| Line |
Branch |
Exec |
Source |
| 1 |
|
|
// Copyright (c) 2017, Joseph Mirabel |
| 2 |
|
|
// Authors: Joseph Mirabel (joseph.mirabel@laas.fr), |
| 3 |
|
|
// Florent Lamiraux (florent.lamiraux@laas.fr) |
| 4 |
|
|
// |
| 5 |
|
|
|
| 6 |
|
|
// Redistribution and use in source and binary forms, with or without |
| 7 |
|
|
// modification, are permitted provided that the following conditions are |
| 8 |
|
|
// met: |
| 9 |
|
|
// |
| 10 |
|
|
// 1. Redistributions of source code must retain the above copyright |
| 11 |
|
|
// notice, this list of conditions and the following disclaimer. |
| 12 |
|
|
// |
| 13 |
|
|
// 2. Redistributions in binary form must reproduce the above copyright |
| 14 |
|
|
// notice, this list of conditions and the following disclaimer in the |
| 15 |
|
|
// documentation and/or other materials provided with the distribution. |
| 16 |
|
|
// |
| 17 |
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 18 |
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 19 |
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 20 |
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 21 |
|
|
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 22 |
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 23 |
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 24 |
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 25 |
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 26 |
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 27 |
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH |
| 28 |
|
|
// DAMAGE. |
| 29 |
|
|
|
| 30 |
|
|
#ifndef HPP_MANIPULATION_STEERING_METHOD_CROSS_STATE_OPTIMIZATION_HH |
| 31 |
|
|
#define HPP_MANIPULATION_STEERING_METHOD_CROSS_STATE_OPTIMIZATION_HH |
| 32 |
|
|
|
| 33 |
|
|
#include <hpp/core/config-projector.hh> |
| 34 |
|
|
#include <hpp/core/steering-method.hh> |
| 35 |
|
|
#include <hpp/manipulation/config.hh> |
| 36 |
|
|
#include <hpp/manipulation/fwd.hh> |
| 37 |
|
|
#include <hpp/manipulation/problem.hh> |
| 38 |
|
|
#include <hpp/manipulation/steering-method/fwd.hh> |
| 39 |
|
|
#include <hpp/manipulation/steering-method/graph.hh> |
| 40 |
|
|
|
| 41 |
|
|
namespace hpp { |
| 42 |
|
|
namespace manipulation { |
| 43 |
|
|
namespace steeringMethod { |
| 44 |
|
|
/// \addtogroup steering_method |
| 45 |
|
|
/// \{ |
| 46 |
|
|
|
| 47 |
|
|
/// Optimization-based steering method. |
| 48 |
|
|
/// |
| 49 |
|
|
/// #### Sketch of the method |
| 50 |
|
|
/// |
| 51 |
|
|
/// Given two configuration \f$ (q_1,q_2) \f$, this class formulates and |
| 52 |
|
|
/// solves the problem as follows. |
| 53 |
|
|
/// - Compute the corresponding states \f$ (s_1, s_2) \f$. |
| 54 |
|
|
/// - For a each path \f$ (e_0, ... e_n) \f$ of length not more than |
| 55 |
|
|
/// parameter "CrossStateOptimization/maxDepth" between |
| 56 |
|
|
/// \f$ (s_1, s_2)\f$ in the constraint graph, do: |
| 57 |
|
|
/// - define \f$ n-1 \f$ intermediate configuration \f$ p_i \f$, |
| 58 |
|
|
/// - initialize the optimization problem, as explained below, |
| 59 |
|
|
/// - solve the optimization problem, which gives \f$ p^*_i \f$, |
| 60 |
|
|
/// - in case of failure, continue the loop. |
| 61 |
|
|
/// - call the Edge::build of each \f$ e_j \f$ for each consecutive |
| 62 |
|
|
/// \f$ (p^*_i, p^*_{i+1}) \f$. |
| 63 |
|
|
/// |
| 64 |
|
|
/// #### Problem formulation |
| 65 |
|
|
/// Find \f$ (p_i) \f$ such that: |
| 66 |
|
|
/// - \f$ p_0 = q_1 \f$, |
| 67 |
|
|
/// - \f$ p_{n+1} = q_2 \f$, |
| 68 |
|
|
/// - \f$ p_i \f$ is in state between \f$ (e_{i-1}, e_i) \f$, (\ref |
| 69 |
|
|
/// StateFunction) |
| 70 |
|
|
/// - \f$ (p_i, p_{i+1}) \f$ are reachable with transition \f$ e_i \f$ (\ref |
| 71 |
|
|
/// EdgeFunction). |
| 72 |
|
|
/// |
| 73 |
|
|
/// #### Problem resolution |
| 74 |
|
|
/// |
| 75 |
|
|
/// One solver (hpp::constraints::solver::BySubstitution) is created |
| 76 |
|
|
/// for each waypoint \f$p_i\f$. |
| 77 |
|
|
/// - method buildOptimizationProblem builds a matrix the rows of which |
| 78 |
|
|
/// are the parameterizable numerical constraints present in the |
| 79 |
|
|
/// graph, and the columns of which are the waypoints. Each value in the |
| 80 |
|
|
/// matrix defines the status of each constraint right hand side for |
| 81 |
|
|
/// this waypoint, among {absent from the solver, |
| 82 |
|
|
/// equal to value for previous waypoint, |
| 83 |
|
|
/// equal to value for start configuration, |
| 84 |
|
|
/// equal to value for end configuration}. |
| 85 |
|
|
/// - method CrossStateOptimization::solveOptimizationProblem loops over |
| 86 |
|
|
/// the waypoint solvers, solves for each waypoint after |
| 87 |
|
|
/// initializing the right hand sides with the proper values. |
| 88 |
|
|
/// - eventually method buildPath build paths between waypoints with |
| 89 |
|
|
/// the constraints of the transition in which the path lies. |
| 90 |
|
|
/// |
| 91 |
|
|
/// #### Current status |
| 92 |
|
|
/// |
| 93 |
|
|
/// The method has been successfully tested with romeo holding a placard |
| 94 |
|
|
/// and the construction set benchmarks. The result is satisfactory |
| 95 |
|
|
/// except between pregrasp and grasp waypoints that may be far |
| 96 |
|
|
/// away from each other if the transition between those state does |
| 97 |
|
|
/// not contain the grasp complement constraint. The same holds |
| 98 |
|
|
/// between placement and pre-placement. |
| 99 |
|
|
class HPP_MANIPULATION_DLLAPI CrossStateOptimization : public SteeringMethod { |
| 100 |
|
|
public: |
| 101 |
|
|
struct OptimizationData; |
| 102 |
|
|
|
| 103 |
|
|
static CrossStateOptimizationPtr_t create(const ProblemConstPtr_t& problem); |
| 104 |
|
|
|
| 105 |
|
|
/// \warning core::Problem will be casted to Problem |
| 106 |
|
|
static CrossStateOptimizationPtr_t create( |
| 107 |
|
|
const core::ProblemConstPtr_t& problem); |
| 108 |
|
|
|
| 109 |
|
|
template <typename T> |
| 110 |
|
|
static CrossStateOptimizationPtr_t create( |
| 111 |
|
|
const core::ProblemConstPtr_t& problem); |
| 112 |
|
|
|
| 113 |
|
|
core::SteeringMethodPtr_t copy() const; |
| 114 |
|
|
|
| 115 |
|
|
protected: |
| 116 |
|
✗ |
CrossStateOptimization(const ProblemConstPtr_t& problem) |
| 117 |
|
✗ |
: SteeringMethod(problem), sameRightHandSide_() { |
| 118 |
|
✗ |
gatherGraphConstraints(); |
| 119 |
|
|
} |
| 120 |
|
|
|
| 121 |
|
✗ |
CrossStateOptimization(const CrossStateOptimization& other) |
| 122 |
|
✗ |
: SteeringMethod(other), |
| 123 |
|
✗ |
constraints_(other.constraints_), |
| 124 |
|
✗ |
index_(other.index_), |
| 125 |
|
✗ |
sameRightHandSide_(other.sameRightHandSide_), |
| 126 |
|
✗ |
weak_() {} |
| 127 |
|
|
|
| 128 |
|
|
core::PathPtr_t impl_compute(ConfigurationIn_t q1, |
| 129 |
|
|
ConfigurationIn_t q2) const; |
| 130 |
|
|
|
| 131 |
|
✗ |
void init(CrossStateOptimizationWkPtr_t weak) { |
| 132 |
|
✗ |
SteeringMethod::init(weak); |
| 133 |
|
✗ |
weak_ = weak; |
| 134 |
|
|
} |
| 135 |
|
|
|
| 136 |
|
|
private: |
| 137 |
|
|
typedef constraints::solver::BySubstitution Solver_t; |
| 138 |
|
|
struct GraphSearchData; |
| 139 |
|
|
|
| 140 |
|
|
/// Gather constraints of all edges |
| 141 |
|
|
void gatherGraphConstraints(); |
| 142 |
|
|
|
| 143 |
|
|
/// Step 1 of the algorithm |
| 144 |
|
|
/// \return whether the max depth was reached. |
| 145 |
|
|
bool findTransitions(GraphSearchData& data) const; |
| 146 |
|
|
|
| 147 |
|
|
/// Step 2 of the algorithm |
| 148 |
|
|
graph::Edges_t getTransitionList(GraphSearchData& data, |
| 149 |
|
|
const std::size_t& i) const; |
| 150 |
|
|
|
| 151 |
|
|
/// Step 3 of the algorithm |
| 152 |
|
|
bool buildOptimizationProblem(OptimizationData& d, |
| 153 |
|
|
const graph::Edges_t& transitions) const; |
| 154 |
|
|
|
| 155 |
|
|
/// Step 4 of the algorithm |
| 156 |
|
|
bool solveOptimizationProblem(OptimizationData& d) const; |
| 157 |
|
|
|
| 158 |
|
|
bool checkConstantRightHandSide(OptimizationData& d, size_type index) const; |
| 159 |
|
|
|
| 160 |
|
|
core::PathVectorPtr_t buildPath(OptimizationData& d, |
| 161 |
|
|
const graph::Edges_t& edges) const; |
| 162 |
|
|
|
| 163 |
|
|
bool contains(const Solver_t& solver, const ImplicitPtr_t& c) const; |
| 164 |
|
|
|
| 165 |
|
|
/// Vector of parameterizable edge numerical constraints |
| 166 |
|
|
NumericalConstraints_t constraints_; |
| 167 |
|
|
/// Map of indexes in constraints_ |
| 168 |
|
|
std::map<std::string, std::size_t> index_; |
| 169 |
|
|
|
| 170 |
|
|
/// associative map that stores pairs of constraints of the form |
| 171 |
|
|
/// (constraint, constraint/hold) |
| 172 |
|
|
std::map<ImplicitPtr_t, ImplicitPtr_t> sameRightHandSide_; |
| 173 |
|
|
|
| 174 |
|
|
/// Weak pointer to itself |
| 175 |
|
|
CrossStateOptimizationWkPtr_t weak_; |
| 176 |
|
|
}; // class CrossStateOptimization |
| 177 |
|
|
/// \} |
| 178 |
|
|
|
| 179 |
|
|
template <typename T> |
| 180 |
|
✗ |
CrossStateOptimizationPtr_t CrossStateOptimization::create( |
| 181 |
|
|
const core::ProblemConstPtr_t& problem) { |
| 182 |
|
✗ |
CrossStateOptimizationPtr_t gsm = CrossStateOptimization::create(problem); |
| 183 |
|
✗ |
gsm->innerSteeringMethod(T::create(problem)); |
| 184 |
|
✗ |
return gsm; |
| 185 |
|
|
} |
| 186 |
|
|
} // namespace steeringMethod |
| 187 |
|
|
} // namespace manipulation |
| 188 |
|
|
} // namespace hpp |
| 189 |
|
|
|
| 190 |
|
|
#endif // HPP_MANIPULATION_STEERING_METHOD_CROSS_STATE_OPTIMIZATION_HH |
| 191 |
|
|
|