| Line |
Branch |
Exec |
Source |
| 1 |
|
|
// Copyright (c) 2019 CNRS |
| 2 |
|
|
// Authors: Joseph Mirabel |
| 3 |
|
|
// |
| 4 |
|
|
|
| 5 |
|
|
// Redistribution and use in source and binary forms, with or without |
| 6 |
|
|
// modification, are permitted provided that the following conditions are |
| 7 |
|
|
// met: |
| 8 |
|
|
// |
| 9 |
|
|
// 1. Redistributions of source code must retain the above copyright |
| 10 |
|
|
// notice, this list of conditions and the following disclaimer. |
| 11 |
|
|
// |
| 12 |
|
|
// 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
|
|
// notice, this list of conditions and the following disclaimer in the |
| 14 |
|
|
// documentation and/or other materials provided with the distribution. |
| 15 |
|
|
// |
| 16 |
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 |
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 |
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 |
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 |
|
|
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 |
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 |
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 |
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 |
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 |
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 |
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH |
| 27 |
|
|
// DAMAGE. |
| 28 |
|
|
|
| 29 |
|
|
#include <hpp/constraints/differentiable-function.hh> |
| 30 |
|
|
#include <hpp/constraints/implicit.hh> |
| 31 |
|
|
#include <hpp/core/config-projector.hh> |
| 32 |
|
|
#include <hpp/core/config-validations.hh> |
| 33 |
|
|
#include <hpp/core/configuration-shooter.hh> |
| 34 |
|
|
#include <hpp/core/path-validation.hh> |
| 35 |
|
|
#include <hpp/core/problem.hh> |
| 36 |
|
|
#include <hpp/core/roadmap.hh> |
| 37 |
|
|
#include <hpp/manipulation/path-planner/end-effector-trajectory.hh> |
| 38 |
|
|
#include <hpp/manipulation/steering-method/end-effector-trajectory.hh> |
| 39 |
|
|
#include <hpp/pinocchio/device-sync.hh> |
| 40 |
|
|
#include <hpp/pinocchio/liegroup-element.hh> |
| 41 |
|
|
#include <hpp/pinocchio/util.hh> |
| 42 |
|
|
#include <hpp/util/exception-factory.hh> |
| 43 |
|
|
#include <pinocchio/multibody/data.hpp> |
| 44 |
|
|
|
| 45 |
|
|
namespace hpp { |
| 46 |
|
|
namespace manipulation { |
| 47 |
|
|
namespace pathPlanner { |
| 48 |
|
|
typedef manipulation::steeringMethod::EndEffectorTrajectory SM_t; |
| 49 |
|
|
typedef manipulation::steeringMethod::EndEffectorTrajectoryPtr_t SMPtr_t; |
| 50 |
|
|
|
| 51 |
|
✗ |
EndEffectorTrajectoryPtr_t EndEffectorTrajectory::create( |
| 52 |
|
|
const core::ProblemConstPtr_t& problem) { |
| 53 |
|
✗ |
EndEffectorTrajectoryPtr_t ptr(new EndEffectorTrajectory(problem)); |
| 54 |
|
✗ |
ptr->init(ptr); |
| 55 |
|
✗ |
return ptr; |
| 56 |
|
|
} |
| 57 |
|
|
|
| 58 |
|
✗ |
EndEffectorTrajectoryPtr_t EndEffectorTrajectory::createWithRoadmap( |
| 59 |
|
|
const core::ProblemConstPtr_t& problem, const core::RoadmapPtr_t& roadmap) { |
| 60 |
|
✗ |
EndEffectorTrajectoryPtr_t ptr(new EndEffectorTrajectory(problem, roadmap)); |
| 61 |
|
✗ |
ptr->init(ptr); |
| 62 |
|
✗ |
return ptr; |
| 63 |
|
|
} |
| 64 |
|
|
|
| 65 |
|
✗ |
void EndEffectorTrajectory::tryConnectInitAndGoals() {} |
| 66 |
|
|
|
| 67 |
|
✗ |
void EndEffectorTrajectory::startSolve() { |
| 68 |
|
|
// core::PathPlanner::startSolve(); |
| 69 |
|
|
// problem().checkProblem (); |
| 70 |
|
✗ |
if (!problem()->robot()) { |
| 71 |
|
✗ |
std::string msg("No device in problem."); |
| 72 |
|
|
hppDout(error, msg); |
| 73 |
|
✗ |
throw std::runtime_error(msg); |
| 74 |
|
|
} |
| 75 |
|
|
|
| 76 |
|
✗ |
if (problem()->initConfig().size() == 0) { |
| 77 |
|
✗ |
std::string msg("No init config in problem."); |
| 78 |
|
|
hppDout(error, msg); |
| 79 |
|
✗ |
throw std::runtime_error(msg); |
| 80 |
|
|
} |
| 81 |
|
|
|
| 82 |
|
|
// Tag init and goal configurations in the roadmap |
| 83 |
|
✗ |
roadmap()->resetGoalNodes(); |
| 84 |
|
|
|
| 85 |
|
✗ |
SMPtr_t sm(HPP_DYNAMIC_PTR_CAST(SM_t, problem()->steeringMethod())); |
| 86 |
|
✗ |
if (!sm) |
| 87 |
|
✗ |
throw std::invalid_argument( |
| 88 |
|
|
"Steering method must be of type " |
| 89 |
|
✗ |
"hpp::manipulation::steeringMethod::EndEffectorTrajectory"); |
| 90 |
|
|
|
| 91 |
|
✗ |
if (!sm->constraints() || !sm->constraints()->configProjector()) |
| 92 |
|
✗ |
throw std::invalid_argument( |
| 93 |
|
✗ |
"Steering method constraint has no ConfigProjector."); |
| 94 |
|
✗ |
core::ConfigProjectorPtr_t constraints(sm->constraints()->configProjector()); |
| 95 |
|
|
|
| 96 |
|
✗ |
const constraints::ImplicitPtr_t& trajConstraint = sm->trajectoryConstraint(); |
| 97 |
|
✗ |
if (!trajConstraint) |
| 98 |
|
✗ |
throw std::invalid_argument( |
| 99 |
|
✗ |
"EndEffectorTrajectory has no trajectory constraint."); |
| 100 |
|
✗ |
if (!sm->trajectory()) |
| 101 |
|
✗ |
throw std::invalid_argument("EndEffectorTrajectory has no trajectory."); |
| 102 |
|
|
|
| 103 |
|
✗ |
const core::NumericalConstraints_t& ncs = constraints->numericalConstraints(); |
| 104 |
|
✗ |
bool ok = false; |
| 105 |
|
✗ |
for (std::size_t i = 0; i < ncs.size(); ++i) { |
| 106 |
|
✗ |
if (ncs[i] == trajConstraint) { |
| 107 |
|
✗ |
ok = true; |
| 108 |
|
✗ |
break; // Same pointer |
| 109 |
|
|
} |
| 110 |
|
|
// Here, we do not check the right hand side on purpose. |
| 111 |
|
|
// if (*ncs[i] == *trajConstraint) { |
| 112 |
|
✗ |
if (ncs[i]->functionPtr() == trajConstraint->functionPtr() && |
| 113 |
|
✗ |
ncs[i]->comparisonType() == trajConstraint->comparisonType()) { |
| 114 |
|
✗ |
ok = true; |
| 115 |
|
|
// TODO We should only modify the path constraint. |
| 116 |
|
|
// However, only the pointers to implicit constraints are copied |
| 117 |
|
|
// while we would like the implicit constraints to be copied as well. |
| 118 |
|
✗ |
ncs[i]->rightHandSideFunction(sm->trajectory()); |
| 119 |
|
✗ |
break; // logically identical |
| 120 |
|
|
} |
| 121 |
|
|
} |
| 122 |
|
✗ |
if (!ok) { |
| 123 |
|
✗ |
HPP_THROW(std::logic_error, |
| 124 |
|
|
"EndEffectorTrajectory could not find " |
| 125 |
|
|
"constraint " |
| 126 |
|
|
<< trajConstraint->function()); |
| 127 |
|
|
} |
| 128 |
|
|
} |
| 129 |
|
|
|
| 130 |
|
✗ |
void EndEffectorTrajectory::oneStep() { |
| 131 |
|
✗ |
SMPtr_t sm(HPP_DYNAMIC_PTR_CAST(SM_t, problem()->steeringMethod())); |
| 132 |
|
✗ |
if (!sm) |
| 133 |
|
✗ |
throw std::invalid_argument( |
| 134 |
|
|
"Steering method must be of type " |
| 135 |
|
✗ |
"hpp::manipulation::steeringMethod::EndEffectorTrajectory"); |
| 136 |
|
✗ |
if (!sm->trajectoryConstraint()) |
| 137 |
|
✗ |
throw std::invalid_argument( |
| 138 |
|
✗ |
"EndEffectorTrajectory has no trajectory constraint."); |
| 139 |
|
✗ |
if (!sm->trajectory()) |
| 140 |
|
✗ |
throw std::invalid_argument("EndEffectorTrajectory has no trajectory."); |
| 141 |
|
|
|
| 142 |
|
✗ |
if (!sm->constraints() || !sm->constraints()->configProjector()) |
| 143 |
|
✗ |
throw std::invalid_argument( |
| 144 |
|
✗ |
"Steering method constraint has no ConfigProjector."); |
| 145 |
|
✗ |
core::ConfigProjectorPtr_t constraints(sm->constraints()->configProjector()); |
| 146 |
|
|
|
| 147 |
|
✗ |
core::ConfigValidationPtr_t cfgValidation(problem()->configValidations()); |
| 148 |
|
✗ |
core::PathValidationPtr_t pathValidation(problem()->pathValidation()); |
| 149 |
|
✗ |
core::ValidationReportPtr_t cfgReport; |
| 150 |
|
✗ |
core::PathValidationReportPtr_t pathReport; |
| 151 |
|
|
|
| 152 |
|
✗ |
core::interval_t timeRange(sm->timeRange()); |
| 153 |
|
|
|
| 154 |
|
|
// Generate a vector if configuration where the first one is the initial |
| 155 |
|
|
// configuration and the following ones are random configurations |
| 156 |
|
|
std::vector<core::Configuration_t> qs( |
| 157 |
|
✗ |
configurations(problem()->initConfig())); |
| 158 |
|
✗ |
if (qs.empty()) { |
| 159 |
|
|
hppDout(info, "Failed to generate initial configs."); |
| 160 |
|
✗ |
return; |
| 161 |
|
|
} |
| 162 |
|
|
|
| 163 |
|
|
// Generate a valid initial configuration. |
| 164 |
|
✗ |
bool success = false; |
| 165 |
|
✗ |
bool resetRightHandSide = true; |
| 166 |
|
|
std::size_t i; |
| 167 |
|
|
|
| 168 |
|
✗ |
vector_t times(nDiscreteSteps_ + 1); |
| 169 |
|
✗ |
matrix_t steps(problem()->robot()->configSize(), nDiscreteSteps_ + 1); |
| 170 |
|
|
|
| 171 |
|
|
// Discretize definition interval of the steering method into times |
| 172 |
|
✗ |
times[0] = timeRange.first; |
| 173 |
|
✗ |
for (int j = 1; j < nDiscreteSteps_; ++j) |
| 174 |
|
✗ |
times[j] = timeRange.first + |
| 175 |
|
✗ |
j * (timeRange.second - timeRange.first) / nDiscreteSteps_; |
| 176 |
|
✗ |
times[nDiscreteSteps_] = timeRange.second; |
| 177 |
|
|
|
| 178 |
|
|
// For each random configuration, |
| 179 |
|
|
// - compute initial configuration of path by projecting the random |
| 180 |
|
|
// configuration (initial configuration for the first time), |
| 181 |
|
|
// - compute following samples by projecting current sample after |
| 182 |
|
|
// updating right hand side. |
| 183 |
|
|
// If failure, try next random configuration. |
| 184 |
|
|
// Failure can be due to |
| 185 |
|
|
// - projection, |
| 186 |
|
|
// - collision of final configuration, |
| 187 |
|
|
// - validation of path (for collision mainly). |
| 188 |
|
✗ |
for (i = 0; i < qs.size(); ++i) { |
| 189 |
|
✗ |
if (resetRightHandSide) { |
| 190 |
|
✗ |
constraints->rightHandSideAt(times[0]); |
| 191 |
|
✗ |
resetRightHandSide = false; |
| 192 |
|
|
} |
| 193 |
|
✗ |
Configuration_t& q(qs[i]); |
| 194 |
|
✗ |
if (!constraints->apply(q)) continue; |
| 195 |
|
✗ |
if (!cfgValidation->validate(q, cfgReport)) continue; |
| 196 |
|
✗ |
resetRightHandSide = true; |
| 197 |
|
|
|
| 198 |
|
✗ |
steps.col(0) = q; |
| 199 |
|
✗ |
success = true; |
| 200 |
|
✗ |
for (int j = 1; j <= nDiscreteSteps_; ++j) { |
| 201 |
|
✗ |
constraints->rightHandSideAt(times[j]); |
| 202 |
|
|
hppDout(info, "RHS: " << setpyformat |
| 203 |
|
|
<< constraints->rightHandSide().transpose()); |
| 204 |
|
✗ |
steps.col(j) = steps.col(j - 1); |
| 205 |
|
✗ |
if (!constraints->apply(steps.col(j))) { |
| 206 |
|
|
hppDout(info, "Failed to generate destination config.\n" |
| 207 |
|
|
<< setpyformat << *constraints |
| 208 |
|
|
<< "\nq=" << one_line(q)); |
| 209 |
|
✗ |
success = false; |
| 210 |
|
✗ |
break; |
| 211 |
|
|
} |
| 212 |
|
|
} |
| 213 |
|
✗ |
if (!success) continue; |
| 214 |
|
✗ |
success = false; |
| 215 |
|
|
|
| 216 |
|
|
// Test collision of final configuration. |
| 217 |
|
✗ |
if (!cfgValidation->validate(steps.col(nDiscreteSteps_), cfgReport)) { |
| 218 |
|
|
hppDout(info, "Destination config is in collision."); |
| 219 |
|
✗ |
continue; |
| 220 |
|
|
} |
| 221 |
|
|
|
| 222 |
|
✗ |
core::PathPtr_t path = sm->projectedPath(times, steps); |
| 223 |
|
✗ |
if (!path) { |
| 224 |
|
|
hppDout(info, "Steering method failed.\n" |
| 225 |
|
|
<< setpyformat << "times: " << one_line(times) << '\n' |
| 226 |
|
|
<< "configs:\n" |
| 227 |
|
|
<< condensed(steps.transpose()) << '\n'); |
| 228 |
|
✗ |
continue; |
| 229 |
|
|
} |
| 230 |
|
|
|
| 231 |
|
✗ |
core::PathPtr_t validPart; |
| 232 |
|
✗ |
if (!pathValidation->validate(path, false, validPart, pathReport)) { |
| 233 |
|
|
hppDout(info, "Path is in collision."); |
| 234 |
|
✗ |
continue; |
| 235 |
|
|
} |
| 236 |
|
|
|
| 237 |
|
|
// In case of success, |
| 238 |
|
|
// - insert q_init as initial configuration of the roadmap, |
| 239 |
|
|
// - insert final configuration as goal node in the roadmap, |
| 240 |
|
|
// - add a roadmap edge between them and stop. |
| 241 |
|
✗ |
roadmap()->initNode(steps.col(0)); |
| 242 |
|
✗ |
core::NodePtr_t init = roadmap()->initNode(); |
| 243 |
|
✗ |
core::NodePtr_t goal = roadmap()->addGoalNode(steps.col(nDiscreteSteps_)); |
| 244 |
|
✗ |
roadmap()->addEdge(init, goal, path); |
| 245 |
|
✗ |
success = true; |
| 246 |
|
✗ |
if (feasibilityOnly_) break; |
| 247 |
|
|
} |
| 248 |
|
|
} |
| 249 |
|
|
|
| 250 |
|
✗ |
std::vector<core::Configuration_t> EndEffectorTrajectory::configurations( |
| 251 |
|
|
const core::Configuration_t& q_init) { |
| 252 |
|
✗ |
if (!ikSolverInit_) { |
| 253 |
|
✗ |
std::vector<core::Configuration_t> configs(nRandomConfig_ + 1); |
| 254 |
|
✗ |
configs[0] = q_init; |
| 255 |
|
✗ |
for (int i = 1; i < nRandomConfig_ + 1; ++i) |
| 256 |
|
✗ |
problem()->configurationShooter()->shoot(configs[i]); |
| 257 |
|
✗ |
return configs; |
| 258 |
|
|
} |
| 259 |
|
|
|
| 260 |
|
|
// TODO Compute the target and call ikSolverInit_ |
| 261 |
|
|
// See https://gepgitlab.laas.fr/airbus-xtct/hpp_airbus_xtct for an |
| 262 |
|
|
// example using IKFast. |
| 263 |
|
✗ |
throw std::runtime_error( |
| 264 |
|
✗ |
"Using an IkSolverInitialization is not implemented yet"); |
| 265 |
|
|
} |
| 266 |
|
|
|
| 267 |
|
✗ |
EndEffectorTrajectory::EndEffectorTrajectory( |
| 268 |
|
✗ |
const core::ProblemConstPtr_t& problem) |
| 269 |
|
✗ |
: core::PathPlanner(problem) {} |
| 270 |
|
|
|
| 271 |
|
✗ |
EndEffectorTrajectory::EndEffectorTrajectory( |
| 272 |
|
✗ |
const core::ProblemConstPtr_t& problem, const core::RoadmapPtr_t& roadmap) |
| 273 |
|
✗ |
: core::PathPlanner(problem, roadmap) {} |
| 274 |
|
|
|
| 275 |
|
✗ |
void EndEffectorTrajectory::checkFeasibilityOnly(bool enable) { |
| 276 |
|
✗ |
feasibilityOnly_ = enable; |
| 277 |
|
|
} |
| 278 |
|
|
|
| 279 |
|
✗ |
void EndEffectorTrajectory::init(const EndEffectorTrajectoryWkPtr_t& weak) { |
| 280 |
|
✗ |
core::PathPlanner::init(weak); |
| 281 |
|
✗ |
weak_ = weak; |
| 282 |
|
✗ |
nRandomConfig_ = 10; |
| 283 |
|
✗ |
nDiscreteSteps_ = 1; |
| 284 |
|
✗ |
feasibilityOnly_ = true; |
| 285 |
|
|
} |
| 286 |
|
|
} // namespace pathPlanner |
| 287 |
|
|
} // namespace manipulation |
| 288 |
|
|
} // namespace hpp |
| 289 |
|
|
|