GCC Code Coverage Report


Directory: ./
File: include/crocoddyl/core/numdiff/action.hpp
Date: 2025-01-30 11:01:55
Exec Total Coverage
Lines: 20 20 100.0%
Branches: 19 34 55.9%

Line Branch Exec Source
1 ///////////////////////////////////////////////////////////////////////////////
2 // BSD 3-Clause License
3 //
4 // Copyright (C) 2019-2024, LAAS-CNRS, New York University,
5 // Max Planck Gesellschaft, University of Edinburgh,
6 // Heriot-Watt University
7 // Copyright note valid unless otherwise stated in individual files.
8 // All rights reserved.
9 ///////////////////////////////////////////////////////////////////////////////
10
11 #ifndef CROCODDYL_CORE_NUMDIFF_ACTION_HPP_
12 #define CROCODDYL_CORE_NUMDIFF_ACTION_HPP_
13
14 #include <vector>
15
16 #include "crocoddyl/core/action-base.hpp"
17 #include "crocoddyl/core/fwd.hpp"
18
19 namespace crocoddyl {
20
21 /**
22 * @brief This class computes the numerical differentiation of an action model.
23 *
24 * It computes the Jacobian of the cost, its residual and dynamics via numerical
25 * differentiation. It considers that the action model owns a cost residual and
26 * the cost is the square of this residual, i.e.,
27 * \f$\ell(\mathbf{x},\mathbf{u})=\frac{1}{2}\|\mathbf{r}(\mathbf{x},\mathbf{u})\|^2\f$,
28 * where \f$\mathbf{r}(\mathbf{x},\mathbf{u})\f$ is the residual vector. The
29 * Hessian is computed only through the Gauss-Newton approximation, i.e.,
30 * \f{eqnarray*}{
31 * \mathbf{\ell}_\mathbf{xx} &=& \mathbf{R_x}^T\mathbf{R_x} \\
32 * \mathbf{\ell}_\mathbf{uu} &=& \mathbf{R_u}^T\mathbf{R_u} \\
33 * \mathbf{\ell}_\mathbf{xu} &=& \mathbf{R_x}^T\mathbf{R_u}
34 * \f}
35 * where the Jacobians of the cost residuals are denoted by \f$\mathbf{R_x}\f$
36 * and \f$\mathbf{R_u}\f$. Note that this approximation ignores the tensor
37 * products (e.g., \f$\mathbf{R_{xx}}\mathbf{r}\f$).
38 *
39 * Finally, in the case that the cost does not have a residual, we set the
40 * Hessian to zero, i.e., \f$\mathbf{L_{xx}} = \mathbf{L_{xu}} = \mathbf{L_{uu}}
41 * = \mathbf{0}\f$.
42 *
43 * \sa `ActionModelAbstractTpl()`, `calcDiff()`
44 */
45 template <typename _Scalar>
46 class ActionModelNumDiffTpl : public ActionModelAbstractTpl<_Scalar> {
47 public:
48 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
49
50 typedef _Scalar Scalar;
51 typedef ActionDataAbstractTpl<Scalar> ActionDataAbstract;
52 typedef ActionModelAbstractTpl<Scalar> Base;
53 typedef ActionDataNumDiffTpl<Scalar> Data;
54 typedef MathBaseTpl<Scalar> MathBase;
55 typedef typename MathBaseTpl<Scalar>::VectorXs VectorXs;
56 typedef typename MathBaseTpl<Scalar>::MatrixXs MatrixXs;
57
58 /**
59 * @brief Initialize the numdiff action model
60 *
61 * @param[in] model Action model that we want to apply the
62 * numerical differentiation
63 * @param[in] with_gauss_approx True if we want to use the Gauss
64 * approximation for computing the Hessians
65 */
66 explicit ActionModelNumDiffTpl(std::shared_ptr<Base> model,
67 bool with_gauss_approx = false);
68 virtual ~ActionModelNumDiffTpl();
69
70 /**
71 * @brief @copydoc Base::calc()
72 */
73 virtual void calc(const std::shared_ptr<ActionDataAbstract>& data,
74 const Eigen::Ref<const VectorXs>& x,
75 const Eigen::Ref<const VectorXs>& u);
76
77 /**
78 * @brief @copydoc Base::calc(const std::shared_ptr<ActionDataAbstract>&
79 * data, const Eigen::Ref<const VectorXs>& x)
80 */
81 virtual void calc(const std::shared_ptr<ActionDataAbstract>& data,
82 const Eigen::Ref<const VectorXs>& x);
83
84 /**
85 * @brief @copydoc Base::calcDiff()
86 */
87 virtual void calcDiff(const std::shared_ptr<ActionDataAbstract>& data,
88 const Eigen::Ref<const VectorXs>& x,
89 const Eigen::Ref<const VectorXs>& u);
90
91 /**
92 * @brief @copydoc Base::calcDiff(const std::shared_ptr<ActionDataAbstract>&
93 * data, const Eigen::Ref<const VectorXs>& x)
94 */
95 virtual void calcDiff(const std::shared_ptr<ActionDataAbstract>& data,
96 const Eigen::Ref<const VectorXs>& x);
97
98 /**
99 * @brief @copydoc Base::createData()
100 */
101 virtual std::shared_ptr<ActionDataAbstract> createData();
102
103 /**
104 * @brief @copydoc Base::quasiStatic()
105 */
106 virtual void quasiStatic(const std::shared_ptr<ActionDataAbstract>& data,
107 Eigen::Ref<VectorXs> u,
108 const Eigen::Ref<const VectorXs>& x,
109 const std::size_t maxiter = 100,
110 const Scalar tol = Scalar(1e-9));
111
112 /**
113 * @brief Return the acton model that we use to numerical differentiate
114 */
115 const std::shared_ptr<Base>& get_model() const;
116
117 /**
118 * @brief Return the disturbance constant used in the numerical
119 * differentiation routine
120 */
121 const Scalar get_disturbance() const;
122
123 /**
124 * @brief Modify the disturbance constant used in the numerical
125 * differentiation routine
126 */
127 void set_disturbance(const Scalar disturbance);
128
129 /**
130 * @brief Identify if the Gauss approximation is going to be used or not.
131 */
132 bool get_with_gauss_approx();
133
134 /**
135 * @brief Print relevant information of the diff-action numdiff model
136 *
137 * @param[out] os Output stream object
138 */
139 virtual void print(std::ostream& os) const;
140
141 protected:
142 using Base::has_control_limits_; //!< Indicates whether any of the control
143 //!< limits
144 using Base::nr_; //!< Dimension of the cost residual
145 using Base::nu_; //!< Control dimension
146 using Base::state_; //!< Model of the state
147 using Base::u_lb_; //!< Lower control limits
148 using Base::u_ub_; //!< Upper control limits
149
150 private:
151 /**
152 * @brief Make sure that when we finite difference the Action Model, the user
153 * does not face unknown behaviour because of the finite differencing of a
154 * quaternion around pi. This behaviour might occur if CostModelState and
155 * FloatingInContact differential model are used together.
156 *
157 * For full discussions see issue
158 * https://gepgitlab.laas.fr/loco-3d/crocoddyl/issues/139
159 *
160 * @param x is the state at which the check is performed.
161 */
162 void assertStableStateFD(const Eigen::Ref<const VectorXs>& x);
163
164 std::shared_ptr<Base> model_; //!< Action model hat we want to apply the
165 //!< numerical differentiation
166 Scalar e_jac_; //!< Constant used for computing disturbances in Jacobian
167 //!< calculation
168 Scalar e_hess_; //!< Constant used for computing disturbances in Hessian
169 //!< calculation
170 bool with_gauss_approx_; //!< True if we want to use the Gauss approximation
171 //!< for computing the Hessians
172 };
173
174 template <typename _Scalar>
175 struct ActionDataNumDiffTpl : public ActionDataAbstractTpl<_Scalar> {
176 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
177
178 typedef _Scalar Scalar;
179 typedef MathBaseTpl<Scalar> MathBase;
180 typedef ActionDataAbstractTpl<Scalar> Base;
181 typedef typename MathBaseTpl<Scalar>::VectorXs VectorXs;
182 typedef typename MathBaseTpl<Scalar>::MatrixXs MatrixXs;
183
184 /**
185 * @brief Initialize the numdiff action data
186 *
187 * @tparam Model is the type of the `ActionModelAbstractTpl`.
188 * @param model is the object to compute the numerical differentiation from.
189 */
190 template <template <typename Scalar> class Model>
191 270 explicit ActionDataNumDiffTpl(Model<Scalar>* const model)
192 : Base(model),
193
1/2
✓ Branch 3 taken 270 times.
✗ Branch 4 not taken.
270 Rx(model->get_model()->get_nr(),
194 270 model->get_model()->get_state()->get_ndx()),
195
1/2
✓ Branch 7 taken 270 times.
✗ Branch 8 not taken.
270 Ru(model->get_model()->get_nr(), model->get_model()->get_nu()),
196
1/2
✓ Branch 6 taken 270 times.
✗ Branch 7 not taken.
270 dx(model->get_model()->get_state()->get_ndx()),
197
1/2
✓ Branch 4 taken 270 times.
✗ Branch 5 not taken.
270 du(model->get_model()->get_nu()),
198
1/2
✓ Branch 8 taken 270 times.
✗ Branch 9 not taken.
540 xp(model->get_model()->get_state()->get_nx()) {
199
1/2
✓ Branch 1 taken 270 times.
✗ Branch 2 not taken.
270 Rx.setZero();
200
1/2
✓ Branch 1 taken 270 times.
✗ Branch 2 not taken.
270 Ru.setZero();
201
1/2
✓ Branch 1 taken 270 times.
✗ Branch 2 not taken.
270 dx.setZero();
202
1/2
✓ Branch 1 taken 270 times.
✗ Branch 2 not taken.
270 du.setZero();
203
1/2
✓ Branch 1 taken 270 times.
✗ Branch 2 not taken.
270 xp.setZero();
204
205 270 const std::size_t ndx = model->get_model()->get_state()->get_ndx();
206 270 const std::size_t nu = model->get_model()->get_nu();
207
1/2
✓ Branch 3 taken 270 times.
✗ Branch 4 not taken.
270 data_0 = model->get_model()->createData();
208
2/2
✓ Branch 0 taken 11303 times.
✓ Branch 1 taken 270 times.
11573 for (std::size_t i = 0; i < ndx; ++i) {
209
2/4
✓ Branch 3 taken 11303 times.
✗ Branch 4 not taken.
✓ Branch 6 taken 11303 times.
✗ Branch 7 not taken.
11303 data_x.push_back(model->get_model()->createData());
210 }
211
2/2
✓ Branch 0 taken 7278 times.
✓ Branch 1 taken 270 times.
7548 for (std::size_t i = 0; i < nu; ++i) {
212
2/4
✓ Branch 3 taken 7278 times.
✗ Branch 4 not taken.
✓ Branch 6 taken 7278 times.
✗ Branch 7 not taken.
7278 data_u.push_back(model->get_model()->createData());
213 }
214 270 }
215
216 using Base::cost;
217 using Base::Fu;
218 using Base::Fx;
219 using Base::Lu;
220 using Base::Luu;
221 using Base::Lx;
222 using Base::Lxu;
223 using Base::Lxx;
224 using Base::r;
225 using Base::xnext;
226
227 Scalar x_norm; //!< Norm of the state vector
228 Scalar
229 xh_jac; //!< Disturbance value used for computing \f$ \ell_\mathbf{x} \f$
230 Scalar
231 uh_jac; //!< Disturbance value used for computing \f$ \ell_\mathbf{u} \f$
232 Scalar xh_hess; //!< Disturbance value used for computing \f$
233 //!< \ell_\mathbf{xx} \f$
234 Scalar uh_hess; //!< Disturbance value used for computing \f$
235 //!< \ell_\mathbf{uu} \f$
236 Scalar xh_hess_pow2;
237 Scalar uh_hess_pow2;
238 Scalar xuh_hess_pow2;
239 MatrixXs Rx; //!< Cost residual jacobian: \f$ \frac{d r(x,u)}{dx} \f$
240 MatrixXs Ru; //!< Cost residual jacobian: \f$ \frac{d r(x,u)}{du} \f$
241 VectorXs dx; //!< State disturbance
242 VectorXs du; //!< Control disturbance
243 VectorXs xp; //!< The integrated state from the disturbance on one DoF "\f$
244 //!< \int x dx_i \f$"
245 std::shared_ptr<Base> data_0; //!< The data that contains the final results
246 std::vector<std::shared_ptr<Base> >
247 data_x; //!< The temporary data associated with the state variation
248 std::vector<std::shared_ptr<Base> >
249 data_u; //!< The temporary data associated with the control variation
250 };
251
252 } // namespace crocoddyl
253
254 /* --- Details -------------------------------------------------------------- */
255 /* --- Details -------------------------------------------------------------- */
256 /* --- Details -------------------------------------------------------------- */
257 #include "crocoddyl/core/numdiff/action.hxx"
258
259 #endif // CROCODDYL_CORE_NUMDIFF_ACTION_HPP_
260