Line |
Branch |
Exec |
Source |
1 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
2 |
|
|
// BSD 3-Clause License |
3 |
|
|
// |
4 |
|
|
// Copyright (C) 2019-2025, LAAS-CNRS, University of Edinburgh, |
5 |
|
|
// University of Oxford, Heriot-Watt University |
6 |
|
|
// Copyright note valid unless otherwise stated in individual files. |
7 |
|
|
// All rights reserved. |
8 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
9 |
|
|
|
10 |
|
|
#ifndef CROCODDYL_CORE_ACTION_BASE_HPP_ |
11 |
|
|
#define CROCODDYL_CORE_ACTION_BASE_HPP_ |
12 |
|
|
|
13 |
|
|
#include "crocoddyl/core/fwd.hpp" |
14 |
|
|
#include "crocoddyl/core/state-base.hpp" |
15 |
|
|
|
16 |
|
|
namespace crocoddyl { |
17 |
|
|
|
18 |
|
|
class ActionModelBase { |
19 |
|
|
public: |
20 |
|
✗ |
virtual ~ActionModelBase() = default; |
21 |
|
|
|
22 |
|
✗ |
CROCODDYL_BASE_CAST(ActionModelBase, ActionModelAbstractTpl) |
23 |
|
|
}; |
24 |
|
|
|
25 |
|
|
/** |
26 |
|
|
* @brief Abstract class for action model |
27 |
|
|
* |
28 |
|
|
* An action model combines dynamics, cost functions and constraints. Each node, |
29 |
|
|
* in our optimal control problem, is described through an action model. Every |
30 |
|
|
* time that we want describe a problem, we need to provide ways of computing |
31 |
|
|
* the dynamics, cost functions, constraints and their derivatives. All these is |
32 |
|
|
* described inside the action model. |
33 |
|
|
* |
34 |
|
|
* Concretely speaking, the action model describes a time-discrete action model |
35 |
|
|
* with a first-order ODE along a cost function, i.e. |
36 |
|
|
* - the state \f$\mathbf{z}\in\mathcal{Z}\f$ lies in a manifold described with |
37 |
|
|
* a `nx`-tuple, |
38 |
|
|
* - the state rate \f$\mathbf{\dot{x}}\in T_{\mathbf{q}}\mathcal{Q}\f$ is the |
39 |
|
|
* tangent vector to the state manifold with `ndx` dimension, |
40 |
|
|
* - the control input \f$\mathbf{u}\in\mathbb{R}^{nu}\f$ is an Euclidean |
41 |
|
|
* vector |
42 |
|
|
* - \f$\mathbf{r}(\cdot)\f$ and \f$a(\cdot)\f$ are the residual and activation |
43 |
|
|
* functions (see `ResidualModelAbstractTpl` and `ActivationModelAbstractTpl`, |
44 |
|
|
* respetively), |
45 |
|
|
* - \f$\mathbf{g}(\cdot)\in\mathbb{R}^{ng}\f$ and |
46 |
|
|
* \f$\mathbf{h}(\cdot)\in\mathbb{R}^{nh}\f$ are the inequality and equality |
47 |
|
|
* vector functions, respectively. |
48 |
|
|
* |
49 |
|
|
* The computation of these equations are carried out out inside `calc()` |
50 |
|
|
* function. In short, this function computes the system acceleration, cost and |
51 |
|
|
* constraints values (also called constraints violations). This procedure is |
52 |
|
|
* equivalent to running a forward pass of the action model. |
53 |
|
|
* |
54 |
|
|
* However, during numerical optimization, we also need to run backward passes |
55 |
|
|
* of the action model. These calculations are performed by `calcDiff()`. In |
56 |
|
|
* short, this method builds a linear-quadratic approximation of the action |
57 |
|
|
* model, i.e.: \f[ \begin{aligned} |
58 |
|
|
* &\delta\mathbf{x}_{k+1} = |
59 |
|
|
* \mathbf{f_x}\delta\mathbf{x}_k+\mathbf{f_u}\delta\mathbf{u}_k, |
60 |
|
|
* &\textrm{(dynamics)}\\ |
61 |
|
|
* &\ell(\delta\mathbf{x}_k,\delta\mathbf{u}_k) = \begin{bmatrix}1 |
62 |
|
|
* \\ \delta\mathbf{x}_k \\ \delta\mathbf{u}_k\end{bmatrix}^T \begin{bmatrix}0 & |
63 |
|
|
* \mathbf{\ell_x}^T & \mathbf{\ell_u}^T \\ \mathbf{\ell_x} & \mathbf{\ell_{xx}} |
64 |
|
|
* & |
65 |
|
|
* \mathbf{\ell_{ux}}^T \\ |
66 |
|
|
* \mathbf{\ell_u} & \mathbf{\ell_{ux}} & \mathbf{\ell_{uu}}\end{bmatrix} |
67 |
|
|
* \begin{bmatrix}1 \\ \delta\mathbf{x}_k \\ |
68 |
|
|
* \delta\mathbf{u}_k\end{bmatrix}, &\textrm{(cost)}\\ |
69 |
|
|
* &\mathbf{g}(\delta\mathbf{x}_k,\delta\mathbf{u}_k)<\mathbf{0}, |
70 |
|
|
* &\textrm{(inequality constraint)}\\ |
71 |
|
|
* &\mathbf{h}(\delta\mathbf{x}_k,\delta\mathbf{u}_k)=\mathbf{0}, |
72 |
|
|
* &\textrm{(equality constraint)} \end{aligned} \f] where |
73 |
|
|
* - \f$\mathbf{f_x}\in\mathbb{R}^{ndx\times ndx}\f$ and |
74 |
|
|
* \f$\mathbf{f_u}\in\mathbb{R}^{ndx\times nu}\f$ are the Jacobians of the |
75 |
|
|
* dynamics, |
76 |
|
|
* - \f$\mathbf{\ell_x}\in\mathbb{R}^{ndx}\f$ and |
77 |
|
|
* \f$\mathbf{\ell_u}\in\mathbb{R}^{nu}\f$ are the Jacobians of the cost |
78 |
|
|
* function, |
79 |
|
|
* - \f$\mathbf{\ell_{xx}}\in\mathbb{R}^{ndx\times ndx}\f$, |
80 |
|
|
* \f$\mathbf{\ell_{xu}}\in\mathbb{R}^{ndx\times nu}\f$ and |
81 |
|
|
* \f$\mathbf{\ell_{uu}}\in\mathbb{R}^{nu\times nu}\f$ are the Hessians of the |
82 |
|
|
* cost function, |
83 |
|
|
* - \f$\mathbf{g_x}\in\mathbb{R}^{ng\times ndx}\f$ and |
84 |
|
|
* \f$\mathbf{g_u}\in\mathbb{R}^{ng\times nu}\f$ are the Jacobians of the |
85 |
|
|
* inequality constraints, and |
86 |
|
|
* - \f$\mathbf{h_x}\in\mathbb{R}^{nh\times ndx}\f$ and |
87 |
|
|
* \f$\mathbf{h_u}\in\mathbb{R}^{nh\times nu}\f$ are the Jacobians of the |
88 |
|
|
* equality constraints. |
89 |
|
|
* |
90 |
|
|
* Additionally, it is important to note that `calcDiff()` computes the |
91 |
|
|
* derivatives using the latest stored values by `calc()`. Thus, we need to |
92 |
|
|
* first run `calc()`. |
93 |
|
|
* |
94 |
|
|
* \sa `calc()`, `calcDiff()`, `createData()` |
95 |
|
|
*/ |
96 |
|
|
template <typename _Scalar> |
97 |
|
|
class ActionModelAbstractTpl : public ActionModelBase { |
98 |
|
|
public: |
99 |
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW |
100 |
|
|
|
101 |
|
|
typedef _Scalar Scalar; |
102 |
|
|
typedef typename ScalarSelector<Scalar>::type ScalarType; |
103 |
|
|
typedef MathBaseTpl<Scalar> MathBase; |
104 |
|
|
typedef ActionDataAbstractTpl<Scalar> ActionDataAbstract; |
105 |
|
|
typedef StateAbstractTpl<Scalar> StateAbstract; |
106 |
|
|
typedef typename MathBase::VectorXs VectorXs; |
107 |
|
|
|
108 |
|
|
/** |
109 |
|
|
* @brief Initialize the action model |
110 |
|
|
* |
111 |
|
|
* @param[in] state State description |
112 |
|
|
* @param[in] nu Dimension of control vector |
113 |
|
|
* @param[in] nr Dimension of cost-residual vector |
114 |
|
|
* @param[in] ng Number of inequality constraints (default 0) |
115 |
|
|
* @param[in] nh Number of equality constraints (default 0) |
116 |
|
|
* @param[in] ng_T Number of inequality terminal constraints (default 0) |
117 |
|
|
* @param[in] nh_T Number of equality terminal constraints (default 0) |
118 |
|
|
*/ |
119 |
|
|
ActionModelAbstractTpl(std::shared_ptr<StateAbstract> state, |
120 |
|
|
const std::size_t nu, const std::size_t nr = 0, |
121 |
|
|
const std::size_t ng = 0, const std::size_t nh = 0, |
122 |
|
|
const std::size_t ng_T = 0, |
123 |
|
|
const std::size_t nh_T = 0); |
124 |
|
|
/** |
125 |
|
|
* @brief Copy constructor |
126 |
|
|
* @param other Action model to be copied |
127 |
|
|
*/ |
128 |
|
|
ActionModelAbstractTpl(const ActionModelAbstractTpl<Scalar>& other); |
129 |
|
|
|
130 |
|
✗ |
virtual ~ActionModelAbstractTpl() = default; |
131 |
|
|
|
132 |
|
|
/** |
133 |
|
|
* @brief Compute the next state and cost value |
134 |
|
|
* |
135 |
|
|
* @param[in] data Action data |
136 |
|
|
* @param[in] x State point \f$\mathbf{x}\in\mathbb{R}^{ndx}\f$ |
137 |
|
|
* @param[in] u Control input \f$\mathbf{u}\in\mathbb{R}^{nu}\f$ |
138 |
|
|
*/ |
139 |
|
|
virtual void calc(const std::shared_ptr<ActionDataAbstract>& data, |
140 |
|
|
const Eigen::Ref<const VectorXs>& x, |
141 |
|
|
const Eigen::Ref<const VectorXs>& u) = 0; |
142 |
|
|
|
143 |
|
|
/** |
144 |
|
|
* @brief Compute the total cost value for nodes that depends only on the |
145 |
|
|
* state |
146 |
|
|
* |
147 |
|
|
* It updates the total cost and the next state is not computed as it is not |
148 |
|
|
* expected to change. This function is used in the terminal nodes of an |
149 |
|
|
* optimal control problem. |
150 |
|
|
* |
151 |
|
|
* @param[in] data Action data |
152 |
|
|
* @param[in] x State point \f$\mathbf{x}\in\mathbb{R}^{ndx}\f$ |
153 |
|
|
*/ |
154 |
|
|
virtual void calc(const std::shared_ptr<ActionDataAbstract>& data, |
155 |
|
|
const Eigen::Ref<const VectorXs>& x); |
156 |
|
|
|
157 |
|
|
/** |
158 |
|
|
* @brief Compute the derivatives of the dynamics and cost functions |
159 |
|
|
* |
160 |
|
|
* It computes the partial derivatives of the dynamical system and the cost |
161 |
|
|
* function. It assumes that `calc()` has been run first. This function builds |
162 |
|
|
* a linear-quadratic approximation of the action model (i.e. dynamical system |
163 |
|
|
* and cost function). |
164 |
|
|
* |
165 |
|
|
* @param[in] data Action data |
166 |
|
|
* @param[in] x State point \f$\mathbf{x}\in\mathbb{R}^{ndx}\f$ |
167 |
|
|
* @param[in] u Control input \f$\mathbf{u}\in\mathbb{R}^{nu}\f$ |
168 |
|
|
*/ |
169 |
|
|
virtual void calcDiff(const std::shared_ptr<ActionDataAbstract>& data, |
170 |
|
|
const Eigen::Ref<const VectorXs>& x, |
171 |
|
|
const Eigen::Ref<const VectorXs>& u) = 0; |
172 |
|
|
|
173 |
|
|
/** |
174 |
|
|
* @brief Compute the derivatives of the cost functions with respect to the |
175 |
|
|
* state only |
176 |
|
|
* |
177 |
|
|
* It updates the derivatives of the cost function with respect to the state |
178 |
|
|
* only. This function is used in the terminal nodes of an optimal control |
179 |
|
|
* problem. |
180 |
|
|
* |
181 |
|
|
* @param[in] data Action data |
182 |
|
|
* @param[in] x State point \f$\mathbf{x}\in\mathbb{R}^{ndx}\f$ |
183 |
|
|
*/ |
184 |
|
|
virtual void calcDiff(const std::shared_ptr<ActionDataAbstract>& data, |
185 |
|
|
const Eigen::Ref<const VectorXs>& x); |
186 |
|
|
|
187 |
|
|
/** |
188 |
|
|
* @brief Create the action data |
189 |
|
|
* |
190 |
|
|
* @return the action data |
191 |
|
|
*/ |
192 |
|
|
virtual std::shared_ptr<ActionDataAbstract> createData(); |
193 |
|
|
|
194 |
|
|
/** |
195 |
|
|
* @brief Checks that a specific data belongs to this model |
196 |
|
|
*/ |
197 |
|
|
virtual bool checkData(const std::shared_ptr<ActionDataAbstract>& data); |
198 |
|
|
|
199 |
|
|
/** |
200 |
|
|
* @brief Computes the quasic static commands |
201 |
|
|
* |
202 |
|
|
* The quasic static commands are the ones produced for a the reference |
203 |
|
|
* posture as an equilibrium point, i.e. for |
204 |
|
|
* \f$\mathbf{f^q_x}\delta\mathbf{q}+\mathbf{f_u}\delta\mathbf{u}=\mathbf{0}\f$ |
205 |
|
|
* |
206 |
|
|
* @param[in] data Action data |
207 |
|
|
* @param[out] u Quasic static commands |
208 |
|
|
* @param[in] x State point (velocity has to be zero) |
209 |
|
|
* @param[in] maxiter Maximum allowed number of iterations |
210 |
|
|
* @param[in] tol Tolerance |
211 |
|
|
*/ |
212 |
|
|
virtual void quasiStatic(const std::shared_ptr<ActionDataAbstract>& data, |
213 |
|
|
Eigen::Ref<VectorXs> u, |
214 |
|
|
const Eigen::Ref<const VectorXs>& x, |
215 |
|
|
const std::size_t maxiter = 100, |
216 |
|
|
const Scalar tol = Scalar(1e-9)); |
217 |
|
|
|
218 |
|
|
/** |
219 |
|
|
* @copybrief quasicStatic() |
220 |
|
|
* |
221 |
|
|
* @copydetails quasicStatic() |
222 |
|
|
* |
223 |
|
|
* @param[in] data Action data |
224 |
|
|
* @param[in] x State point (velocity has to be zero) |
225 |
|
|
* @param[in] maxiter Maximum allowed number of iterations |
226 |
|
|
* @param[in] tol Tolerance |
227 |
|
|
* @return Quasic static commands |
228 |
|
|
*/ |
229 |
|
|
VectorXs quasiStatic_x(const std::shared_ptr<ActionDataAbstract>& data, |
230 |
|
|
const VectorXs& x, const std::size_t maxiter = 100, |
231 |
|
|
const Scalar tol = Scalar(1e-9)); |
232 |
|
|
|
233 |
|
|
/** |
234 |
|
|
* @brief Return the dimension of the control input |
235 |
|
|
*/ |
236 |
|
|
std::size_t get_nu() const; |
237 |
|
|
|
238 |
|
|
/** |
239 |
|
|
* @brief Return the dimension of the cost-residual vector |
240 |
|
|
*/ |
241 |
|
|
std::size_t get_nr() const; |
242 |
|
|
|
243 |
|
|
/** |
244 |
|
|
* @brief Return the number of inequality constraints |
245 |
|
|
*/ |
246 |
|
|
virtual std::size_t get_ng() const; |
247 |
|
|
|
248 |
|
|
/** |
249 |
|
|
* @brief Return the number of equality constraints |
250 |
|
|
*/ |
251 |
|
|
virtual std::size_t get_nh() const; |
252 |
|
|
|
253 |
|
|
/** |
254 |
|
|
* @brief Return the number of inequality terminal constraints |
255 |
|
|
*/ |
256 |
|
|
virtual std::size_t get_ng_T() const; |
257 |
|
|
|
258 |
|
|
/** |
259 |
|
|
* @brief Return the number of equality terminal constraints |
260 |
|
|
*/ |
261 |
|
|
virtual std::size_t get_nh_T() const; |
262 |
|
|
|
263 |
|
|
/** |
264 |
|
|
* @brief Return the state |
265 |
|
|
*/ |
266 |
|
|
const std::shared_ptr<StateAbstract>& get_state() const; |
267 |
|
|
|
268 |
|
|
/** |
269 |
|
|
* @brief Return the lower bound of the inequality constraints |
270 |
|
|
*/ |
271 |
|
|
virtual const VectorXs& get_g_lb() const; |
272 |
|
|
|
273 |
|
|
/** |
274 |
|
|
* @brief Return the upper bound of the inequality constraints |
275 |
|
|
*/ |
276 |
|
|
virtual const VectorXs& get_g_ub() const; |
277 |
|
|
|
278 |
|
|
/** |
279 |
|
|
* @brief Return the control lower bound |
280 |
|
|
*/ |
281 |
|
|
const VectorXs& get_u_lb() const; |
282 |
|
|
|
283 |
|
|
/** |
284 |
|
|
* @brief Return the control upper bound |
285 |
|
|
*/ |
286 |
|
|
const VectorXs& get_u_ub() const; |
287 |
|
|
|
288 |
|
|
/** |
289 |
|
|
* @brief Indicates if there are defined control limits |
290 |
|
|
*/ |
291 |
|
|
bool get_has_control_limits() const; |
292 |
|
|
|
293 |
|
|
/** |
294 |
|
|
* @brief Modify the lower bound of the inequality constraints |
295 |
|
|
*/ |
296 |
|
|
void set_g_lb(const VectorXs& g_lb); |
297 |
|
|
|
298 |
|
|
/** |
299 |
|
|
* @brief Modify the upper bound of the inequality constraints |
300 |
|
|
*/ |
301 |
|
|
void set_g_ub(const VectorXs& g_ub); |
302 |
|
|
|
303 |
|
|
/** |
304 |
|
|
* @brief Modify the control lower bounds |
305 |
|
|
*/ |
306 |
|
|
void set_u_lb(const VectorXs& u_lb); |
307 |
|
|
|
308 |
|
|
/** |
309 |
|
|
* @brief Modify the control upper bounds |
310 |
|
|
*/ |
311 |
|
|
void set_u_ub(const VectorXs& u_ub); |
312 |
|
|
|
313 |
|
|
/** |
314 |
|
|
* @brief Print information on the action model |
315 |
|
|
*/ |
316 |
|
|
template <class Scalar> |
317 |
|
|
friend std::ostream& operator<<(std::ostream& os, |
318 |
|
|
const ActionModelAbstractTpl<Scalar>& model); |
319 |
|
|
|
320 |
|
|
/** |
321 |
|
|
* @brief Print relevant information of the action model |
322 |
|
|
* |
323 |
|
|
* @param[out] os Output stream object |
324 |
|
|
*/ |
325 |
|
|
virtual void print(std::ostream& os) const; |
326 |
|
|
|
327 |
|
|
protected: |
328 |
|
|
std::size_t nu_; //!< Control dimension |
329 |
|
|
std::size_t nr_; //!< Dimension of the cost residual |
330 |
|
|
std::size_t ng_; //!< Number of inequality constraints |
331 |
|
|
std::size_t nh_; //!< Number of equality constraints |
332 |
|
|
std::size_t ng_T_; //!< Number of inequality terminal constraints |
333 |
|
|
std::size_t nh_T_; //!< Number of equality terminal constraints |
334 |
|
|
std::shared_ptr<StateAbstract> state_; //!< Model of the state |
335 |
|
|
VectorXs unone_; //!< Neutral state |
336 |
|
|
VectorXs g_lb_; //!< Lower bound of the inequality constraints |
337 |
|
|
VectorXs g_ub_; //!< Lower bound of the inequality constraints |
338 |
|
|
VectorXs u_lb_; //!< Lower control limits |
339 |
|
|
VectorXs u_ub_; //!< Upper control limits |
340 |
|
|
bool has_control_limits_; //!< Indicates whether any of the control limits is |
341 |
|
|
//!< finite |
342 |
|
✗ |
ActionModelAbstractTpl() |
343 |
|
✗ |
: nu_(0), nr_(0), ng_(0), nh_(0), ng_T_(0), nh_T_(0), state_(nullptr) {} |
344 |
|
|
|
345 |
|
|
/** |
346 |
|
|
* @brief Update the status of the control limits (i.e. if there are defined |
347 |
|
|
* limits) |
348 |
|
|
*/ |
349 |
|
|
void update_has_control_limits(); |
350 |
|
|
|
351 |
|
|
template <class Scalar> |
352 |
|
|
friend class ConstraintModelManagerTpl; |
353 |
|
|
}; |
354 |
|
|
|
355 |
|
|
template <typename _Scalar> |
356 |
|
|
struct ActionDataAbstractTpl { |
357 |
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW |
358 |
|
|
|
359 |
|
|
typedef _Scalar Scalar; |
360 |
|
|
typedef MathBaseTpl<Scalar> MathBase; |
361 |
|
|
typedef typename MathBase::VectorXs VectorXs; |
362 |
|
|
typedef typename MathBase::MatrixXs MatrixXs; |
363 |
|
|
|
364 |
|
|
template <template <typename Scalar> class Model> |
365 |
|
✗ |
explicit ActionDataAbstractTpl(Model<Scalar>* const model) |
366 |
|
✗ |
: cost(Scalar(0.)), |
367 |
|
✗ |
xnext(model->get_state()->get_nx()), |
368 |
|
✗ |
Fx(model->get_state()->get_ndx(), model->get_state()->get_ndx()), |
369 |
|
✗ |
Fu(model->get_state()->get_ndx(), model->get_nu()), |
370 |
|
✗ |
r(model->get_nr()), |
371 |
|
✗ |
Lx(model->get_state()->get_ndx()), |
372 |
|
✗ |
Lu(model->get_nu()), |
373 |
|
✗ |
Lxx(model->get_state()->get_ndx(), model->get_state()->get_ndx()), |
374 |
|
✗ |
Lxu(model->get_state()->get_ndx(), model->get_nu()), |
375 |
|
✗ |
Luu(model->get_nu(), model->get_nu()), |
376 |
|
✗ |
g(model->get_ng() > model->get_ng_T() ? model->get_ng() |
377 |
|
✗ |
: model->get_ng_T()), |
378 |
|
✗ |
Gx(model->get_ng() > model->get_ng_T() ? model->get_ng() |
379 |
|
✗ |
: model->get_ng_T(), |
380 |
|
✗ |
model->get_state()->get_ndx()), |
381 |
|
✗ |
Gu(model->get_ng() > model->get_ng_T() ? model->get_ng() |
382 |
|
✗ |
: model->get_ng_T(), |
383 |
|
✗ |
model->get_nu()), |
384 |
|
✗ |
h(model->get_nh() > model->get_nh_T() ? model->get_nh() |
385 |
|
✗ |
: model->get_nh_T()), |
386 |
|
✗ |
Hx(model->get_nh() > model->get_nh_T() ? model->get_nh() |
387 |
|
✗ |
: model->get_nh_T(), |
388 |
|
✗ |
model->get_state()->get_ndx()), |
389 |
|
✗ |
Hu(model->get_nh() > model->get_nh_T() ? model->get_nh() |
390 |
|
✗ |
: model->get_nh_T(), |
391 |
|
✗ |
model->get_nu()) { |
392 |
|
✗ |
xnext.setZero(); |
393 |
|
✗ |
Fx.setZero(); |
394 |
|
✗ |
Fu.setZero(); |
395 |
|
✗ |
r.setZero(); |
396 |
|
✗ |
Lx.setZero(); |
397 |
|
✗ |
Lu.setZero(); |
398 |
|
✗ |
Lxx.setZero(); |
399 |
|
✗ |
Lxu.setZero(); |
400 |
|
✗ |
Luu.setZero(); |
401 |
|
✗ |
g.setZero(); |
402 |
|
✗ |
Gx.setZero(); |
403 |
|
✗ |
Gu.setZero(); |
404 |
|
✗ |
h.setZero(); |
405 |
|
✗ |
Hx.setZero(); |
406 |
|
✗ |
Hu.setZero(); |
407 |
|
|
} |
408 |
|
✗ |
virtual ~ActionDataAbstractTpl() = default; |
409 |
|
|
|
410 |
|
|
Scalar cost; //!< cost value |
411 |
|
|
VectorXs xnext; //!< evolution state |
412 |
|
|
MatrixXs Fx; //!< Jacobian of the dynamics w.r.t. the state \f$\mathbf{x}\f$ |
413 |
|
|
MatrixXs |
414 |
|
|
Fu; //!< Jacobian of the dynamics w.r.t. the control \f$\mathbf{u}\f$ |
415 |
|
|
VectorXs r; //!< Cost residual |
416 |
|
|
VectorXs Lx; //!< Jacobian of the cost w.r.t. the state \f$\mathbf{x}\f$ |
417 |
|
|
VectorXs Lu; //!< Jacobian of the cost w.r.t. the control \f$\mathbf{u}\f$ |
418 |
|
|
MatrixXs Lxx; //!< Hessian of the cost w.r.t. the state \f$\mathbf{x}\f$ |
419 |
|
|
MatrixXs Lxu; //!< Hessian of the cost w.r.t. the state \f$\mathbf{x}\f$ and |
420 |
|
|
//!< control \f$\mathbf{u}\f$ |
421 |
|
|
MatrixXs Luu; //!< Hessian of the cost w.r.t. the control \f$\mathbf{u}\f$ |
422 |
|
|
VectorXs g; //!< Inequality constraint values |
423 |
|
|
MatrixXs Gx; //!< Jacobian of the inequality constraint w.r.t. the state |
424 |
|
|
//!< \f$\mathbf{x}\f$ |
425 |
|
|
MatrixXs Gu; //!< Jacobian of the inequality constraint w.r.t. the control |
426 |
|
|
//!< \f$\mathbf{u}\f$ |
427 |
|
|
VectorXs h; //!< Equality constraint values |
428 |
|
|
MatrixXs Hx; //!< Jacobian of the equality constraint w.r.t. the state |
429 |
|
|
//!< \f$\mathbf{x}\f$ |
430 |
|
|
MatrixXs Hu; //!< Jacobian of the equality constraint w.r.t. the control |
431 |
|
|
//!< \f$\mathbf{u}\f$ |
432 |
|
|
}; |
433 |
|
|
|
434 |
|
|
} // namespace crocoddyl |
435 |
|
|
|
436 |
|
|
/* --- Details -------------------------------------------------------------- */ |
437 |
|
|
/* --- Details -------------------------------------------------------------- */ |
438 |
|
|
/* --- Details -------------------------------------------------------------- */ |
439 |
|
|
#include "crocoddyl/core/action-base.hxx" |
440 |
|
|
|
441 |
|
|
CROCODDYL_DECLARE_EXTERN_TEMPLATE_CLASS(crocoddyl::ActionModelAbstractTpl) |
442 |
|
|
CROCODDYL_DECLARE_EXTERN_TEMPLATE_STRUCT(crocoddyl::ActionDataAbstractTpl) |
443 |
|
|
|
444 |
|
|
#endif // CROCODDYL_CORE_ACTION_BASE_HPP_ |
445 |
|
|
|