| Directory: | ./ |
|---|---|
| File: | include/hpp/core/time-parameterization/polynomial.hh |
| Date: | 2025-03-10 11:18:21 |
| Exec | Total | Coverage | |
|---|---|---|---|
| Lines: | 40 | 46 | 87.0% |
| Branches: | 28 | 52 | 53.8% |
| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | // Copyright (c) 2017, Joseph Mirabel | ||
| 2 | // Authors: Joseph Mirabel (joseph.mirabel@laas.fr) | ||
| 3 | // | ||
| 4 | |||
| 5 | // Redistribution and use in source and binary forms, with or without | ||
| 6 | // modification, are permitted provided that the following conditions are | ||
| 7 | // met: | ||
| 8 | // | ||
| 9 | // 1. Redistributions of source code must retain the above copyright | ||
| 10 | // notice, this list of conditions and the following disclaimer. | ||
| 11 | // | ||
| 12 | // 2. Redistributions in binary form must reproduce the above copyright | ||
| 13 | // notice, this list of conditions and the following disclaimer in the | ||
| 14 | // documentation and/or other materials provided with the distribution. | ||
| 15 | // | ||
| 16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | ||
| 17 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | ||
| 18 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | ||
| 19 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | ||
| 20 | // HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 21 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | ||
| 22 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | ||
| 23 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | ||
| 24 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
| 25 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
| 26 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH | ||
| 27 | // DAMAGE. | ||
| 28 | |||
| 29 | #ifndef HPP_CORE_TIME_PARAMETERIZATION_POLYNOMIAL_HH | ||
| 30 | #define HPP_CORE_TIME_PARAMETERIZATION_POLYNOMIAL_HH | ||
| 31 | |||
| 32 | #include <hpp/constraints/differentiable-function.hh> | ||
| 33 | #include <hpp/core/config.hh> | ||
| 34 | #include <hpp/core/fwd.hh> | ||
| 35 | #include <hpp/core/path/math.hh> | ||
| 36 | #include <hpp/core/time-parameterization.hh> | ||
| 37 | |||
| 38 | namespace hpp { | ||
| 39 | namespace core { | ||
| 40 | namespace timeParameterization { | ||
| 41 | class HPP_CORE_DLLAPI Polynomial : public TimeParameterization { | ||
| 42 | public: | ||
| 43 | 6 | Polynomial(const vector_t& param) : a(param) { | |
| 44 |
2/2✓ Branch 1 taken 24 times.
✓ Branch 2 taken 6 times.
|
30 | for (size_type i = 0; i < a.size(); ++i) { |
| 45 |
2/4✓ Branch 1 taken 24 times.
✗ Branch 2 not taken.
✗ Branch 4 not taken.
✓ Branch 5 taken 24 times.
|
24 | assert(a[i] < std::numeric_limits<value_type>::infinity()); |
| 46 |
2/4✓ Branch 1 taken 24 times.
✗ Branch 2 not taken.
✗ Branch 4 not taken.
✓ Branch 5 taken 24 times.
|
24 | assert(a[i] > -std::numeric_limits<value_type>::infinity()); |
| 47 | } | ||
| 48 | 6 | } | |
| 49 | |||
| 50 | const vector_t& parameters() const { return a; } | ||
| 51 | |||
| 52 | 2 | TimeParameterizationPtr_t copy() const { | |
| 53 |
1/2✓ Branch 2 taken 2 times.
✗ Branch 3 not taken.
|
2 | return TimeParameterizationPtr_t(new Polynomial(*this)); |
| 54 | } | ||
| 55 | |||
| 56 | /// Computes \f$ \sum_{i=0}^n a_i t^i \f$ | ||
| 57 | 19 | value_type value(const value_type& t) const { return val(t); } | |
| 58 | |||
| 59 | /// Computes \f$ \sum_{i=1}^n i a_i t^{i-1} \f$ | ||
| 60 | 20010 | value_type derivative(const value_type& t, const size_type& order) const { | |
| 61 | 20010 | return Jac(t, order); | |
| 62 | } | ||
| 63 | |||
| 64 | /// Compute the bound of the derivative on \f$ [ low, up ] \f$. | ||
| 65 | /// Three cases are handled: | ||
| 66 | /// \li first order: \f$ B = |a_1| \f$ | ||
| 67 | /// \li second order: \f$ B = \max{|J(low)|, |J(up)|} \f$ | ||
| 68 | /// \li third order: | ||
| 69 | /// Let \f$ x_m = - \frac{a_2}{3 a_3} \f$ be the extremal point | ||
| 70 | /// of the derivative and \f$ M = \max{|J(low)|, |J(up)|}\f$. | ||
| 71 | /// Then: | ||
| 72 | /// - if \f$ low < x_m < up \f$, | ||
| 73 | /// \f$ B = \max{ |a_1 - \frac{a_2}{3 a_3}|, M } \f$ | ||
| 74 | /// - else \f$ B = M \f$ | ||
| 75 | 9 | value_type derivativeBound(const value_type& low, | |
| 76 | const value_type& up) const { | ||
| 77 | using std::fabs; | ||
| 78 | using std::max; | ||
| 79 |
2/4✓ Branch 1 taken 3 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 6 times.
✗ Branch 4 not taken.
|
9 | switch (a.size()) { |
| 80 | 3 | case 2: | |
| 81 | 3 | return fabs(a[1]); | |
| 82 | break; | ||
| 83 | ✗ | case 3: | |
| 84 | ✗ | return max(fabs(Jac(low)), fabs(Jac(up))); | |
| 85 | break; | ||
| 86 | 6 | case 4: { | |
| 87 |
2/4✓ Branch 1 taken 6 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 6 times.
✗ Branch 5 not taken.
|
6 | const value_type x_m = -a[2] / (3 * a[3]); |
| 88 |
2/4✓ Branch 1 taken 6 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 6 times.
✗ Branch 5 not taken.
|
6 | const value_type M = max(fabs(Jac(low)), fabs(Jac(up))); |
| 89 |
4/4✓ Branch 0 taken 4 times.
✓ Branch 1 taken 2 times.
✓ Branch 2 taken 2 times.
✓ Branch 3 taken 2 times.
|
6 | if (low < x_m && x_m < up) |
| 90 |
3/6✓ Branch 1 taken 2 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 2 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 2 times.
✗ Branch 8 not taken.
|
2 | return max(M, fabs(a[1] - a[2] / 3 * a[3])); |
| 91 | else | ||
| 92 | 4 | return M; | |
| 93 | } break; | ||
| 94 | ✗ | default: | |
| 95 | ✗ | throw std::logic_error("not implemented"); | |
| 96 | } | ||
| 97 | } | ||
| 98 | |||
| 99 | private: | ||
| 100 | 19 | value_type val(const value_type& t) const { | |
| 101 | 19 | value_type tn = 1; | |
| 102 | 19 | value_type res = a[0]; | |
| 103 |
2/2✓ Branch 1 taken 31 times.
✓ Branch 2 taken 19 times.
|
50 | for (size_type i = 1; i < a.size(); ++i) { |
| 104 | 31 | tn *= t; | |
| 105 | 31 | res += a[i] * tn; | |
| 106 | } | ||
| 107 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 19 times.
|
19 | assert(res == res); |
| 108 | 19 | return res; | |
| 109 | } | ||
| 110 | |||
| 111 |
1/2✓ Branch 1 taken 12 times.
✗ Branch 2 not taken.
|
12 | value_type Jac(const value_type& t) const { return Jac(t, 1); } |
| 112 | |||
| 113 | 20022 | value_type Jac(const value_type& t, const size_type& order) const { | |
| 114 |
1/2✗ Branch 1 not taken.
✓ Branch 2 taken 20022 times.
|
20022 | if (order >= a.size()) return 0; |
| 115 | 20022 | const size_type MaxOrder = 10; | |
| 116 |
1/2✗ Branch 1 not taken.
✓ Branch 2 taken 20022 times.
|
20022 | if (a.size() > MaxOrder) |
| 117 | ✗ | throw std::invalid_argument( | |
| 118 | ✗ | "Cannot compute the derivative of order greater than 10."); | |
| 119 | typedef path::binomials<MaxOrder> Binomials_t; | ||
| 120 | 20022 | const Binomials_t::Factorials_t& factors = Binomials_t::factorials(); | |
| 121 | |||
| 122 | 20022 | value_type res = 0; | |
| 123 | 20022 | value_type tn = 1; | |
| 124 |
2/2✓ Branch 1 taken 100060 times.
✓ Branch 2 taken 20022 times.
|
120082 | for (size_type i = order; i < a.size(); ++i) { |
| 125 | 100060 | res += value_type(factors[i] / factors[i - order]) * a[i] * tn; | |
| 126 | 100060 | tn *= t; | |
| 127 | } | ||
| 128 | 20022 | return res; | |
| 129 | } | ||
| 130 | |||
| 131 | vector_t a; | ||
| 132 | }; // class Polynomial | ||
| 133 | } // namespace timeParameterization | ||
| 134 | } // namespace core | ||
| 135 | } // namespace hpp | ||
| 136 | #endif // HPP_CORE_TIME_PARAMETERIZATION_POLYNOMIAL_HH | ||
| 137 |