Directory: | ./ |
---|---|
File: | include/crocoddyl/core/activations/2norm-barrier.hpp |
Date: | 2025-03-26 19:23:43 |
Exec | Total | Coverage | |
---|---|---|---|
Lines: | 33 | 46 | 71.7% |
Branches: | 10 | 91 | 11.0% |
Line | Branch | Exec | Source |
---|---|---|---|
1 | /////////////////////////////////////////////////////////////////////////////// | ||
2 | // BSD 3-Clause License | ||
3 | // | ||
4 | // Copyright (C) 2021-2025, LAAS-CNRS, Airbus, University of Edinburgh, | ||
5 | // Heriot-Watt University | ||
6 | // Copyright note valid unless otherwise stated in individual files. | ||
7 | // All rights reserved. | ||
8 | /////////////////////////////////////////////////////////////////////////////// | ||
9 | |||
10 | #ifndef CROCODDYL_CORE_ACTIVATIONS_2NORM_BARRIER_HPP_ | ||
11 | #define CROCODDYL_CORE_ACTIVATIONS_2NORM_BARRIER_HPP_ | ||
12 | |||
13 | #include <pinocchio/utils/static-if.hpp> | ||
14 | #include <stdexcept> | ||
15 | |||
16 | #include "crocoddyl/core/activation-base.hpp" | ||
17 | #include "crocoddyl/core/fwd.hpp" | ||
18 | |||
19 | namespace crocoddyl { | ||
20 | |||
21 | /** | ||
22 | * @brief 2-norm barrier activation | ||
23 | * | ||
24 | * This activation function describes a quadratic barrier of the 2-norm of a | ||
25 | * residual vector, i.e., | ||
26 | * \f[ | ||
27 | * \Bigg\{\begin{aligned} | ||
28 | * &\frac{1}{2} (d - \alpha)^2, &\textrm{if} \,\,\, d < \alpha \\ | ||
29 | * &0, &\textrm{otherwise}, | ||
30 | * \end{aligned} | ||
31 | * \f] | ||
32 | * where \f$d = \|r\|\f$ is the norm of the residual, \f$\alpha\f$ the threshold | ||
33 | * distance from which the barrier is active, \f$nr\f$ is the dimension of the | ||
34 | * residual vector. | ||
35 | * | ||
36 | * The computation of the function and it derivatives are carried out in | ||
37 | * `calc()` and `calcDiff()`, respectively. | ||
38 | * | ||
39 | * \sa `ActivationModelAbstractTpl`, `calc()`, `calcDiff()`, `createData()` | ||
40 | */ | ||
41 | template <typename _Scalar> | ||
42 | class ActivationModel2NormBarrierTpl | ||
43 | : public ActivationModelAbstractTpl<_Scalar> { | ||
44 | public: | ||
45 | EIGEN_MAKE_ALIGNED_OPERATOR_NEW | ||
46 | 16 | CROCODDYL_DERIVED_CAST(ActivationModelBase, ActivationModel2NormBarrierTpl) | |
47 | |||
48 | typedef _Scalar Scalar; | ||
49 | typedef MathBaseTpl<Scalar> MathBase; | ||
50 | typedef ActivationModelAbstractTpl<Scalar> Base; | ||
51 | typedef ActivationDataAbstractTpl<Scalar> ActivationDataAbstract; | ||
52 | typedef ActivationData2NormBarrierTpl<Scalar> Data; | ||
53 | typedef typename MathBase::VectorXs VectorXs; | ||
54 | |||
55 | /** | ||
56 | * @brief Initialize the 2-norm barrier activation model | ||
57 | * | ||
58 | * The default `alpha` value is defined as 0.1. | ||
59 | * | ||
60 | * @param[in] nr Dimension of the residual vector | ||
61 | * @param[in] alpha Threshold factor (default 0.1) | ||
62 | * @param[in] true_hessian Boolean indicating whether to use the Gauss-Newton | ||
63 | * approximation or true Hessian in computing the derivatives (default: false) | ||
64 | */ | ||
65 | 189 | explicit ActivationModel2NormBarrierTpl(const std::size_t nr, | |
66 | const Scalar alpha = Scalar(0.1), | ||
67 | const bool true_hessian = false) | ||
68 | 189 | : Base(nr), alpha_(alpha), true_hessian_(true_hessian) { | |
69 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 189 times.
|
189 | if (alpha < Scalar(0.)) { |
70 | ✗ | throw_pretty("Invalid argument: " << "alpha should be a positive value"); | |
71 | } | ||
72 | 189 | }; | |
73 | 390 | virtual ~ActivationModel2NormBarrierTpl() = default; | |
74 | |||
75 | /** | ||
76 | * @brief Compute the 2-norm barrier function | ||
77 | * | ||
78 | * @param[in] data 2-norm barrier activation data | ||
79 | * @param[in] r Residual vector \f$\mathbf{r}\in\mathbb{R}^{nr}\f$ | ||
80 | */ | ||
81 | 3797 | virtual void calc(const std::shared_ptr<ActivationDataAbstract>& data, | |
82 | const Eigen::Ref<const VectorXs>& r) override { | ||
83 |
1/2✗ Branch 1 not taken.
✓ Branch 2 taken 3797 times.
|
3797 | if (static_cast<std::size_t>(r.size()) != nr_) { |
84 | ✗ | throw_pretty( | |
85 | "Invalid argument: " << "r has wrong dimension (it should be " + | ||
86 | std::to_string(nr_) + ")"); | ||
87 | } | ||
88 | 3797 | std::shared_ptr<Data> d = std::static_pointer_cast<Data>(data); | |
89 | |||
90 |
1/2✓ Branch 1 taken 3797 times.
✗ Branch 2 not taken.
|
3797 | d->d = r.norm(); |
91 |
2/2✓ Branch 1 taken 1 times.
✓ Branch 2 taken 3796 times.
|
3797 | if (d->d < alpha_) { |
92 | 1 | data->a_value = Scalar(0.5) * (d->d - alpha_) * (d->d - alpha_); | |
93 | } else { | ||
94 | 3796 | data->a_value = Scalar(0.0); | |
95 | } | ||
96 | 3797 | }; | |
97 | |||
98 | /** | ||
99 | * @brief Compute the derivatives of the 2norm-barrier function | ||
100 | * | ||
101 | * @param[in] data 2-norm barrier activation data | ||
102 | * @param[in] r Residual vector \f$\mathbf{r}\in\mathbb{R}^{nr}\f$ | ||
103 | */ | ||
104 | 213 | virtual void calcDiff(const std::shared_ptr<ActivationDataAbstract>& data, | |
105 | const Eigen::Ref<const VectorXs>& r) override { | ||
106 |
1/2✗ Branch 1 not taken.
✓ Branch 2 taken 213 times.
|
213 | if (static_cast<std::size_t>(r.size()) != nr_) { |
107 | ✗ | throw_pretty( | |
108 | "Invalid argument: " << "r has wrong dimension (it should be " + | ||
109 | std::to_string(nr_) + ")"); | ||
110 | } | ||
111 | 213 | std::shared_ptr<Data> d = std::static_pointer_cast<Data>(data); | |
112 | |||
113 |
1/2✗ Branch 1 not taken.
✓ Branch 2 taken 213 times.
|
213 | if (d->d < alpha_) { |
114 | ✗ | data->Ar = (d->d - alpha_) / d->d * r; | |
115 | ✗ | if (true_hessian_) { | |
116 | ✗ | data->Arr.diagonal() = | |
117 | ✗ | alpha_ * r.array().square() / pow(d->d, Scalar(3)); // True Hessian | |
118 | ✗ | data->Arr.diagonal().array() += (d->d - alpha_) / d->d; | |
119 | } else { | ||
120 | ✗ | data->Arr.diagonal() = | |
121 | ✗ | r.array().square() / | |
122 | ✗ | pow(d->d, Scalar(2)); // GN Hessian approximation | |
123 | } | ||
124 | } else { | ||
125 |
1/2✓ Branch 2 taken 213 times.
✗ Branch 3 not taken.
|
213 | data->Ar.setZero(); |
126 |
1/2✓ Branch 2 taken 213 times.
✗ Branch 3 not taken.
|
213 | data->Arr.setZero(); |
127 | } | ||
128 | 213 | }; | |
129 | |||
130 | /** | ||
131 | * @brief Create the 2norm-barrier activation data | ||
132 | * | ||
133 | * @return the activation data | ||
134 | */ | ||
135 | 4682 | virtual std::shared_ptr<ActivationDataAbstract> createData() override { | |
136 |
1/2✓ Branch 2 taken 4682 times.
✗ Branch 3 not taken.
|
4682 | return std::allocate_shared<Data>(Eigen::aligned_allocator<Data>(), this); |
137 | }; | ||
138 | |||
139 | template <typename NewScalar> | ||
140 | 4 | ActivationModel2NormBarrierTpl<NewScalar> cast() const { | |
141 | typedef ActivationModel2NormBarrierTpl<NewScalar> ReturnType; | ||
142 | 4 | ReturnType res(nr_, scalar_cast<NewScalar>(alpha_), true_hessian_); | |
143 | 4 | return res; | |
144 | } | ||
145 | |||
146 | /** | ||
147 | * @brief Get and set the threshold factor | ||
148 | */ | ||
149 | ✗ | const Scalar& get_alpha() const { return alpha_; }; | |
150 | ✗ | void set_alpha(const Scalar& alpha) { alpha_ = alpha; }; | |
151 | |||
152 | /** | ||
153 | * @brief Print relevant information of the 2-norm barrier model | ||
154 | * | ||
155 | * @param[out] os Output stream object | ||
156 | */ | ||
157 | 37 | virtual void print(std::ostream& os) const override { | |
158 | 37 | os << "ActivationModel2NormBarrier {nr=" << nr_ << ", alpha=" << alpha_ | |
159 | 37 | << ", Hessian=" << true_hessian_ << "}"; | |
160 | 37 | } | |
161 | |||
162 | protected: | ||
163 | using Base::nr_; //!< Dimension of the residual vector | ||
164 | Scalar alpha_; //!< Threshold factor | ||
165 | bool true_hessian_; //!< Use true Hessian in calcDiff if true, Gauss-Newton | ||
166 | //!< approximation if false | ||
167 | }; | ||
168 | |||
169 | template <typename _Scalar> | ||
170 | struct ActivationData2NormBarrierTpl | ||
171 | : public ActivationDataAbstractTpl<_Scalar> { | ||
172 | EIGEN_MAKE_ALIGNED_OPERATOR_NEW | ||
173 | |||
174 | typedef _Scalar Scalar; | ||
175 | typedef MathBaseTpl<Scalar> MathBase; | ||
176 | typedef typename MathBase::VectorXs VectorXs; | ||
177 | typedef typename MathBase::DiagonalMatrixXs DiagonalMatrixXs; | ||
178 | typedef ActivationDataAbstractTpl<Scalar> Base; | ||
179 | |||
180 | template <typename Activation> | ||
181 | 4682 | explicit ActivationData2NormBarrierTpl(Activation* const activation) | |
182 | 4682 | : Base(activation), d(Scalar(0)) {} | |
183 | 9364 | virtual ~ActivationData2NormBarrierTpl() = default; | |
184 | |||
185 | Scalar d; //!< Norm of the residual | ||
186 | |||
187 | using Base::a_value; | ||
188 | using Base::Ar; | ||
189 | using Base::Arr; | ||
190 | }; | ||
191 | |||
192 | } // namespace crocoddyl | ||
193 | |||
194 | CROCODDYL_DECLARE_EXTERN_TEMPLATE_CLASS( | ||
195 | crocoddyl::ActivationModel2NormBarrierTpl) | ||
196 | CROCODDYL_DECLARE_EXTERN_TEMPLATE_STRUCT( | ||
197 | crocoddyl::ActivationData2NormBarrierTpl) | ||
198 | |||
199 | #endif // CROCODDYL_CORE_ACTIVATIONS_2NORM_BARRIER_HPP_ | ||
200 |