| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | /////////////////////////////////////////////////////////////////////////////// | ||
| 2 | // BSD 3-Clause License | ||
| 3 | // | ||
| 4 | // Copyright (C) 2019-2025, LAAS-CNRS, University of Edinburgh, | ||
| 5 | // New York University, Max Planck Gesellschaft, | ||
| 6 | // University of Oxford, Heriot-Watt University | ||
| 7 | // Copyright note valid unless otherwise stated in individual files. | ||
| 8 | // All rights reserved. | ||
| 9 | /////////////////////////////////////////////////////////////////////////////// | ||
| 10 | |||
| 11 | #include "crocoddyl/core/numdiff/action.hpp" | ||
| 12 | |||
| 13 | namespace crocoddyl { | ||
| 14 | |||
| 15 | template <typename Scalar> | ||
| 16 | ✗ | ActionModelNumDiffTpl<Scalar>::ActionModelNumDiffTpl( | |
| 17 | std::shared_ptr<Base> model, bool with_gauss_approx) | ||
| 18 | : Base(model->get_state(), model->get_nu(), model->get_nr(), | ||
| 19 | ✗ | model->get_ng(), model->get_nh(), model->get_ng_T(), | |
| 20 | ✗ | model->get_nh_T()), | |
| 21 | ✗ | model_(model), | |
| 22 | ✗ | e_jac_(sqrt(Scalar(2.0) * std::numeric_limits<Scalar>::epsilon())), | |
| 23 | ✗ | with_gauss_approx_(with_gauss_approx) { | |
| 24 | ✗ | e_hess_ = sqrt(Scalar(2.0) * e_jac_); | |
| 25 | ✗ | this->set_u_lb(model_->get_u_lb()); | |
| 26 | ✗ | this->set_u_ub(model_->get_u_ub()); | |
| 27 | ✗ | } | |
| 28 | |||
| 29 | template <typename Scalar> | ||
| 30 | ✗ | void ActionModelNumDiffTpl<Scalar>::calc( | |
| 31 | const std::shared_ptr<ActionDataAbstract>& data, | ||
| 32 | const Eigen::Ref<const VectorXs>& x, const Eigen::Ref<const VectorXs>& u) { | ||
| 33 | ✗ | if (static_cast<std::size_t>(x.size()) != state_->get_nx()) { | |
| 34 | ✗ | throw_pretty( | |
| 35 | "Invalid argument: " << "x has wrong dimension (it should be " + | ||
| 36 | std::to_string(state_->get_nx()) + ")"); | ||
| 37 | } | ||
| 38 | ✗ | if (static_cast<std::size_t>(u.size()) != nu_) { | |
| 39 | ✗ | throw_pretty( | |
| 40 | "Invalid argument: " << "u has wrong dimension (it should be " + | ||
| 41 | std::to_string(nu_) + ")"); | ||
| 42 | } | ||
| 43 | ✗ | Data* d = static_cast<Data*>(data.get()); | |
| 44 | ✗ | model_->calc(d->data_0, x, u); | |
| 45 | ✗ | data->xnext = d->data_0->xnext; | |
| 46 | ✗ | data->cost = d->data_0->cost; | |
| 47 | ✗ | d->g = d->data_0->g; | |
| 48 | ✗ | d->h = d->data_0->h; | |
| 49 | ✗ | } | |
| 50 | |||
| 51 | template <typename Scalar> | ||
| 52 | ✗ | void ActionModelNumDiffTpl<Scalar>::calc( | |
| 53 | const std::shared_ptr<ActionDataAbstract>& data, | ||
| 54 | const Eigen::Ref<const VectorXs>& x) { | ||
| 55 | ✗ | if (static_cast<std::size_t>(x.size()) != state_->get_nx()) { | |
| 56 | ✗ | throw_pretty( | |
| 57 | "Invalid argument: " << "x has wrong dimension (it should be " + | ||
| 58 | std::to_string(state_->get_nx()) + ")"); | ||
| 59 | } | ||
| 60 | ✗ | Data* d = static_cast<Data*>(data.get()); | |
| 61 | ✗ | model_->calc(d->data_0, x); | |
| 62 | ✗ | data->xnext = d->data_0->xnext; | |
| 63 | ✗ | data->cost = d->data_0->cost; | |
| 64 | ✗ | d->g = d->data_0->g; | |
| 65 | ✗ | d->h = d->data_0->h; | |
| 66 | ✗ | } | |
| 67 | |||
| 68 | template <typename Scalar> | ||
| 69 | ✗ | void ActionModelNumDiffTpl<Scalar>::calcDiff( | |
| 70 | const std::shared_ptr<ActionDataAbstract>& data, | ||
| 71 | const Eigen::Ref<const VectorXs>& x, const Eigen::Ref<const VectorXs>& u) { | ||
| 72 | ✗ | if (static_cast<std::size_t>(x.size()) != state_->get_nx()) { | |
| 73 | ✗ | throw_pretty( | |
| 74 | "Invalid argument: " << "x has wrong dimension (it should be " + | ||
| 75 | std::to_string(state_->get_nx()) + ")"); | ||
| 76 | } | ||
| 77 | ✗ | if (static_cast<std::size_t>(u.size()) != nu_) { | |
| 78 | ✗ | throw_pretty( | |
| 79 | "Invalid argument: " << "u has wrong dimension (it should be " + | ||
| 80 | std::to_string(nu_) + ")"); | ||
| 81 | } | ||
| 82 | ✗ | Data* d = static_cast<Data*>(data.get()); | |
| 83 | |||
| 84 | ✗ | const VectorXs& x0 = d->data_0->xnext; | |
| 85 | ✗ | const Scalar c0 = d->data_0->cost; | |
| 86 | ✗ | data->xnext = d->data_0->xnext; | |
| 87 | ✗ | data->cost = d->data_0->cost; | |
| 88 | ✗ | const VectorXs& g0 = d->g; | |
| 89 | ✗ | const VectorXs& h0 = d->h; | |
| 90 | ✗ | const std::size_t ndx = model_->get_state()->get_ndx(); | |
| 91 | ✗ | const std::size_t nu = model_->get_nu(); | |
| 92 | ✗ | const std::size_t ng = model_->get_ng(); | |
| 93 | ✗ | const std::size_t nh = model_->get_nh(); | |
| 94 | ✗ | d->Gx.conservativeResize(ng, ndx); | |
| 95 | ✗ | d->Gu.conservativeResize(ng, nu); | |
| 96 | ✗ | d->Hx.conservativeResize(nh, ndx); | |
| 97 | ✗ | d->Hu.conservativeResize(nh, nu); | |
| 98 | ✗ | d->du.setZero(); | |
| 99 | |||
| 100 | ✗ | assertStableStateFD(x); | |
| 101 | |||
| 102 | // Computing the d action(x,u) / dx | ||
| 103 | ✗ | model_->get_state()->diff(model_->get_state()->zero(), x, d->dx); | |
| 104 | ✗ | d->x_norm = d->dx.norm(); | |
| 105 | ✗ | d->dx.setZero(); | |
| 106 | ✗ | d->xh_jac = e_jac_ * std::max(Scalar(1.), d->x_norm); | |
| 107 | ✗ | for (std::size_t ix = 0; ix < state_->get_ndx(); ++ix) { | |
| 108 | ✗ | d->dx(ix) = d->xh_jac; | |
| 109 | ✗ | model_->get_state()->integrate(x, d->dx, d->xp); | |
| 110 | ✗ | model_->calc(d->data_x[ix], d->xp, u); | |
| 111 | // dynamics | ||
| 112 | ✗ | model_->get_state()->diff(x0, d->data_x[ix]->xnext, d->Fx.col(ix)); | |
| 113 | // cost | ||
| 114 | ✗ | data->Lx(ix) = (d->data_x[ix]->cost - c0) / d->xh_jac; | |
| 115 | ✗ | if (get_with_gauss_approx()) { | |
| 116 | ✗ | d->Rx.col(ix) = (d->data_x[ix]->r - d->data_0->r) / d->xh_jac; | |
| 117 | } | ||
| 118 | // constraint | ||
| 119 | ✗ | data->Gx.col(ix) = (d->data_x[ix]->g - g0) / d->xh_jac; | |
| 120 | ✗ | data->Hx.col(ix) = (d->data_x[ix]->h - h0) / d->xh_jac; | |
| 121 | ✗ | d->dx(ix) = Scalar(0.); | |
| 122 | } | ||
| 123 | ✗ | data->Fx /= d->xh_jac; | |
| 124 | |||
| 125 | // Computing the d action(x,u) / du | ||
| 126 | ✗ | d->uh_jac = e_jac_ * std::max(Scalar(1.), u.norm()); | |
| 127 | ✗ | for (unsigned iu = 0; iu < model_->get_nu(); ++iu) { | |
| 128 | ✗ | d->du(iu) = d->uh_jac; | |
| 129 | ✗ | model_->calc(d->data_u[iu], x, u + d->du); | |
| 130 | // dynamics | ||
| 131 | ✗ | model_->get_state()->diff(x0, d->data_u[iu]->xnext, d->Fu.col(iu)); | |
| 132 | // cost | ||
| 133 | ✗ | data->Lu(iu) = (d->data_u[iu]->cost - c0) / d->uh_jac; | |
| 134 | ✗ | if (get_with_gauss_approx()) { | |
| 135 | ✗ | d->Ru.col(iu) = (d->data_u[iu]->r - d->data_0->r) / d->uh_jac; | |
| 136 | } | ||
| 137 | // constraint | ||
| 138 | ✗ | d->Gu.col(iu) = (d->data_u[iu]->g - g0) / d->uh_jac; | |
| 139 | ✗ | d->Hu.col(iu) = (d->data_u[iu]->h - h0) / d->uh_jac; | |
| 140 | ✗ | d->du(iu) = Scalar(0.); | |
| 141 | } | ||
| 142 | ✗ | data->Fu /= d->uh_jac; | |
| 143 | |||
| 144 | #ifdef NDEBUG | ||
| 145 | // Computing the d^2 cost(x,u) / dx^2 | ||
| 146 | d->xh_hess = e_hess_ * std::max(Scalar(1.), d->x_norm); | ||
| 147 | d->xh_hess_pow2 = d->xh_hess * d->xh_hess; | ||
| 148 | for (std::size_t ix = 0; ix < ndx; ++ix) { | ||
| 149 | d->dx(ix) = d->xh_hess; | ||
| 150 | model_->get_state()->integrate(x, d->dx, d->xp); | ||
| 151 | model_->calc(d->data_x[ix], d->xp, u); | ||
| 152 | const Scalar cp = d->data_x[ix]->cost; | ||
| 153 | model_->get_state()->integrate(x, -d->dx, d->xp); | ||
| 154 | model_->calc(d->data_x[ix], d->xp, u); | ||
| 155 | const Scalar cm = d->data_x[ix]->cost; | ||
| 156 | data->Lxx(ix, ix) = (cp - 2 * c0 + cm) / d->xh_hess_pow2; | ||
| 157 | for (std::size_t jx = ix + 1; jx < ndx; ++jx) { | ||
| 158 | d->dx(jx) = d->xh_hess; | ||
| 159 | model_->get_state()->integrate(x, d->dx, d->xp); | ||
| 160 | model_->calc(d->data_x[ix], d->xp, u); | ||
| 161 | const Scalar cpp = | ||
| 162 | d->data_x[ix] | ||
| 163 | ->cost; // cost due to positive disturbance in both directions | ||
| 164 | d->dx(ix) = Scalar(0.); | ||
| 165 | model_->get_state()->integrate(x, d->dx, d->xp); | ||
| 166 | model_->calc(d->data_x[ix], d->xp, u); | ||
| 167 | const Scalar czp = | ||
| 168 | d->data_x[ix]->cost; // cost due to zero disturance in 'i' and | ||
| 169 | // positive disturbance in 'j' direction | ||
| 170 | data->Lxx(ix, jx) = (cpp - czp - cp + c0) / d->xh_hess_pow2; | ||
| 171 | data->Lxx(jx, ix) = data->Lxx(ix, jx); | ||
| 172 | d->dx(ix) = d->xh_hess; | ||
| 173 | d->dx(jx) = Scalar(0.); | ||
| 174 | } | ||
| 175 | d->dx(ix) = Scalar(0.); | ||
| 176 | } | ||
| 177 | |||
| 178 | // Computing the d^2 cost(x,u) / du^2 | ||
| 179 | d->uh_hess = e_hess_ * std::max(Scalar(1.), u.norm()); | ||
| 180 | d->uh_hess_pow2 = d->uh_hess * d->uh_hess; | ||
| 181 | for (std::size_t iu = 0; iu < nu; ++iu) { | ||
| 182 | d->du(iu) = d->uh_hess; | ||
| 183 | model_->calc(d->data_u[iu], x, u + d->du); | ||
| 184 | const Scalar cp = d->data_u[iu]->cost; | ||
| 185 | model_->calc(d->data_u[iu], x, u - d->du); | ||
| 186 | const Scalar cm = d->data_u[iu]->cost; | ||
| 187 | data->Luu(iu, iu) = (cp - 2 * c0 + cm) / d->uh_hess_pow2; | ||
| 188 | for (std::size_t ju = iu + 1; ju < nu; ++ju) { | ||
| 189 | d->du(ju) = d->uh_hess; | ||
| 190 | model_->calc(d->data_u[iu], x, u + d->du); | ||
| 191 | const Scalar cpp = | ||
| 192 | d->data_u[iu] | ||
| 193 | ->cost; // cost due to positive disturbance in both directions | ||
| 194 | d->du(iu) = Scalar(0.); | ||
| 195 | model_->calc(d->data_u[iu], x, u + d->du); | ||
| 196 | const Scalar czp = | ||
| 197 | d->data_u[iu]->cost; // cost due to zero disturance in 'i' and | ||
| 198 | // positive disturbance in 'j' direction | ||
| 199 | data->Luu(iu, ju) = (cpp - czp - cp + c0) / d->uh_hess_pow2; | ||
| 200 | data->Luu(ju, iu) = data->Luu(iu, ju); | ||
| 201 | d->du(iu) = d->uh_hess; | ||
| 202 | d->du(ju) = Scalar(0.); | ||
| 203 | } | ||
| 204 | d->du(iu) = Scalar(0.); | ||
| 205 | } | ||
| 206 | |||
| 207 | // Computing the d^2 cost(x,u) / dxu | ||
| 208 | d->xuh_hess_pow2 = Scalar(4.) * d->xh_hess * d->uh_hess; | ||
| 209 | for (std::size_t ix = 0; ix < ndx; ++ix) { | ||
| 210 | for (std::size_t ju = 0; ju < nu; ++ju) { | ||
| 211 | d->dx(ix) = d->xh_hess; | ||
| 212 | model_->get_state()->integrate(x, d->dx, d->xp); | ||
| 213 | d->du(ju) = d->uh_hess; | ||
| 214 | model_->calc(d->data_x[ix], d->xp, u + d->du); | ||
| 215 | const Scalar cpp = d->data_x[ix]->cost; | ||
| 216 | model_->calc(d->data_x[ix], d->xp, u - d->du); | ||
| 217 | const Scalar cpm = d->data_x[ix]->cost; | ||
| 218 | model_->get_state()->integrate(x, -d->dx, d->xp); | ||
| 219 | model_->calc(d->data_x[ix], d->xp, u + d->du); | ||
| 220 | const Scalar cmp = d->data_x[ix]->cost; | ||
| 221 | model_->calc(d->data_x[ix], d->xp, u - d->du); | ||
| 222 | const Scalar cmm = d->data_x[ix]->cost; | ||
| 223 | data->Lxu(ix, ju) = (cpp - cpm - cmp + cmm) / d->xuh_hess_pow2; | ||
| 224 | d->dx(ix) = Scalar(0.); | ||
| 225 | d->du(ju) = Scalar(0.); | ||
| 226 | } | ||
| 227 | } | ||
| 228 | #endif | ||
| 229 | |||
| 230 | ✗ | if (get_with_gauss_approx()) { | |
| 231 | ✗ | data->Lxx = d->Rx.transpose() * d->Rx; | |
| 232 | ✗ | data->Lxu = d->Rx.transpose() * d->Ru; | |
| 233 | ✗ | data->Luu = d->Ru.transpose() * d->Ru; | |
| 234 | } | ||
| 235 | ✗ | } | |
| 236 | |||
| 237 | template <typename Scalar> | ||
| 238 | ✗ | void ActionModelNumDiffTpl<Scalar>::calcDiff( | |
| 239 | const std::shared_ptr<ActionDataAbstract>& data, | ||
| 240 | const Eigen::Ref<const VectorXs>& x) { | ||
| 241 | ✗ | if (static_cast<std::size_t>(x.size()) != state_->get_nx()) { | |
| 242 | ✗ | throw_pretty( | |
| 243 | "Invalid argument: " << "x has wrong dimension (it should be " + | ||
| 244 | std::to_string(state_->get_nx()) + ")"); | ||
| 245 | } | ||
| 246 | ✗ | Data* d = static_cast<Data*>(data.get()); | |
| 247 | |||
| 248 | ✗ | const Scalar c0 = d->data_0->cost; | |
| 249 | ✗ | data->xnext = d->data_0->xnext; | |
| 250 | ✗ | data->cost = d->data_0->cost; | |
| 251 | ✗ | const VectorXs& g0 = d->g; | |
| 252 | ✗ | const VectorXs& h0 = d->h; | |
| 253 | ✗ | const std::size_t ndx = model_->get_state()->get_ndx(); | |
| 254 | ✗ | d->Gx.conservativeResize(model_->get_ng_T(), ndx); | |
| 255 | ✗ | d->Hx.conservativeResize(model_->get_nh_T(), ndx); | |
| 256 | |||
| 257 | ✗ | assertStableStateFD(x); | |
| 258 | |||
| 259 | // Computing the d action(x,u) / dx | ||
| 260 | ✗ | model_->get_state()->diff(model_->get_state()->zero(), x, d->dx); | |
| 261 | ✗ | d->x_norm = d->dx.norm(); | |
| 262 | ✗ | d->dx.setZero(); | |
| 263 | ✗ | d->xh_jac = e_jac_ * std::max(Scalar(1.), d->x_norm); | |
| 264 | ✗ | for (std::size_t ix = 0; ix < state_->get_ndx(); ++ix) { | |
| 265 | ✗ | d->dx(ix) = d->xh_jac; | |
| 266 | ✗ | model_->get_state()->integrate(x, d->dx, d->xp); | |
| 267 | ✗ | model_->calc(d->data_x[ix], d->xp); | |
| 268 | // cost | ||
| 269 | ✗ | data->Lx(ix) = (d->data_x[ix]->cost - c0) / d->xh_jac; | |
| 270 | ✗ | if (get_with_gauss_approx()) { | |
| 271 | ✗ | d->Rx.col(ix) = (d->data_x[ix]->r - d->data_0->r) / d->xh_jac; | |
| 272 | } | ||
| 273 | // constraint | ||
| 274 | ✗ | d->Gx.col(ix) = (d->data_x[ix]->g - g0) / d->xh_jac; | |
| 275 | ✗ | d->Hx.col(ix) = (d->data_x[ix]->h - h0) / d->xh_jac; | |
| 276 | ✗ | d->dx(ix) = Scalar(0.); | |
| 277 | } | ||
| 278 | |||
| 279 | #ifdef NDEBUG | ||
| 280 | // Computing the d^2 cost(x,u) / dx^2 | ||
| 281 | d->xh_hess = e_hess_ * std::max(Scalar(1.), d->x_norm); | ||
| 282 | d->xh_hess_pow2 = d->xh_hess * d->xh_hess; | ||
| 283 | for (std::size_t ix = 0; ix < ndx; ++ix) { | ||
| 284 | // We can apply the same formulas for finite difference as above | ||
| 285 | d->dx(ix) = d->xh_hess; | ||
| 286 | model_->get_state()->integrate(x, d->dx, d->xp); | ||
| 287 | model_->calc(d->data_x[ix], d->xp); | ||
| 288 | const Scalar cp = d->data_x[ix]->cost; | ||
| 289 | model_->get_state()->integrate(x, -d->dx, d->xp); | ||
| 290 | model_->calc(d->data_x[ix], d->xp); | ||
| 291 | const Scalar cm = d->data_x[ix]->cost; | ||
| 292 | data->Lxx(ix, ix) = (cp - 2 * c0 + cm) / d->xh_hess_pow2; | ||
| 293 | for (std::size_t jx = ix + 1; jx < ndx; ++jx) { | ||
| 294 | d->dx(jx) = d->xh_hess; | ||
| 295 | model_->get_state()->integrate(x, d->dx, d->xp); | ||
| 296 | model_->calc(d->data_x[ix], d->xp); | ||
| 297 | const Scalar cpp = | ||
| 298 | d->data_x[ix] | ||
| 299 | ->cost; // cost due to positive disturbance in both directions | ||
| 300 | d->dx(ix) = Scalar(0.); | ||
| 301 | model_->get_state()->integrate(x, d->dx, d->xp); | ||
| 302 | model_->calc(d->data_x[ix], d->xp); | ||
| 303 | const Scalar czp = | ||
| 304 | d->data_x[ix]->cost; // cost due to zero disturance in 'i' and | ||
| 305 | // positive disturbance in 'j' direction | ||
| 306 | data->Lxx(ix, jx) = (cpp - czp - cp + c0) / d->xh_hess_pow2; | ||
| 307 | data->Lxx(jx, ix) = data->Lxx(ix, jx); | ||
| 308 | d->dx(ix) = d->xh_hess; | ||
| 309 | d->dx(jx) = Scalar(0.); | ||
| 310 | } | ||
| 311 | d->dx(ix) = Scalar(0.); | ||
| 312 | } | ||
| 313 | #endif | ||
| 314 | |||
| 315 | ✗ | if (get_with_gauss_approx()) { | |
| 316 | ✗ | data->Lxx = d->Rx.transpose() * d->Rx; | |
| 317 | } | ||
| 318 | ✗ | } | |
| 319 | |||
| 320 | template <typename Scalar> | ||
| 321 | std::shared_ptr<ActionDataAbstractTpl<Scalar> > | ||
| 322 | ✗ | ActionModelNumDiffTpl<Scalar>::createData() { | |
| 323 | ✗ | return std::allocate_shared<Data>(Eigen::aligned_allocator<Data>(), this); | |
| 324 | } | ||
| 325 | |||
| 326 | template <typename Scalar> | ||
| 327 | ✗ | void ActionModelNumDiffTpl<Scalar>::quasiStatic( | |
| 328 | const std::shared_ptr<ActionDataAbstract>& data, Eigen::Ref<VectorXs> u, | ||
| 329 | const Eigen::Ref<const VectorXs>& x, const std::size_t maxiter, | ||
| 330 | const Scalar tol) { | ||
| 331 | ✗ | Data* d = static_cast<Data*>(data.get()); | |
| 332 | ✗ | model_->quasiStatic(d->data_0, u, x, maxiter, tol); | |
| 333 | ✗ | } | |
| 334 | |||
| 335 | template <typename Scalar> | ||
| 336 | template <typename NewScalar> | ||
| 337 | ✗ | ActionModelNumDiffTpl<NewScalar> ActionModelNumDiffTpl<Scalar>::cast() const { | |
| 338 | typedef ActionModelNumDiffTpl<NewScalar> ReturnType; | ||
| 339 | ✗ | ReturnType res(model_->template cast<NewScalar>()); | |
| 340 | ✗ | return res; | |
| 341 | } | ||
| 342 | |||
| 343 | template <typename Scalar> | ||
| 344 | const std::shared_ptr<ActionModelAbstractTpl<Scalar> >& | ||
| 345 | ✗ | ActionModelNumDiffTpl<Scalar>::get_model() const { | |
| 346 | ✗ | return model_; | |
| 347 | } | ||
| 348 | |||
| 349 | template <typename Scalar> | ||
| 350 | ✗ | const Scalar ActionModelNumDiffTpl<Scalar>::get_disturbance() const { | |
| 351 | ✗ | return e_jac_; | |
| 352 | } | ||
| 353 | |||
| 354 | template <typename Scalar> | ||
| 355 | ✗ | void ActionModelNumDiffTpl<Scalar>::set_disturbance(const Scalar disturbance) { | |
| 356 | ✗ | if (disturbance < Scalar(0.)) { | |
| 357 | ✗ | throw_pretty("Invalid argument: " << "Disturbance constant is positive"); | |
| 358 | } | ||
| 359 | ✗ | e_jac_ = disturbance; | |
| 360 | ✗ | e_hess_ = sqrt(Scalar(2.0) * e_jac_); | |
| 361 | ✗ | } | |
| 362 | |||
| 363 | template <typename Scalar> | ||
| 364 | ✗ | bool ActionModelNumDiffTpl<Scalar>::get_with_gauss_approx() { | |
| 365 | ✗ | return with_gauss_approx_; | |
| 366 | } | ||
| 367 | |||
| 368 | template <typename Scalar> | ||
| 369 | ✗ | void ActionModelNumDiffTpl<Scalar>::print(std::ostream& os) const { | |
| 370 | ✗ | os << "ActionModelNumDiffTpl {action=" << *model_ << "}"; | |
| 371 | ✗ | } | |
| 372 | |||
| 373 | template <typename Scalar> | ||
| 374 | ✗ | void ActionModelNumDiffTpl<Scalar>::assertStableStateFD( | |
| 375 | const Eigen::Ref<const VectorXs>& /** x */) { | ||
| 376 | // do nothing in the general case | ||
| 377 | ✗ | } | |
| 378 | |||
| 379 | } // namespace crocoddyl | ||
| 380 |