Line |
Branch |
Exec |
Source |
1 |
|
|
// Copyright (c) 2019, LAAS-CNRS |
2 |
|
|
// Authors: Joseph Mirabel (joseph.mirabel@laas.fr) |
3 |
|
|
// |
4 |
|
|
|
5 |
|
|
// Redistribution and use in source and binary forms, with or without |
6 |
|
|
// modification, are permitted provided that the following conditions are |
7 |
|
|
// met: |
8 |
|
|
// |
9 |
|
|
// 1. Redistributions of source code must retain the above copyright |
10 |
|
|
// notice, this list of conditions and the following disclaimer. |
11 |
|
|
// |
12 |
|
|
// 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
|
// notice, this list of conditions and the following disclaimer in the |
14 |
|
|
// documentation and/or other materials provided with the distribution. |
15 |
|
|
// |
16 |
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
17 |
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
18 |
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
19 |
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
20 |
|
|
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
21 |
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
22 |
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
23 |
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
24 |
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
25 |
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
26 |
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH |
27 |
|
|
// DAMAGE. |
28 |
|
|
|
29 |
|
|
#ifndef HPP_MANIPULATION_STEERING_METHOD_END_EFFECTOR_TRAJECTORY_HH |
30 |
|
|
#define HPP_MANIPULATION_STEERING_METHOD_END_EFFECTOR_TRAJECTORY_HH |
31 |
|
|
|
32 |
|
|
#include <hpp/core/steering-method.hh> |
33 |
|
|
#include <hpp/manipulation/config.hh> |
34 |
|
|
#include <hpp/manipulation/fwd.hh> |
35 |
|
|
|
36 |
|
|
namespace hpp { |
37 |
|
|
namespace manipulation { |
38 |
|
|
namespace steeringMethod { |
39 |
|
|
HPP_PREDEF_CLASS(EndEffectorTrajectory); |
40 |
|
|
typedef shared_ptr<EndEffectorTrajectory> EndEffectorTrajectoryPtr_t; |
41 |
|
|
|
42 |
|
|
using core::PathPtr_t; |
43 |
|
|
|
44 |
|
|
/// \addtogroup steering_method |
45 |
|
|
/// \{ |
46 |
|
|
|
47 |
|
|
/// Build piecewise straight paths for a robot end-effector |
48 |
|
|
/// |
49 |
|
|
/// To use this steering method, the user needs to provide |
50 |
|
|
/// \li a constraint with value in \f$SE(3)\f$. An easy way to create such a |
51 |
|
|
/// constraint is to use method hpp::manipulation::Handle::createGrasp. The |
52 |
|
|
/// constraint is passed to the steering method using method \link |
53 |
|
|
/// EndEffectorTrajectory::trajectoryConstraint trajectoryConstraint \endlink. |
54 |
|
|
/// \li the time-varying right hand side of this constraint along the path |
55 |
|
|
/// the user wants to create in the form of a hpp::core::Path instance |
56 |
|
|
/// with values in \f$SE(3)\f$. For that, \link |
57 |
|
|
/// EndEffectorTrajectory::makePiecewiseLinearTrajectory |
58 |
|
|
/// makePiecewiseLinearTrajectory \endlink method may be useful. |
59 |
|
|
/// |
60 |
|
|
/// \warning the constraint should also be inserted in the \link |
61 |
|
|
/// hpp::core::SteeringMethod::constraints set of constraints \endlink |
62 |
|
|
/// of the steering method. |
63 |
|
|
/// |
64 |
|
|
/// Once the steering method has been initialized, it can be called between |
65 |
|
|
/// two configurations \c q1 and \c q2. The interval of definition \f$[0,T]\f$ |
66 |
|
|
/// of the output path is the same as the one of the path provided as the right |
67 |
|
|
/// hand side of the constraint. |
68 |
|
|
/// Note that \c q1 and \c q2 should satisfy the constraint at times 0 and |
69 |
|
|
/// \f$T\f$ respectively. The output path is a \link hpp::core::StraightPath |
70 |
|
|
/// linear interpolation \endlink between \c q1 and \c q2 projected on the |
71 |
|
|
/// steering method constraints. |
72 |
|
|
class HPP_MANIPULATION_DLLAPI EndEffectorTrajectory |
73 |
|
|
: public core::SteeringMethod { |
74 |
|
|
public: |
75 |
|
|
typedef core::interval_t interval_t; |
76 |
|
|
|
77 |
|
✗ |
static EndEffectorTrajectoryPtr_t create( |
78 |
|
|
const core::ProblemConstPtr_t& problem) { |
79 |
|
✗ |
EndEffectorTrajectoryPtr_t ptr(new EndEffectorTrajectory(problem)); |
80 |
|
✗ |
ptr->init(ptr); |
81 |
|
✗ |
return ptr; |
82 |
|
|
} |
83 |
|
|
|
84 |
|
|
/** Build a trajectory in SE(3). |
85 |
|
|
\param points a Nx7 matrix whose rows corresponds to poses. |
86 |
|
|
\param weights a 6D vector, weights to be applied when computing |
87 |
|
|
the distance between two SE3 points. |
88 |
|
|
|
89 |
|
|
The trajectory \f$T\f$ is defined as follows. Let \f$N\f$ be the number of |
90 |
|
|
lines of matrix \c points, \f$p_i\f$ be the i-th line of \c points and |
91 |
|
|
let \f$W\f$ be the |
92 |
|
|
diagonal matrix with the coefficients of \c weights: |
93 |
|
|
\f[ |
94 |
|
|
W = \left(\begin{array}{cccccc} |
95 |
|
|
w_1 & 0 & 0 & 0 & 0 & 0\\ |
96 |
|
|
0 & w_2 & 0 & 0 & 0 & 0\\ |
97 |
|
|
0 & 0 & w_3 & 0 & 0 & 0\\ |
98 |
|
|
0 & 0 & 0 & w_4 & 0 & 0\\ |
99 |
|
|
0 & 0 & 0 & 0 & w_5 & 0\\ |
100 |
|
|
0 & 0 & 0 & 0 & 0 & w_6\\ |
101 |
|
|
\end{array}\right) |
102 |
|
|
\f] |
103 |
|
|
|
104 |
|
|
\f{eqnarray*}{ |
105 |
|
|
f(t) = \mathbf{p}_i \oplus \frac{t-t_i}{t_{i+1}-t_i} |
106 |
|
|
(\mathbf{p}_{i+1}-\mathbf{p}_i) && \mbox{ for } t \in [t_i,t_{i+1}] \f} |
107 |
|
|
|
108 |
|
|
where \f$t_0 = 0\f$ and |
109 |
|
|
\f{eqnarray*}{ |
110 |
|
|
t_{i+1}-t_i = \|W(\mathbf{p}_{i+1}-\mathbf{p}_i)\| && \mbox{for } i |
111 |
|
|
\mbox{ such that } 1 \leq i \leq N-1 |
112 |
|
|
\f} */ |
113 |
|
|
static PathPtr_t makePiecewiseLinearTrajectory(matrixIn_t points, |
114 |
|
|
vectorIn_t weights); |
115 |
|
|
|
116 |
|
|
/// Set the constraint whose right hand side will vary. |
117 |
|
|
void trajectoryConstraint(const constraints::ImplicitPtr_t& ic); |
118 |
|
|
|
119 |
|
✗ |
const constraints::ImplicitPtr_t& trajectoryConstraint() { |
120 |
|
✗ |
return constraint_; |
121 |
|
|
} |
122 |
|
|
|
123 |
|
|
/// Set the right hand side of the function from a path |
124 |
|
|
/// \param se3Output set to True if the output of path must be |
125 |
|
|
/// understood as SE3. |
126 |
|
|
void trajectory(const PathPtr_t& eeTraj, bool se3Output); |
127 |
|
|
|
128 |
|
|
/// Set the right hand side of the function from another function. |
129 |
|
|
/// \param eeTraj a function whose input space is of dimension 1. |
130 |
|
|
/// \param timeRange the input range of eeTraj. |
131 |
|
|
void trajectory(const DifferentiableFunctionPtr_t& eeTraj, |
132 |
|
|
const interval_t& timeRange); |
133 |
|
|
|
134 |
|
✗ |
const DifferentiableFunctionPtr_t& trajectory() const { return eeTraj_; } |
135 |
|
|
|
136 |
|
✗ |
const interval_t& timeRange() const { return timeRange_; } |
137 |
|
|
|
138 |
|
✗ |
core::SteeringMethodPtr_t copy() const { |
139 |
|
✗ |
EndEffectorTrajectoryPtr_t ptr(new EndEffectorTrajectory(*this)); |
140 |
|
✗ |
ptr->init(ptr); |
141 |
|
✗ |
return ptr; |
142 |
|
|
} |
143 |
|
|
|
144 |
|
|
/// Computes an core::InterpolatedPath from the provided interpolation |
145 |
|
|
/// points. |
146 |
|
|
/// \param times the time of each configuration |
147 |
|
|
/// \param configs each column correspond to a configuration |
148 |
|
|
PathPtr_t projectedPath(vectorIn_t times, matrixIn_t configs) const; |
149 |
|
|
|
150 |
|
|
protected: |
151 |
|
✗ |
EndEffectorTrajectory(const core::ProblemConstPtr_t& problem) |
152 |
|
✗ |
: core::SteeringMethod(problem) {} |
153 |
|
|
|
154 |
|
✗ |
EndEffectorTrajectory(const EndEffectorTrajectory& other) |
155 |
|
✗ |
: core::SteeringMethod(other), |
156 |
|
✗ |
eeTraj_(other.eeTraj_), |
157 |
|
✗ |
timeRange_(other.timeRange_), |
158 |
|
✗ |
constraint_(other.constraint_) {} |
159 |
|
|
|
160 |
|
|
PathPtr_t impl_compute(ConfigurationIn_t q1, ConfigurationIn_t q2) const; |
161 |
|
|
|
162 |
|
|
private: |
163 |
|
|
core::ConstraintSetPtr_t getUpdatedConstraints() const; |
164 |
|
|
|
165 |
|
|
DifferentiableFunctionPtr_t eeTraj_; |
166 |
|
|
interval_t timeRange_; |
167 |
|
|
constraints::ImplicitPtr_t constraint_; |
168 |
|
|
}; |
169 |
|
|
/// \} |
170 |
|
|
} // namespace steeringMethod |
171 |
|
|
} // namespace manipulation |
172 |
|
|
} // namespace hpp |
173 |
|
|
|
174 |
|
|
#endif // HPP_MANIPULATION_STEERING_METHOD_END_EFFECTOR_TRAJECTORY_HH |
175 |
|
|
|