 |
|
✗ |
cc = -cc; |
581 |
|
✗ |
ss = -ss; |
582 |
|
|
} else |
583 |
|
✗ |
R(j, j) = h; |
584 |
|
|
|
585 |
|
✗ |
xny = ss / (1.0 + cc); |
586 |
|
✗ |
for (k = j + 1; k < iq; k++) { |
587 |
|
✗ |
t1 = R(j, k); |
588 |
|
✗ |
t2 = R(j + 1, k); |
589 |
|
✗ |
R(j, k) = t1 * cc + t2 * ss; |
590 |
|
✗ |
R(j + 1, k) = xny * (t1 + R(j, k)) - t2; |
591 |
|
|
} |
592 |
|
✗ |
for (k = 0; k < n; k++) { |
593 |
|
✗ |
t1 = J(k, j); |
594 |
|
✗ |
t2 = J(k, j + 1); |
595 |
|
✗ |
J(k, j) = t1 * cc + t2 * ss; |
596 |
|
✗ |
J(k, j + 1) = xny * (J(k, j) + t1) - t2; |
597 |
|
|
} |
598 |
|
|
} |
599 |
|
|
} |
600 |
|
|
|
601 |
|
|
} // namespace Eigen |
602 |
|
|
|
603 |
|
|
#endif |
604 |
|
|
|