Directory: | ./ |
---|---|
File: | include/hpp/pinocchio/liegroup-space.hh |
Date: | 2025-05-04 12:09:19 |
Exec | Total | Coverage | |
---|---|---|---|
Lines: | 19 | 22 | 86.4% |
Branches: | 6 | 14 | 42.9% |
Line | Branch | Exec | Source |
---|---|---|---|
1 | // Copyright (c) 2017, CNRS | ||
2 | // Authors: Florent Lamiraux | ||
3 | // | ||
4 | |||
5 | // Redistribution and use in source and binary forms, with or without | ||
6 | // modification, are permitted provided that the following conditions are | ||
7 | // met: | ||
8 | // | ||
9 | // 1. Redistributions of source code must retain the above copyright | ||
10 | // notice, this list of conditions and the following disclaimer. | ||
11 | // | ||
12 | // 2. Redistributions in binary form must reproduce the above copyright | ||
13 | // notice, this list of conditions and the following disclaimer in the | ||
14 | // documentation and/or other materials provided with the distribution. | ||
15 | // | ||
16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | ||
17 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | ||
18 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | ||
19 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | ||
20 | // HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
21 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | ||
22 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | ||
23 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | ||
24 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
25 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
26 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH | ||
27 | // DAMAGE. | ||
28 | |||
29 | #ifndef HPP_PINOCCHIO_LIEGROUP_SPACE_HH | ||
30 | #define HPP_PINOCCHIO_LIEGROUP_SPACE_HH | ||
31 | |||
32 | #include <boost/variant.hpp> | ||
33 | #include <hpp/pinocchio/fwd.hh> | ||
34 | #include <hpp/pinocchio/liegroup.hh> | ||
35 | #include <hpp/util/serialization-fwd.hh> | ||
36 | #include <pinocchio/fwd.hpp> | ||
37 | #include <pinocchio/multibody/liegroup/special-euclidean.hpp> | ||
38 | #include <pinocchio/multibody/liegroup/special-orthogonal.hpp> | ||
39 | #include <pinocchio/multibody/liegroup/vector-space.hpp> | ||
40 | #include <string> | ||
41 | #include <vector> | ||
42 | |||
43 | namespace hpp { | ||
44 | namespace pinocchio { | ||
45 | /// \addtogroup liegroup | ||
46 | /// \{ | ||
47 | |||
48 | #ifdef HPP_PINOCCHIO_PARSED_BY_DOXYGEN | ||
49 | /// Elementary Lie groups | ||
50 | /// A boost variant with the following classes: | ||
51 | /// \li \f$\mathbf{R}^n\f$, where \f$n\f$ is either 1, 2, 3 or dynamic, | ||
52 | /// \li \f$\mathbf{R}^n \times SO(n) \f$, where \f$n\f$ is either 2 or 3, | ||
53 | /// \li \f$SO(n) \f$, where \f$n\f$ is either 2 or 3, | ||
54 | /// \li \f$SE(n) \f$, where \f$n\f$ is either 2 or 3. | ||
55 | /// \sa hpp::pinocchio::liegroup::VectorSpaceOperation, | ||
56 | /// hpp::pinocchio::liegroup::CartesianProductOperation, | ||
57 | /// hpp::pinocchio::liegroup::SpecialOrthogonalOperation, | ||
58 | /// hpp::pinocchio::liegroup::SpecialEuclideanOperation, | ||
59 | typedef ABoostVariant LiegroupType; | ||
60 | #else | ||
61 | typedef boost::variant<liegroup::VectorSpaceOperation<Eigen::Dynamic, false>, | ||
62 | liegroup::VectorSpaceOperation<1, true>, | ||
63 | liegroup::VectorSpaceOperation<1, false>, | ||
64 | liegroup::VectorSpaceOperation<2, false>, | ||
65 | liegroup::VectorSpaceOperation<3, false>, | ||
66 | liegroup::VectorSpaceOperation<3, true>, | ||
67 | liegroup::CartesianProductOperation< | ||
68 | liegroup::VectorSpaceOperation<3, false>, | ||
69 | liegroup::SpecialOrthogonalOperation<3> >, | ||
70 | liegroup::CartesianProductOperation< | ||
71 | liegroup::VectorSpaceOperation<2, false>, | ||
72 | liegroup::SpecialOrthogonalOperation<2> >, | ||
73 | liegroup::SpecialOrthogonalOperation<2>, | ||
74 | liegroup::SpecialOrthogonalOperation<3>, | ||
75 | liegroup::SpecialEuclideanOperation<2>, | ||
76 | liegroup::SpecialEuclideanOperation<3> > | ||
77 | LiegroupType; | ||
78 | #endif | ||
79 | |||
80 | enum DerivativeProduct { DerivativeTimesInput, InputTimesDerivative }; | ||
81 | |||
82 | /// Cartesian product of elementary Lie groups | ||
83 | /// | ||
84 | /// Some values produced and manipulated by functions belong to Lie groups | ||
85 | /// For instance rotations, rigid-body motions are element of Lie groups. | ||
86 | /// | ||
87 | /// Elements of Lie groups are usually applied common operations, like | ||
88 | /// \li integrating a velocity from a given element during unit time, | ||
89 | /// \li computing the constant velocity that moves from one element to | ||
90 | /// another one in unit time. | ||
91 | /// | ||
92 | /// By analogy with vector spaces that are a particular type of Lie group, | ||
93 | /// the above operations are implemented as operators + and - respectively | ||
94 | /// acting on LiegroupElement instances. | ||
95 | /// | ||
96 | /// This class represents a Lie group as the cartesian product of elementaty | ||
97 | /// Lie groups. Those elementary Lie groups are gathered in a variant called | ||
98 | /// LiegroupType. | ||
99 | /// | ||
100 | /// Elements of a Lie group are represented by class LiegroupElement. | ||
101 | class LiegroupSpace { | ||
102 | public: | ||
103 | EIGEN_MAKE_ALIGNED_OPERATOR_NEW | ||
104 | /// \name Elementary Lie groups | ||
105 | /// \{ | ||
106 | |||
107 | /// Return \f$\mathbf{R}^n\f$ as a Lie group | ||
108 | /// \param n dimension of vector space | ||
109 | static LiegroupSpacePtr_t Rn(const size_type& n); | ||
110 | /// Return \f$\mathbf{R}\f$ as a Lie group | ||
111 | /// \param rotation whether values of this space represent angles or | ||
112 | /// lengths. | ||
113 | static LiegroupSpacePtr_t R1(bool rotation = false); | ||
114 | /// Return \f$\mathbf{R}^2\f$ as a Lie group | ||
115 | static LiegroupSpacePtr_t R2(); | ||
116 | /// Return \f$\mathbf{R}^3\f$ as a Lie group | ||
117 | static LiegroupSpacePtr_t R3(); | ||
118 | /// Return \f$SE(2)\f$ | ||
119 | static LiegroupSpacePtr_t SE2(); | ||
120 | /// Return \f$SE(3)\f$ | ||
121 | static LiegroupSpacePtr_t SE3(); | ||
122 | /// Return \f$SO(2)\f$ | ||
123 | static LiegroupSpacePtr_t SO2(); | ||
124 | /// Return \f$SO(3)\f$ | ||
125 | static LiegroupSpacePtr_t SO3(); | ||
126 | /// Return \f$\mathbf{R}^2 \times SO(2)\f$ | ||
127 | static LiegroupSpacePtr_t R2xSO2(); | ||
128 | /// Return \f$\mathbf{R}^3 \times SO(3)\f$ | ||
129 | static LiegroupSpacePtr_t R3xSO3(); | ||
130 | /// Return empty Lie group | ||
131 | static LiegroupSpacePtr_t empty(); | ||
132 | /// \} | ||
133 | |||
134 | /// Create instance of vector space of given size | ||
135 | 204 | static LiegroupSpacePtr_t create(const size_type& size) { | |
136 |
1/2✓ Branch 2 taken 204 times.
✗ Branch 3 not taken.
|
204 | LiegroupSpace* ptr(new LiegroupSpace(size)); |
137 | 204 | LiegroupSpacePtr_t shPtr(ptr); | |
138 |
1/2✓ Branch 2 taken 204 times.
✗ Branch 3 not taken.
|
204 | ptr->init(shPtr); |
139 | 204 | return shPtr; | |
140 | } | ||
141 | |||
142 | /// Create copy | ||
143 | 24 | static LiegroupSpacePtr_t createCopy(const LiegroupSpaceConstPtr_t& other) { | |
144 |
1/2✓ Branch 3 taken 24 times.
✗ Branch 4 not taken.
|
24 | LiegroupSpace* ptr(new LiegroupSpace(*other)); |
145 | 24 | LiegroupSpacePtr_t shPtr(ptr); | |
146 |
1/2✓ Branch 2 taken 24 times.
✗ Branch 3 not taken.
|
24 | ptr->init(shPtr); |
147 | 24 | return shPtr; | |
148 | } | ||
149 | |||
150 | /// Create instance with one Elementary Lie group | ||
151 | 1114 | static LiegroupSpacePtr_t create(const LiegroupType& type) { | |
152 |
1/2✓ Branch 2 taken 1114 times.
✗ Branch 3 not taken.
|
1114 | LiegroupSpace* ptr(new LiegroupSpace(type)); |
153 | 1114 | LiegroupSpacePtr_t shPtr(ptr); | |
154 |
1/2✓ Branch 2 taken 1114 times.
✗ Branch 3 not taken.
|
1114 | ptr->init(shPtr); |
155 | 1114 | return shPtr; | |
156 | } | ||
157 | |||
158 | /// Dimension of the vector representation | ||
159 | 4405 | size_type nq() const { return nq_; } | |
160 | /// Dimension of the Lie group tangent space | ||
161 | 1810 | size_type nv() const { return nv_; } | |
162 | /// Dimension of elementary Liegroup at given rank | ||
163 | size_type nq(const std::size_t& rank) const; | ||
164 | /// Dimension of elementary Liegroup tangent space at given rank | ||
165 | size_type nv(const std::size_t& rank) const; | ||
166 | |||
167 | /// Get reference to vector of elementary types | ||
168 | 4201 | const std::vector<LiegroupType>& liegroupTypes() const { | |
169 | 4201 | return liegroupTypes_; | |
170 | } | ||
171 | |||
172 | /// Return the neutral element as a vector | ||
173 | LiegroupElement neutral() const; | ||
174 | |||
175 | /// Create a LiegroupElement from a configuration. | ||
176 | LiegroupElement element(vectorIn_t q) const; | ||
177 | |||
178 | /// Create a LiegroupElementRef from a configuration. | ||
179 | LiegroupElementRef elementRef(vectorOut_t q) const; | ||
180 | |||
181 | /// Create a LiegroupElementRef from a configuration. | ||
182 | LiegroupElementConstRef elementConstRef(vectorIn_t q) const; | ||
183 | |||
184 | /// Return exponential of a tangent vector | ||
185 | LiegroupElement exp(vectorIn_t v) const; | ||
186 | |||
187 | /// Compute the Jacobian of the integration operation with respect to | ||
188 | /// \f$\mathbf{q}\f$. | ||
189 | /// | ||
190 | /// Given \f$ \mathbf{p} = \mathbf{q} + \mathbf{v} \f$, | ||
191 | /// compute \f$J_{\mathbf{q}}\f$ such that | ||
192 | /// | ||
193 | /// \f{equation} | ||
194 | /// \dot{\mathbf{p}} = J_{\mathbf{q}}\dot{\mathbf{q}} | ||
195 | /// \f} | ||
196 | /// for constant \f$\mathbf{v}\f$. \f$J_{\mathbf{q}}\f$ is a block | ||
197 | /// diagonal matrix, each block corresponding to an elementary Lie group. | ||
198 | /// | ||
199 | /// \tparam side side to multiply in place the Jacobian blocks. See | ||
200 | /// "Return values" for an explanation. | ||
201 | /// \param q the configuration, | ||
202 | /// \param v the velocity vector, | ||
203 | /// \retval J in place multiplied result. \f$J\leftarrow J.J_{\mathbf{q}}\f$ | ||
204 | /// if side is | ||
205 | /// InputTimesDerivative | ||
206 | /// \f$J\leftarrow J_{\mathbf{q}}.J\f$ if side is | ||
207 | /// DerivativeTimesInput. If \f$J\f$ is initialized to identity, | ||
208 | /// both results are the same. | ||
209 | template <DerivativeProduct side> | ||
210 | void dIntegrate_dq(LiegroupElementConstRef q, vectorIn_t v, | ||
211 | matrixOut_t J) const; | ||
212 | |||
213 | /// Compute the Jacobian of the integration operation with respect to | ||
214 | /// \f$\mathbf{v}\f$. | ||
215 | /// | ||
216 | /// Given \f$ \mathbf{p} = \mathbf{q} + \mathbf{v} \f$, | ||
217 | /// compute \f$J_{\mathbf{q}}\f$ such that | ||
218 | /// | ||
219 | /// \f{equation} | ||
220 | /// \dot{\mathbf{p}} = J_{\mathbf{v}}\dot{\mathbf{v}} | ||
221 | /// \f} | ||
222 | /// for constant \f$\mathbf{q}\f$. \f$J_{\mathbf{v}}\f$ is a block | ||
223 | /// diagonal matrix, each block corresponding to an elementary Lie group. | ||
224 | /// | ||
225 | /// \tparam side side to multiply in place the Jacobian blocks. See | ||
226 | /// "Return values" for an explanation. | ||
227 | /// \param q the configuration, | ||
228 | /// \param v the velocity vector, | ||
229 | /// \retval J in place multiplied result. | ||
230 | /// \f$J\leftarrow J.J_{\mathbf{v}}\f$ if side is | ||
231 | /// InputTimesDerivative | ||
232 | /// \f$J\leftarrow J_{\mathbf{v}}.J\f$ if side is | ||
233 | /// DerivativeTimesInput. If \f$J\f$ is initialized to identity, | ||
234 | /// both results are the same. | ||
235 | template <DerivativeProduct side> | ||
236 | void dIntegrate_dv(LiegroupElementConstRef q, vectorIn_t v, | ||
237 | matrixOut_t Jv) const; | ||
238 | |||
239 | /// \deprecated Use dDifference_dq0 and dDifference_dq1 | ||
240 | template <bool ApplyOnTheLeft> | ||
241 | void Jdifference(vectorIn_t q0, vectorIn_t q1, matrixOut_t J0, | ||
242 | matrixOut_t J1) const; | ||
243 | |||
244 | /// Compute the Jacobian matrices of the difference operation. | ||
245 | /// Given \f$ \mathbf{v} = \mathbf{q}_1 - \mathbf{q}_0 \f$, | ||
246 | /// | ||
247 | /// Compute matrices \f$J_{0}\f$ and \f$J_{1}\f$ such that | ||
248 | /// \f{equation} | ||
249 | /// \dot{\mathbf{v}} = J_{0}\dot{\mathbf{q}_0} + J_{1}\dot{\mathbf{q}_1} | ||
250 | /// \f} | ||
251 | /// \param[in] q0,q1 Lie group elements, | ||
252 | /// \param[out] J0 the Jacobian of v with respect to q0. | ||
253 | template <DerivativeProduct side> | ||
254 | void dDifference_dq0(vectorIn_t q0, vectorIn_t q1, matrixOut_t J0) const; | ||
255 | |||
256 | /// Compute the Jacobian matrices of the difference operation. | ||
257 | /// Given \f$ \mathbf{v} = \mathbf{q}_1 - \mathbf{q}_0 \f$, | ||
258 | /// | ||
259 | /// Compute matrices \f$J_{0}\f$ and \f$J_{1}\f$ such that | ||
260 | /// \f{equation} | ||
261 | /// \dot{\mathbf{v}} = J_{0}\dot{\mathbf{q}_0} + J_{1}\dot{\mathbf{q}_1} | ||
262 | /// \f} | ||
263 | /// \param[in] q0,q1 Lie group elements, | ||
264 | /// \param[out] J1 the Jacobian of v with respect to q1. | ||
265 | template <DerivativeProduct side> | ||
266 | void dDifference_dq1(vectorIn_t q0, vectorIn_t q1, matrixOut_t J1) const; | ||
267 | |||
268 | /// Interpolate between two elements of the Lie group. | ||
269 | /// | ||
270 | /// This is equivalent to \f$ q_0 \oplus u*(q_1 \ominus q_0) \f$. | ||
271 | /// | ||
272 | /// \param q0, q1 two elements | ||
273 | /// \param u in [0,1] position along the interpolation: q0 for u=0, | ||
274 | /// q1 for u=1 | ||
275 | /// \retval result interpolated configuration | ||
276 | void interpolate(vectorIn_t q0, vectorIn_t q1, value_type u, | ||
277 | vectorOut_t result) const; | ||
278 | |||
279 | /// Return name of Lie group | ||
280 | std::string name() const; | ||
281 | |||
282 | void mergeVectorSpaces(); | ||
283 | |||
284 | LiegroupSpacePtr_t vectorSpacesMerged() const; | ||
285 | |||
286 | bool isVectorSpace() const; | ||
287 | |||
288 | bool operator==(const LiegroupSpace& other) const; | ||
289 | bool operator!=(const LiegroupSpace& other) const; | ||
290 | |||
291 | LiegroupSpacePtr_t operator*=(const LiegroupSpaceConstPtr_t& other); | ||
292 | |||
293 | protected: | ||
294 | /// Constructor of vector space of given size | ||
295 | LiegroupSpace(const size_type& size); | ||
296 | LiegroupSpace(const LiegroupSpace& other); | ||
297 | LiegroupSpace(const LiegroupType& type); | ||
298 | |||
299 | private: | ||
300 | /// Constructor of empty space | ||
301 | LiegroupSpace(); | ||
302 | /// Initialize weak pointer to itself | ||
303 | void init(const LiegroupSpaceWkPtr_t weak); | ||
304 | /// Compute size of space | ||
305 | void computeSize(); | ||
306 | /// Compute neutral element as a vector | ||
307 | void computeNeutral(); | ||
308 | typedef std::vector<LiegroupType> LiegroupTypes; | ||
309 | LiegroupTypes liegroupTypes_; | ||
310 | /// Size of vector representation and of Lie group tangent space | ||
311 | size_type nq_, nv_; | ||
312 | /// Neutral element of the Lie group | ||
313 | vector_t neutral_; | ||
314 | /// weak pointer to itself | ||
315 | LiegroupSpaceWkPtr_t weak_; | ||
316 | |||
317 | HPP_SERIALIZABLE(); | ||
318 | }; // class LiegroupSpace | ||
319 | /// Writing in a stream | ||
320 | ✗ | inline std::ostream& operator<<(std::ostream& os, const LiegroupSpace& space) { | |
321 | ✗ | os << space.name(); | |
322 | ✗ | return os; | |
323 | } | ||
324 | |||
325 | /// \} | ||
326 | } // namespace pinocchio | ||
327 | } // namespace hpp | ||
328 | |||
329 | namespace std { | ||
330 | /// \addtogroup liegroup | ||
331 | /// \{ | ||
332 | |||
333 | /// Cartesian product between Lie groups | ||
334 | hpp::pinocchio::LiegroupSpacePtr_t operator*( | ||
335 | const hpp::pinocchio::LiegroupSpaceConstPtr_t& sp1, | ||
336 | const hpp::pinocchio::LiegroupSpaceConstPtr_t& sp2); | ||
337 | /// Cartesian power by an integer | ||
338 | hpp::pinocchio::LiegroupSpacePtr_t operator^( | ||
339 | const hpp::pinocchio::LiegroupSpaceConstPtr_t& sp, | ||
340 | hpp::pinocchio::size_type n); | ||
341 | /// \} | ||
342 | } // namespace std | ||
343 | |||
344 | #endif // HPP_PINOCCHIO_LIEGROUP_SPACE_HH | ||
345 |