| Directory: | ./ |
|---|---|
| File: | include/hpp/pinocchio/liegroup-space.hh |
| Date: | 2025-05-04 12:09:19 |
| Exec | Total | Coverage | |
|---|---|---|---|
| Lines: | 19 | 22 | 86.4% |
| Branches: | 6 | 14 | 42.9% |
| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | // Copyright (c) 2017, CNRS | ||
| 2 | // Authors: Florent Lamiraux | ||
| 3 | // | ||
| 4 | |||
| 5 | // Redistribution and use in source and binary forms, with or without | ||
| 6 | // modification, are permitted provided that the following conditions are | ||
| 7 | // met: | ||
| 8 | // | ||
| 9 | // 1. Redistributions of source code must retain the above copyright | ||
| 10 | // notice, this list of conditions and the following disclaimer. | ||
| 11 | // | ||
| 12 | // 2. Redistributions in binary form must reproduce the above copyright | ||
| 13 | // notice, this list of conditions and the following disclaimer in the | ||
| 14 | // documentation and/or other materials provided with the distribution. | ||
| 15 | // | ||
| 16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | ||
| 17 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | ||
| 18 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | ||
| 19 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | ||
| 20 | // HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 21 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | ||
| 22 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | ||
| 23 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | ||
| 24 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
| 25 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
| 26 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH | ||
| 27 | // DAMAGE. | ||
| 28 | |||
| 29 | #ifndef HPP_PINOCCHIO_LIEGROUP_SPACE_HH | ||
| 30 | #define HPP_PINOCCHIO_LIEGROUP_SPACE_HH | ||
| 31 | |||
| 32 | #include <boost/variant.hpp> | ||
| 33 | #include <hpp/pinocchio/fwd.hh> | ||
| 34 | #include <hpp/pinocchio/liegroup.hh> | ||
| 35 | #include <hpp/util/serialization-fwd.hh> | ||
| 36 | #include <pinocchio/fwd.hpp> | ||
| 37 | #include <pinocchio/multibody/liegroup/special-euclidean.hpp> | ||
| 38 | #include <pinocchio/multibody/liegroup/special-orthogonal.hpp> | ||
| 39 | #include <pinocchio/multibody/liegroup/vector-space.hpp> | ||
| 40 | #include <string> | ||
| 41 | #include <vector> | ||
| 42 | |||
| 43 | namespace hpp { | ||
| 44 | namespace pinocchio { | ||
| 45 | /// \addtogroup liegroup | ||
| 46 | /// \{ | ||
| 47 | |||
| 48 | #ifdef HPP_PINOCCHIO_PARSED_BY_DOXYGEN | ||
| 49 | /// Elementary Lie groups | ||
| 50 | /// A boost variant with the following classes: | ||
| 51 | /// \li \f$\mathbf{R}^n\f$, where \f$n\f$ is either 1, 2, 3 or dynamic, | ||
| 52 | /// \li \f$\mathbf{R}^n \times SO(n) \f$, where \f$n\f$ is either 2 or 3, | ||
| 53 | /// \li \f$SO(n) \f$, where \f$n\f$ is either 2 or 3, | ||
| 54 | /// \li \f$SE(n) \f$, where \f$n\f$ is either 2 or 3. | ||
| 55 | /// \sa hpp::pinocchio::liegroup::VectorSpaceOperation, | ||
| 56 | /// hpp::pinocchio::liegroup::CartesianProductOperation, | ||
| 57 | /// hpp::pinocchio::liegroup::SpecialOrthogonalOperation, | ||
| 58 | /// hpp::pinocchio::liegroup::SpecialEuclideanOperation, | ||
| 59 | typedef ABoostVariant LiegroupType; | ||
| 60 | #else | ||
| 61 | typedef boost::variant<liegroup::VectorSpaceOperation<Eigen::Dynamic, false>, | ||
| 62 | liegroup::VectorSpaceOperation<1, true>, | ||
| 63 | liegroup::VectorSpaceOperation<1, false>, | ||
| 64 | liegroup::VectorSpaceOperation<2, false>, | ||
| 65 | liegroup::VectorSpaceOperation<3, false>, | ||
| 66 | liegroup::VectorSpaceOperation<3, true>, | ||
| 67 | liegroup::CartesianProductOperation< | ||
| 68 | liegroup::VectorSpaceOperation<3, false>, | ||
| 69 | liegroup::SpecialOrthogonalOperation<3> >, | ||
| 70 | liegroup::CartesianProductOperation< | ||
| 71 | liegroup::VectorSpaceOperation<2, false>, | ||
| 72 | liegroup::SpecialOrthogonalOperation<2> >, | ||
| 73 | liegroup::SpecialOrthogonalOperation<2>, | ||
| 74 | liegroup::SpecialOrthogonalOperation<3>, | ||
| 75 | liegroup::SpecialEuclideanOperation<2>, | ||
| 76 | liegroup::SpecialEuclideanOperation<3> > | ||
| 77 | LiegroupType; | ||
| 78 | #endif | ||
| 79 | |||
| 80 | enum DerivativeProduct { DerivativeTimesInput, InputTimesDerivative }; | ||
| 81 | |||
| 82 | /// Cartesian product of elementary Lie groups | ||
| 83 | /// | ||
| 84 | /// Some values produced and manipulated by functions belong to Lie groups | ||
| 85 | /// For instance rotations, rigid-body motions are element of Lie groups. | ||
| 86 | /// | ||
| 87 | /// Elements of Lie groups are usually applied common operations, like | ||
| 88 | /// \li integrating a velocity from a given element during unit time, | ||
| 89 | /// \li computing the constant velocity that moves from one element to | ||
| 90 | /// another one in unit time. | ||
| 91 | /// | ||
| 92 | /// By analogy with vector spaces that are a particular type of Lie group, | ||
| 93 | /// the above operations are implemented as operators + and - respectively | ||
| 94 | /// acting on LiegroupElement instances. | ||
| 95 | /// | ||
| 96 | /// This class represents a Lie group as the cartesian product of elementaty | ||
| 97 | /// Lie groups. Those elementary Lie groups are gathered in a variant called | ||
| 98 | /// LiegroupType. | ||
| 99 | /// | ||
| 100 | /// Elements of a Lie group are represented by class LiegroupElement. | ||
| 101 | class LiegroupSpace { | ||
| 102 | public: | ||
| 103 | EIGEN_MAKE_ALIGNED_OPERATOR_NEW | ||
| 104 | /// \name Elementary Lie groups | ||
| 105 | /// \{ | ||
| 106 | |||
| 107 | /// Return \f$\mathbf{R}^n\f$ as a Lie group | ||
| 108 | /// \param n dimension of vector space | ||
| 109 | static LiegroupSpacePtr_t Rn(const size_type& n); | ||
| 110 | /// Return \f$\mathbf{R}\f$ as a Lie group | ||
| 111 | /// \param rotation whether values of this space represent angles or | ||
| 112 | /// lengths. | ||
| 113 | static LiegroupSpacePtr_t R1(bool rotation = false); | ||
| 114 | /// Return \f$\mathbf{R}^2\f$ as a Lie group | ||
| 115 | static LiegroupSpacePtr_t R2(); | ||
| 116 | /// Return \f$\mathbf{R}^3\f$ as a Lie group | ||
| 117 | static LiegroupSpacePtr_t R3(); | ||
| 118 | /// Return \f$SE(2)\f$ | ||
| 119 | static LiegroupSpacePtr_t SE2(); | ||
| 120 | /// Return \f$SE(3)\f$ | ||
| 121 | static LiegroupSpacePtr_t SE3(); | ||
| 122 | /// Return \f$SO(2)\f$ | ||
| 123 | static LiegroupSpacePtr_t SO2(); | ||
| 124 | /// Return \f$SO(3)\f$ | ||
| 125 | static LiegroupSpacePtr_t SO3(); | ||
| 126 | /// Return \f$\mathbf{R}^2 \times SO(2)\f$ | ||
| 127 | static LiegroupSpacePtr_t R2xSO2(); | ||
| 128 | /// Return \f$\mathbf{R}^3 \times SO(3)\f$ | ||
| 129 | static LiegroupSpacePtr_t R3xSO3(); | ||
| 130 | /// Return empty Lie group | ||
| 131 | static LiegroupSpacePtr_t empty(); | ||
| 132 | /// \} | ||
| 133 | |||
| 134 | /// Create instance of vector space of given size | ||
| 135 | 204 | static LiegroupSpacePtr_t create(const size_type& size) { | |
| 136 |
1/2✓ Branch 2 taken 204 times.
✗ Branch 3 not taken.
|
204 | LiegroupSpace* ptr(new LiegroupSpace(size)); |
| 137 | 204 | LiegroupSpacePtr_t shPtr(ptr); | |
| 138 |
1/2✓ Branch 2 taken 204 times.
✗ Branch 3 not taken.
|
204 | ptr->init(shPtr); |
| 139 | 204 | return shPtr; | |
| 140 | } | ||
| 141 | |||
| 142 | /// Create copy | ||
| 143 | 24 | static LiegroupSpacePtr_t createCopy(const LiegroupSpaceConstPtr_t& other) { | |
| 144 |
1/2✓ Branch 3 taken 24 times.
✗ Branch 4 not taken.
|
24 | LiegroupSpace* ptr(new LiegroupSpace(*other)); |
| 145 | 24 | LiegroupSpacePtr_t shPtr(ptr); | |
| 146 |
1/2✓ Branch 2 taken 24 times.
✗ Branch 3 not taken.
|
24 | ptr->init(shPtr); |
| 147 | 24 | return shPtr; | |
| 148 | } | ||
| 149 | |||
| 150 | /// Create instance with one Elementary Lie group | ||
| 151 | 1114 | static LiegroupSpacePtr_t create(const LiegroupType& type) { | |
| 152 |
1/2✓ Branch 2 taken 1114 times.
✗ Branch 3 not taken.
|
1114 | LiegroupSpace* ptr(new LiegroupSpace(type)); |
| 153 | 1114 | LiegroupSpacePtr_t shPtr(ptr); | |
| 154 |
1/2✓ Branch 2 taken 1114 times.
✗ Branch 3 not taken.
|
1114 | ptr->init(shPtr); |
| 155 | 1114 | return shPtr; | |
| 156 | } | ||
| 157 | |||
| 158 | /// Dimension of the vector representation | ||
| 159 | 4405 | size_type nq() const { return nq_; } | |
| 160 | /// Dimension of the Lie group tangent space | ||
| 161 | 1810 | size_type nv() const { return nv_; } | |
| 162 | /// Dimension of elementary Liegroup at given rank | ||
| 163 | size_type nq(const std::size_t& rank) const; | ||
| 164 | /// Dimension of elementary Liegroup tangent space at given rank | ||
| 165 | size_type nv(const std::size_t& rank) const; | ||
| 166 | |||
| 167 | /// Get reference to vector of elementary types | ||
| 168 | 4201 | const std::vector<LiegroupType>& liegroupTypes() const { | |
| 169 | 4201 | return liegroupTypes_; | |
| 170 | } | ||
| 171 | |||
| 172 | /// Return the neutral element as a vector | ||
| 173 | LiegroupElement neutral() const; | ||
| 174 | |||
| 175 | /// Create a LiegroupElement from a configuration. | ||
| 176 | LiegroupElement element(vectorIn_t q) const; | ||
| 177 | |||
| 178 | /// Create a LiegroupElementRef from a configuration. | ||
| 179 | LiegroupElementRef elementRef(vectorOut_t q) const; | ||
| 180 | |||
| 181 | /// Create a LiegroupElementRef from a configuration. | ||
| 182 | LiegroupElementConstRef elementConstRef(vectorIn_t q) const; | ||
| 183 | |||
| 184 | /// Return exponential of a tangent vector | ||
| 185 | LiegroupElement exp(vectorIn_t v) const; | ||
| 186 | |||
| 187 | /// Compute the Jacobian of the integration operation with respect to | ||
| 188 | /// \f$\mathbf{q}\f$. | ||
| 189 | /// | ||
| 190 | /// Given \f$ \mathbf{p} = \mathbf{q} + \mathbf{v} \f$, | ||
| 191 | /// compute \f$J_{\mathbf{q}}\f$ such that | ||
| 192 | /// | ||
| 193 | /// \f{equation} | ||
| 194 | /// \dot{\mathbf{p}} = J_{\mathbf{q}}\dot{\mathbf{q}} | ||
| 195 | /// \f} | ||
| 196 | /// for constant \f$\mathbf{v}\f$. \f$J_{\mathbf{q}}\f$ is a block | ||
| 197 | /// diagonal matrix, each block corresponding to an elementary Lie group. | ||
| 198 | /// | ||
| 199 | /// \tparam side side to multiply in place the Jacobian blocks. See | ||
| 200 | /// "Return values" for an explanation. | ||
| 201 | /// \param q the configuration, | ||
| 202 | /// \param v the velocity vector, | ||
| 203 | /// \retval J in place multiplied result. \f$J\leftarrow J.J_{\mathbf{q}}\f$ | ||
| 204 | /// if side is | ||
| 205 | /// InputTimesDerivative | ||
| 206 | /// \f$J\leftarrow J_{\mathbf{q}}.J\f$ if side is | ||
| 207 | /// DerivativeTimesInput. If \f$J\f$ is initialized to identity, | ||
| 208 | /// both results are the same. | ||
| 209 | template <DerivativeProduct side> | ||
| 210 | void dIntegrate_dq(LiegroupElementConstRef q, vectorIn_t v, | ||
| 211 | matrixOut_t J) const; | ||
| 212 | |||
| 213 | /// Compute the Jacobian of the integration operation with respect to | ||
| 214 | /// \f$\mathbf{v}\f$. | ||
| 215 | /// | ||
| 216 | /// Given \f$ \mathbf{p} = \mathbf{q} + \mathbf{v} \f$, | ||
| 217 | /// compute \f$J_{\mathbf{q}}\f$ such that | ||
| 218 | /// | ||
| 219 | /// \f{equation} | ||
| 220 | /// \dot{\mathbf{p}} = J_{\mathbf{v}}\dot{\mathbf{v}} | ||
| 221 | /// \f} | ||
| 222 | /// for constant \f$\mathbf{q}\f$. \f$J_{\mathbf{v}}\f$ is a block | ||
| 223 | /// diagonal matrix, each block corresponding to an elementary Lie group. | ||
| 224 | /// | ||
| 225 | /// \tparam side side to multiply in place the Jacobian blocks. See | ||
| 226 | /// "Return values" for an explanation. | ||
| 227 | /// \param q the configuration, | ||
| 228 | /// \param v the velocity vector, | ||
| 229 | /// \retval J in place multiplied result. | ||
| 230 | /// \f$J\leftarrow J.J_{\mathbf{v}}\f$ if side is | ||
| 231 | /// InputTimesDerivative | ||
| 232 | /// \f$J\leftarrow J_{\mathbf{v}}.J\f$ if side is | ||
| 233 | /// DerivativeTimesInput. If \f$J\f$ is initialized to identity, | ||
| 234 | /// both results are the same. | ||
| 235 | template <DerivativeProduct side> | ||
| 236 | void dIntegrate_dv(LiegroupElementConstRef q, vectorIn_t v, | ||
| 237 | matrixOut_t Jv) const; | ||
| 238 | |||
| 239 | /// \deprecated Use dDifference_dq0 and dDifference_dq1 | ||
| 240 | template <bool ApplyOnTheLeft> | ||
| 241 | void Jdifference(vectorIn_t q0, vectorIn_t q1, matrixOut_t J0, | ||
| 242 | matrixOut_t J1) const; | ||
| 243 | |||
| 244 | /// Compute the Jacobian matrices of the difference operation. | ||
| 245 | /// Given \f$ \mathbf{v} = \mathbf{q}_1 - \mathbf{q}_0 \f$, | ||
| 246 | /// | ||
| 247 | /// Compute matrices \f$J_{0}\f$ and \f$J_{1}\f$ such that | ||
| 248 | /// \f{equation} | ||
| 249 | /// \dot{\mathbf{v}} = J_{0}\dot{\mathbf{q}_0} + J_{1}\dot{\mathbf{q}_1} | ||
| 250 | /// \f} | ||
| 251 | /// \param[in] q0,q1 Lie group elements, | ||
| 252 | /// \param[out] J0 the Jacobian of v with respect to q0. | ||
| 253 | template <DerivativeProduct side> | ||
| 254 | void dDifference_dq0(vectorIn_t q0, vectorIn_t q1, matrixOut_t J0) const; | ||
| 255 | |||
| 256 | /// Compute the Jacobian matrices of the difference operation. | ||
| 257 | /// Given \f$ \mathbf{v} = \mathbf{q}_1 - \mathbf{q}_0 \f$, | ||
| 258 | /// | ||
| 259 | /// Compute matrices \f$J_{0}\f$ and \f$J_{1}\f$ such that | ||
| 260 | /// \f{equation} | ||
| 261 | /// \dot{\mathbf{v}} = J_{0}\dot{\mathbf{q}_0} + J_{1}\dot{\mathbf{q}_1} | ||
| 262 | /// \f} | ||
| 263 | /// \param[in] q0,q1 Lie group elements, | ||
| 264 | /// \param[out] J1 the Jacobian of v with respect to q1. | ||
| 265 | template <DerivativeProduct side> | ||
| 266 | void dDifference_dq1(vectorIn_t q0, vectorIn_t q1, matrixOut_t J1) const; | ||
| 267 | |||
| 268 | /// Interpolate between two elements of the Lie group. | ||
| 269 | /// | ||
| 270 | /// This is equivalent to \f$ q_0 \oplus u*(q_1 \ominus q_0) \f$. | ||
| 271 | /// | ||
| 272 | /// \param q0, q1 two elements | ||
| 273 | /// \param u in [0,1] position along the interpolation: q0 for u=0, | ||
| 274 | /// q1 for u=1 | ||
| 275 | /// \retval result interpolated configuration | ||
| 276 | void interpolate(vectorIn_t q0, vectorIn_t q1, value_type u, | ||
| 277 | vectorOut_t result) const; | ||
| 278 | |||
| 279 | /// Return name of Lie group | ||
| 280 | std::string name() const; | ||
| 281 | |||
| 282 | void mergeVectorSpaces(); | ||
| 283 | |||
| 284 | LiegroupSpacePtr_t vectorSpacesMerged() const; | ||
| 285 | |||
| 286 | bool isVectorSpace() const; | ||
| 287 | |||
| 288 | bool operator==(const LiegroupSpace& other) const; | ||
| 289 | bool operator!=(const LiegroupSpace& other) const; | ||
| 290 | |||
| 291 | LiegroupSpacePtr_t operator*=(const LiegroupSpaceConstPtr_t& other); | ||
| 292 | |||
| 293 | protected: | ||
| 294 | /// Constructor of vector space of given size | ||
| 295 | LiegroupSpace(const size_type& size); | ||
| 296 | LiegroupSpace(const LiegroupSpace& other); | ||
| 297 | LiegroupSpace(const LiegroupType& type); | ||
| 298 | |||
| 299 | private: | ||
| 300 | /// Constructor of empty space | ||
| 301 | LiegroupSpace(); | ||
| 302 | /// Initialize weak pointer to itself | ||
| 303 | void init(const LiegroupSpaceWkPtr_t weak); | ||
| 304 | /// Compute size of space | ||
| 305 | void computeSize(); | ||
| 306 | /// Compute neutral element as a vector | ||
| 307 | void computeNeutral(); | ||
| 308 | typedef std::vector<LiegroupType> LiegroupTypes; | ||
| 309 | LiegroupTypes liegroupTypes_; | ||
| 310 | /// Size of vector representation and of Lie group tangent space | ||
| 311 | size_type nq_, nv_; | ||
| 312 | /// Neutral element of the Lie group | ||
| 313 | vector_t neutral_; | ||
| 314 | /// weak pointer to itself | ||
| 315 | LiegroupSpaceWkPtr_t weak_; | ||
| 316 | |||
| 317 | HPP_SERIALIZABLE(); | ||
| 318 | }; // class LiegroupSpace | ||
| 319 | /// Writing in a stream | ||
| 320 | ✗ | inline std::ostream& operator<<(std::ostream& os, const LiegroupSpace& space) { | |
| 321 | ✗ | os << space.name(); | |
| 322 | ✗ | return os; | |
| 323 | } | ||
| 324 | |||
| 325 | /// \} | ||
| 326 | } // namespace pinocchio | ||
| 327 | } // namespace hpp | ||
| 328 | |||
| 329 | namespace std { | ||
| 330 | /// \addtogroup liegroup | ||
| 331 | /// \{ | ||
| 332 | |||
| 333 | /// Cartesian product between Lie groups | ||
| 334 | hpp::pinocchio::LiegroupSpacePtr_t operator*( | ||
| 335 | const hpp::pinocchio::LiegroupSpaceConstPtr_t& sp1, | ||
| 336 | const hpp::pinocchio::LiegroupSpaceConstPtr_t& sp2); | ||
| 337 | /// Cartesian power by an integer | ||
| 338 | hpp::pinocchio::LiegroupSpacePtr_t operator^( | ||
| 339 | const hpp::pinocchio::LiegroupSpaceConstPtr_t& sp, | ||
| 340 | hpp::pinocchio::size_type n); | ||
| 341 | /// \} | ||
| 342 | } // namespace std | ||
| 343 | |||
| 344 | #endif // HPP_PINOCCHIO_LIEGROUP_SPACE_HH | ||
| 345 |