| Line |
Branch |
Exec |
Source |
| 1 |
|
|
// |
| 2 |
|
|
// Copyright (c) 2015 CNRS |
| 3 |
|
|
// Authors: Joseph Mirabel |
| 4 |
|
|
// |
| 5 |
|
|
|
| 6 |
|
|
// Redistribution and use in source and binary forms, with or without |
| 7 |
|
|
// modification, are permitted provided that the following conditions are |
| 8 |
|
|
// met: |
| 9 |
|
|
// |
| 10 |
|
|
// 1. Redistributions of source code must retain the above copyright |
| 11 |
|
|
// notice, this list of conditions and the following disclaimer. |
| 12 |
|
|
// |
| 13 |
|
|
// 2. Redistributions in binary form must reproduce the above copyright |
| 14 |
|
|
// notice, this list of conditions and the following disclaimer in the |
| 15 |
|
|
// documentation and/or other materials provided with the distribution. |
| 16 |
|
|
// |
| 17 |
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 18 |
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 19 |
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 20 |
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 21 |
|
|
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 22 |
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 23 |
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 24 |
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 25 |
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 26 |
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 27 |
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH |
| 28 |
|
|
// DAMAGE. |
| 29 |
|
|
|
| 30 |
|
|
#ifndef HPP_CORE_PATH_OPTIMIZATION_PARTIAL_SHORTCUT_HH |
| 31 |
|
|
#define HPP_CORE_PATH_OPTIMIZATION_PARTIAL_SHORTCUT_HH |
| 32 |
|
|
|
| 33 |
|
|
#include <hpp/core/path-optimizer.hh> |
| 34 |
|
|
|
| 35 |
|
|
namespace hpp { |
| 36 |
|
|
namespace core { |
| 37 |
|
|
namespace pathOptimization { |
| 38 |
|
|
|
| 39 |
|
|
typedef std::vector<JointConstPtr_t> JointStdVector_t; |
| 40 |
|
|
|
| 41 |
|
|
/// \addtogroup path_optimization |
| 42 |
|
|
/// \{ |
| 43 |
|
|
|
| 44 |
|
|
/// Partial shortcut |
| 45 |
|
|
/// |
| 46 |
|
|
/// The algorithm has 3 steps: |
| 47 |
|
|
/// \li find a suitable set of joints that can be optimized. |
| 48 |
|
|
/// \li try a direct path for each of this joints. If this step fails for |
| 49 |
|
|
/// a joint, then the joint is inserted in a input set of next step. |
| 50 |
|
|
/// \li try to find random shortcut on each joint in the set. |
| 51 |
|
|
/// |
| 52 |
|
|
/// See Parameters for information on how to tune the algorithm. |
| 53 |
|
|
/// |
| 54 |
|
|
/// \note The optimizer assumes that the input path is a vector of optimal |
| 55 |
|
|
/// paths for the distance function. |
| 56 |
|
|
struct PartialShortcutTraits { |
| 57 |
|
✗ |
static bool removeLockedJoints() { return true; } |
| 58 |
|
✗ |
static bool onlyFullShortcut() { return false; } |
| 59 |
|
✗ |
static std::size_t numberOfConsecutiveFailurePerJoints() { return 5; } |
| 60 |
|
✗ |
static value_type progressionMargin() { return 1e-3; } |
| 61 |
|
|
}; |
| 62 |
|
|
|
| 63 |
|
|
class HPP_CORE_DLLAPI PartialShortcut : public PathOptimizer { |
| 64 |
|
|
public: |
| 65 |
|
|
/// Return shared pointer to new object. |
| 66 |
|
|
template <typename Traits> |
| 67 |
|
|
static PartialShortcutPtr_t createWithTraits( |
| 68 |
|
|
const ProblemConstPtr_t& problem); |
| 69 |
|
|
|
| 70 |
|
|
/// Return shared pointer to new object. |
| 71 |
|
|
static PartialShortcutPtr_t create(const ProblemConstPtr_t& problem); |
| 72 |
|
|
|
| 73 |
|
|
/// Optimize path |
| 74 |
|
|
virtual PathVectorPtr_t optimize(const PathVectorPtr_t& path); |
| 75 |
|
|
|
| 76 |
|
|
struct Parameters { |
| 77 |
|
|
/// Whether of not the joint that are locked by the constraints |
| 78 |
|
|
/// in the path should not be optimized. |
| 79 |
|
|
/// This is safe if you have the same constraints along the path. |
| 80 |
|
|
/// Defaults to true |
| 81 |
|
|
bool removeLockedJoints; |
| 82 |
|
|
|
| 83 |
|
|
/// Set it to true if you want to skip step 3 |
| 84 |
|
|
/// Defaults to false |
| 85 |
|
|
bool onlyFullShortcut; |
| 86 |
|
|
|
| 87 |
|
|
/// The optimization will stop after a number of consecutive failure |
| 88 |
|
|
/// on each joint. |
| 89 |
|
|
/// Defaults to 5 |
| 90 |
|
|
std::size_t numberOfConsecutiveFailurePerJoints; |
| 91 |
|
|
|
| 92 |
|
|
/// An iteration will be considered as a failure is the path length |
| 93 |
|
|
/// did not decrease more than progressionMargin. |
| 94 |
|
|
/// Defaults is 1e-3 |
| 95 |
|
|
value_type progressionMargin; |
| 96 |
|
|
|
| 97 |
|
|
Parameters(); |
| 98 |
|
|
} parameters; |
| 99 |
|
|
|
| 100 |
|
|
protected: |
| 101 |
|
|
PartialShortcut(const ProblemConstPtr_t& problem); |
| 102 |
|
|
|
| 103 |
|
|
private: |
| 104 |
|
|
PathVectorPtr_t generatePath(PathVectorPtr_t path, JointConstPtr_t joint, |
| 105 |
|
|
const value_type t1, ConfigurationIn_t q1, |
| 106 |
|
|
const value_type t2, ConfigurationIn_t q2) const; |
| 107 |
|
|
|
| 108 |
|
|
JointStdVector_t generateJointVector(const PathVectorPtr_t& pv) const; |
| 109 |
|
|
|
| 110 |
|
|
/// try direct path on each joint in jvIn. |
| 111 |
|
|
/// \param jvIn contains the joints on which optimization should be |
| 112 |
|
|
/// tried |
| 113 |
|
|
/// \param jvOut contains the joints of jvIn on which optimization |
| 114 |
|
|
/// failed. |
| 115 |
|
|
/// \return the optimized path |
| 116 |
|
|
PathVectorPtr_t optimizeFullPath(const PathVectorPtr_t& pv, |
| 117 |
|
|
const JointStdVector_t& jvIn, |
| 118 |
|
|
JointStdVector_t& jvOut) const; |
| 119 |
|
|
|
| 120 |
|
|
/// optimize each joint in jvIn. |
| 121 |
|
|
/// \param jvIn contains the joints on which optimization should be |
| 122 |
|
|
/// tried |
| 123 |
|
|
/// \return the optimized path |
| 124 |
|
|
PathVectorPtr_t optimizeRandom(const PathVectorPtr_t& pv, |
| 125 |
|
|
const JointStdVector_t& jv) const; |
| 126 |
|
|
}; // class RandomShortcut |
| 127 |
|
|
/// \} |
| 128 |
|
|
|
| 129 |
|
|
template <typename Traits> |
| 130 |
|
✗ |
PartialShortcutPtr_t PartialShortcut::createWithTraits( |
| 131 |
|
|
const ProblemConstPtr_t& problem) { |
| 132 |
|
✗ |
PartialShortcut* ptr = new PartialShortcut(problem); |
| 133 |
|
✗ |
ptr->parameters.removeLockedJoints = Traits::removeLockedJoints(); |
| 134 |
|
✗ |
ptr->parameters.onlyFullShortcut = Traits::onlyFullShortcut(); |
| 135 |
|
✗ |
ptr->parameters.progressionMargin = Traits::progressionMargin(); |
| 136 |
|
✗ |
ptr->parameters.numberOfConsecutiveFailurePerJoints = |
| 137 |
|
✗ |
Traits::numberOfConsecutiveFailurePerJoints(); |
| 138 |
|
✗ |
return PartialShortcutPtr_t(ptr); |
| 139 |
|
|
} |
| 140 |
|
|
} // namespace pathOptimization |
| 141 |
|
|
} // namespace core |
| 142 |
|
|
} // namespace hpp |
| 143 |
|
|
#endif // HPP_CORE_PATH_OPTIMIZATION_PARTIAL_SHORTCUT_HH |
| 144 |
|
|
|