Line |
Branch |
Exec |
Source |
1 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
2 |
|
|
// BSD 3-Clause License |
3 |
|
|
// |
4 |
|
|
// Copyright (C) 2021-2025, LAAS-CNRS, Airbus, University of Edinburgh, |
5 |
|
|
// Heriot-Watt University |
6 |
|
|
// Copyright note valid unless otherwise stated in individual files. |
7 |
|
|
// All rights reserved. |
8 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
9 |
|
|
|
10 |
|
|
#ifndef CROCODDYL_CORE_ACTIVATIONS_2NORM_BARRIER_HPP_ |
11 |
|
|
#define CROCODDYL_CORE_ACTIVATIONS_2NORM_BARRIER_HPP_ |
12 |
|
|
|
13 |
|
|
#include "crocoddyl/core/activation-base.hpp" |
14 |
|
|
#include "crocoddyl/core/fwd.hpp" |
15 |
|
|
|
16 |
|
|
namespace crocoddyl { |
17 |
|
|
|
18 |
|
|
/** |
19 |
|
|
* @brief 2-norm barrier activation |
20 |
|
|
* |
21 |
|
|
* This activation function describes a quadratic barrier of the 2-norm of a |
22 |
|
|
* residual vector, i.e., |
23 |
|
|
* \f[ |
24 |
|
|
* \Bigg\{\begin{aligned} |
25 |
|
|
* &\frac{1}{2} (d - \alpha)^2, &\textrm{if} \,\,\, d < \alpha \\ |
26 |
|
|
* &0, &\textrm{otherwise}, |
27 |
|
|
* \end{aligned} |
28 |
|
|
* \f] |
29 |
|
|
* where \f$d = \|r\|\f$ is the norm of the residual, \f$\alpha\f$ the threshold |
30 |
|
|
* distance from which the barrier is active, \f$nr\f$ is the dimension of the |
31 |
|
|
* residual vector. |
32 |
|
|
* |
33 |
|
|
* The computation of the function and it derivatives are carried out in |
34 |
|
|
* `calc()` and `calcDiff()`, respectively. |
35 |
|
|
* |
36 |
|
|
* \sa `ActivationModelAbstractTpl`, `calc()`, `calcDiff()`, `createData()` |
37 |
|
|
*/ |
38 |
|
|
template <typename _Scalar> |
39 |
|
|
class ActivationModel2NormBarrierTpl |
40 |
|
|
: public ActivationModelAbstractTpl<_Scalar> { |
41 |
|
|
public: |
42 |
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW |
43 |
|
✗ |
CROCODDYL_DERIVED_CAST(ActivationModelBase, ActivationModel2NormBarrierTpl) |
44 |
|
|
|
45 |
|
|
typedef _Scalar Scalar; |
46 |
|
|
typedef MathBaseTpl<Scalar> MathBase; |
47 |
|
|
typedef ActivationModelAbstractTpl<Scalar> Base; |
48 |
|
|
typedef ActivationDataAbstractTpl<Scalar> ActivationDataAbstract; |
49 |
|
|
typedef ActivationData2NormBarrierTpl<Scalar> Data; |
50 |
|
|
typedef typename MathBase::VectorXs VectorXs; |
51 |
|
|
|
52 |
|
|
/** |
53 |
|
|
* @brief Initialize the 2-norm barrier activation model |
54 |
|
|
* |
55 |
|
|
* The default `alpha` value is defined as 0.1. |
56 |
|
|
* |
57 |
|
|
* @param[in] nr Dimension of the residual vector |
58 |
|
|
* @param[in] alpha Threshold factor (default 0.1) |
59 |
|
|
* @param[in] true_hessian Boolean indicating whether to use the Gauss-Newton |
60 |
|
|
* approximation or true Hessian in computing the derivatives (default: false) |
61 |
|
|
*/ |
62 |
|
✗ |
explicit ActivationModel2NormBarrierTpl(const std::size_t nr, |
63 |
|
|
const Scalar alpha = Scalar(0.1), |
64 |
|
|
const bool true_hessian = false) |
65 |
|
✗ |
: Base(nr), alpha_(alpha), true_hessian_(true_hessian) { |
66 |
|
✗ |
if (alpha < Scalar(0.)) { |
67 |
|
✗ |
throw_pretty("Invalid argument: " << "alpha should be a positive value"); |
68 |
|
|
} |
69 |
|
✗ |
}; |
70 |
|
✗ |
virtual ~ActivationModel2NormBarrierTpl() = default; |
71 |
|
|
|
72 |
|
|
/** |
73 |
|
|
* @brief Compute the 2-norm barrier function |
74 |
|
|
* |
75 |
|
|
* @param[in] data 2-norm barrier activation data |
76 |
|
|
* @param[in] r Residual vector \f$\mathbf{r}\in\mathbb{R}^{nr}\f$ |
77 |
|
|
*/ |
78 |
|
✗ |
virtual void calc(const std::shared_ptr<ActivationDataAbstract>& data, |
79 |
|
|
const Eigen::Ref<const VectorXs>& r) override { |
80 |
|
✗ |
if (static_cast<std::size_t>(r.size()) != nr_) { |
81 |
|
✗ |
throw_pretty( |
82 |
|
|
"Invalid argument: " << "r has wrong dimension (it should be " + |
83 |
|
|
std::to_string(nr_) + ")"); |
84 |
|
|
} |
85 |
|
✗ |
std::shared_ptr<Data> d = std::static_pointer_cast<Data>(data); |
86 |
|
|
|
87 |
|
✗ |
d->d = r.norm(); |
88 |
|
✗ |
if (d->d < alpha_) { |
89 |
|
✗ |
data->a_value = Scalar(0.5) * (d->d - alpha_) * (d->d - alpha_); |
90 |
|
|
} else { |
91 |
|
✗ |
data->a_value = Scalar(0.0); |
92 |
|
|
} |
93 |
|
✗ |
}; |
94 |
|
|
|
95 |
|
|
/** |
96 |
|
|
* @brief Compute the derivatives of the 2norm-barrier function |
97 |
|
|
* |
98 |
|
|
* @param[in] data 2-norm barrier activation data |
99 |
|
|
* @param[in] r Residual vector \f$\mathbf{r}\in\mathbb{R}^{nr}\f$ |
100 |
|
|
*/ |
101 |
|
✗ |
virtual void calcDiff(const std::shared_ptr<ActivationDataAbstract>& data, |
102 |
|
|
const Eigen::Ref<const VectorXs>& r) override { |
103 |
|
✗ |
if (static_cast<std::size_t>(r.size()) != nr_) { |
104 |
|
✗ |
throw_pretty( |
105 |
|
|
"Invalid argument: " << "r has wrong dimension (it should be " + |
106 |
|
|
std::to_string(nr_) + ")"); |
107 |
|
|
} |
108 |
|
✗ |
std::shared_ptr<Data> d = std::static_pointer_cast<Data>(data); |
109 |
|
|
|
110 |
|
✗ |
if (d->d < alpha_) { |
111 |
|
✗ |
data->Ar = (d->d - alpha_) / d->d * r; |
112 |
|
✗ |
if (true_hessian_) { |
113 |
|
✗ |
data->Arr.diagonal() = |
114 |
|
✗ |
alpha_ * r.array().square() / pow(d->d, Scalar(3)); // True Hessian |
115 |
|
✗ |
data->Arr.diagonal().array() += (d->d - alpha_) / d->d; |
116 |
|
|
} else { |
117 |
|
✗ |
data->Arr.diagonal() = |
118 |
|
✗ |
r.array().square() / |
119 |
|
✗ |
pow(d->d, Scalar(2)); // GN Hessian approximation |
120 |
|
|
} |
121 |
|
|
} else { |
122 |
|
✗ |
data->Ar.setZero(); |
123 |
|
✗ |
data->Arr.setZero(); |
124 |
|
|
} |
125 |
|
✗ |
}; |
126 |
|
|
|
127 |
|
|
/** |
128 |
|
|
* @brief Create the 2norm-barrier activation data |
129 |
|
|
* |
130 |
|
|
* @return the activation data |
131 |
|
|
*/ |
132 |
|
✗ |
virtual std::shared_ptr<ActivationDataAbstract> createData() override { |
133 |
|
✗ |
return std::allocate_shared<Data>(Eigen::aligned_allocator<Data>(), this); |
134 |
|
|
}; |
135 |
|
|
|
136 |
|
|
template <typename NewScalar> |
137 |
|
✗ |
ActivationModel2NormBarrierTpl<NewScalar> cast() const { |
138 |
|
|
typedef ActivationModel2NormBarrierTpl<NewScalar> ReturnType; |
139 |
|
✗ |
ReturnType res(nr_, scalar_cast<NewScalar>(alpha_), true_hessian_); |
140 |
|
✗ |
return res; |
141 |
|
|
} |
142 |
|
|
|
143 |
|
|
/** |
144 |
|
|
* @brief Get and set the threshold factor |
145 |
|
|
*/ |
146 |
|
✗ |
const Scalar& get_alpha() const { return alpha_; }; |
147 |
|
✗ |
void set_alpha(const Scalar& alpha) { alpha_ = alpha; }; |
148 |
|
|
|
149 |
|
|
/** |
150 |
|
|
* @brief Print relevant information of the 2-norm barrier model |
151 |
|
|
* |
152 |
|
|
* @param[out] os Output stream object |
153 |
|
|
*/ |
154 |
|
✗ |
virtual void print(std::ostream& os) const override { |
155 |
|
✗ |
os << "ActivationModel2NormBarrier {nr=" << nr_ << ", alpha=" << alpha_ |
156 |
|
✗ |
<< ", Hessian=" << true_hessian_ << "}"; |
157 |
|
✗ |
} |
158 |
|
|
|
159 |
|
|
protected: |
160 |
|
|
using Base::nr_; //!< Dimension of the residual vector |
161 |
|
|
Scalar alpha_; //!< Threshold factor |
162 |
|
|
bool true_hessian_; //!< Use true Hessian in calcDiff if true, Gauss-Newton |
163 |
|
|
//!< approximation if false |
164 |
|
|
}; |
165 |
|
|
|
166 |
|
|
template <typename _Scalar> |
167 |
|
|
struct ActivationData2NormBarrierTpl |
168 |
|
|
: public ActivationDataAbstractTpl<_Scalar> { |
169 |
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW |
170 |
|
|
|
171 |
|
|
typedef _Scalar Scalar; |
172 |
|
|
typedef MathBaseTpl<Scalar> MathBase; |
173 |
|
|
typedef typename MathBase::VectorXs VectorXs; |
174 |
|
|
typedef typename MathBase::DiagonalMatrixXs DiagonalMatrixXs; |
175 |
|
|
typedef ActivationDataAbstractTpl<Scalar> Base; |
176 |
|
|
|
177 |
|
|
template <typename Activation> |
178 |
|
✗ |
explicit ActivationData2NormBarrierTpl(Activation* const activation) |
179 |
|
✗ |
: Base(activation), d(Scalar(0)) {} |
180 |
|
✗ |
virtual ~ActivationData2NormBarrierTpl() = default; |
181 |
|
|
|
182 |
|
|
Scalar d; //!< Norm of the residual |
183 |
|
|
|
184 |
|
|
using Base::a_value; |
185 |
|
|
using Base::Ar; |
186 |
|
|
using Base::Arr; |
187 |
|
|
}; |
188 |
|
|
|
189 |
|
|
} // namespace crocoddyl |
190 |
|
|
|
191 |
|
|
CROCODDYL_DECLARE_EXTERN_TEMPLATE_CLASS( |
192 |
|
|
crocoddyl::ActivationModel2NormBarrierTpl) |
193 |
|
|
CROCODDYL_DECLARE_EXTERN_TEMPLATE_STRUCT( |
194 |
|
|
crocoddyl::ActivationData2NormBarrierTpl) |
195 |
|
|
|
196 |
|
|
#endif // CROCODDYL_CORE_ACTIVATIONS_2NORM_BARRIER_HPP_ |
197 |
|
|
|