Line |
Branch |
Exec |
Source |
1 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
2 |
|
|
// BSD 3-Clause License |
3 |
|
|
// |
4 |
|
|
// Copyright (C) 2019-2021, CNRS-LAAS, University of Edinburgh |
5 |
|
|
// Copyright note valid unless otherwise stated in individual files. |
6 |
|
|
// All rights reserved. |
7 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
8 |
|
|
|
9 |
|
|
#include "crocoddyl/core/solvers/box-ddp.hpp" |
10 |
|
|
|
11 |
|
|
namespace crocoddyl { |
12 |
|
|
|
13 |
|
✗ |
SolverBoxDDP::SolverBoxDDP(std::shared_ptr<ShootingProblem> problem) |
14 |
|
|
: SolverDDP(problem), |
15 |
|
✗ |
qp_(problem->get_runningModels()[0]->get_nu(), 100, 0.1, 1e-5, 0.) { |
16 |
|
✗ |
allocateData(); |
17 |
|
|
|
18 |
|
✗ |
const std::size_t n_alphas = 10; |
19 |
|
✗ |
alphas_.resize(n_alphas); |
20 |
|
✗ |
for (std::size_t n = 0; n < n_alphas; ++n) { |
21 |
|
✗ |
alphas_[n] = 1. / pow(2., static_cast<double>(n)); |
22 |
|
|
} |
23 |
|
|
// Change the default convergence tolerance since the gradient of the |
24 |
|
|
// Lagrangian is smaller than an unconstrained OC problem (i.e. gradient = Qu |
25 |
|
|
// - mu^T * C where mu > 0 and C defines the inequality matrix that bounds the |
26 |
|
|
// control); and we don't have access to mu from the box QP. |
27 |
|
✗ |
th_stop_ = 5e-5; |
28 |
|
|
} |
29 |
|
|
|
30 |
|
✗ |
SolverBoxDDP::~SolverBoxDDP() {} |
31 |
|
|
|
32 |
|
✗ |
void SolverBoxDDP::resizeData() { |
33 |
|
✗ |
START_PROFILER("SolverBoxDDP::resizeData"); |
34 |
|
✗ |
SolverDDP::resizeData(); |
35 |
|
|
|
36 |
|
✗ |
const std::size_t T = problem_->get_T(); |
37 |
|
|
const std::vector<std::shared_ptr<ActionModelAbstract> >& models = |
38 |
|
✗ |
problem_->get_runningModels(); |
39 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
40 |
|
✗ |
const std::shared_ptr<ActionModelAbstract>& model = models[t]; |
41 |
|
✗ |
const std::size_t nu = model->get_nu(); |
42 |
|
✗ |
Quu_inv_[t].conservativeResize(nu, nu); |
43 |
|
✗ |
du_lb_[t].conservativeResize(nu); |
44 |
|
✗ |
du_ub_[t].conservativeResize(nu); |
45 |
|
|
} |
46 |
|
✗ |
STOP_PROFILER("SolverBoxDDP::resizeData"); |
47 |
|
|
} |
48 |
|
|
|
49 |
|
✗ |
void SolverBoxDDP::allocateData() { |
50 |
|
✗ |
SolverDDP::allocateData(); |
51 |
|
|
|
52 |
|
✗ |
const std::size_t T = problem_->get_T(); |
53 |
|
✗ |
Quu_inv_.resize(T); |
54 |
|
✗ |
du_lb_.resize(T); |
55 |
|
✗ |
du_ub_.resize(T); |
56 |
|
|
const std::vector<std::shared_ptr<ActionModelAbstract> >& models = |
57 |
|
✗ |
problem_->get_runningModels(); |
58 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
59 |
|
✗ |
const std::shared_ptr<ActionModelAbstract>& model = models[t]; |
60 |
|
✗ |
const std::size_t nu = model->get_nu(); |
61 |
|
✗ |
Quu_inv_[t] = Eigen::MatrixXd::Zero(nu, nu); |
62 |
|
✗ |
du_lb_[t] = Eigen::VectorXd::Zero(nu); |
63 |
|
✗ |
du_ub_[t] = Eigen::VectorXd::Zero(nu); |
64 |
|
|
} |
65 |
|
|
} |
66 |
|
|
|
67 |
|
✗ |
void SolverBoxDDP::computeGains(const std::size_t t) { |
68 |
|
✗ |
START_PROFILER("SolverBoxDDP::computeGains"); |
69 |
|
✗ |
const std::size_t nu = problem_->get_runningModels()[t]->get_nu(); |
70 |
|
✗ |
if (nu > 0) { |
71 |
|
✗ |
if (!problem_->get_runningModels()[t]->get_has_control_limits() || |
72 |
|
✗ |
!is_feasible_) { |
73 |
|
|
// No control limits on this model: Use vanilla DDP |
74 |
|
✗ |
SolverDDP::computeGains(t); |
75 |
|
✗ |
return; |
76 |
|
|
} |
77 |
|
|
|
78 |
|
✗ |
du_lb_[t] = problem_->get_runningModels()[t]->get_u_lb() - us_[t]; |
79 |
|
✗ |
du_ub_[t] = problem_->get_runningModels()[t]->get_u_ub() - us_[t]; |
80 |
|
|
|
81 |
|
✗ |
START_PROFILER("SolverBoxDDP::boxQP"); |
82 |
|
|
const BoxQPSolution& boxqp_sol = |
83 |
|
✗ |
qp_.solve(Quu_[t], Qu_[t], du_lb_[t], du_ub_[t], k_[t]); |
84 |
|
✗ |
START_PROFILER("SolverBoxDDP::boxQP"); |
85 |
|
|
|
86 |
|
|
// Compute controls |
87 |
|
✗ |
START_PROFILER("SolverBoxDDP::Quu_invproj"); |
88 |
|
✗ |
Quu_inv_[t].setZero(); |
89 |
|
✗ |
for (std::size_t i = 0; i < boxqp_sol.free_idx.size(); ++i) { |
90 |
|
✗ |
for (std::size_t j = 0; j < boxqp_sol.free_idx.size(); ++j) { |
91 |
|
✗ |
Quu_inv_[t](boxqp_sol.free_idx[i], boxqp_sol.free_idx[j]) = |
92 |
|
✗ |
boxqp_sol.Hff_inv(i, j); |
93 |
|
|
} |
94 |
|
|
} |
95 |
|
✗ |
STOP_PROFILER("SolverBoxDDP::Quu_invproj"); |
96 |
|
✗ |
START_PROFILER("SolverBoxDDP::Quu_invproj_Qxu"); |
97 |
|
✗ |
K_[t].noalias() = Quu_inv_[t] * Qxu_[t].transpose(); |
98 |
|
✗ |
STOP_PROFILER("SolverBoxDDP::Quu_invproj_Qxu"); |
99 |
|
✗ |
k_[t] = -boxqp_sol.x; |
100 |
|
|
|
101 |
|
|
// The box-QP clamped the gradient direction; this is important for |
102 |
|
|
// accounting the algorithm advancement (i.e. stopping criteria) |
103 |
|
✗ |
START_PROFILER("SolverBoxDDP::Qu_proj"); |
104 |
|
✗ |
for (std::size_t i = 0; i < boxqp_sol.clamped_idx.size(); ++i) { |
105 |
|
✗ |
Qu_[t](boxqp_sol.clamped_idx[i]) = 0.; |
106 |
|
|
} |
107 |
|
✗ |
STOP_PROFILER("SolverBoxDDP::Qu_proj"); |
108 |
|
|
} |
109 |
|
✗ |
STOP_PROFILER("SolverBoxDDP::computeGains"); |
110 |
|
|
} |
111 |
|
|
|
112 |
|
✗ |
void SolverBoxDDP::forwardPass(double steplength) { |
113 |
|
✗ |
if (steplength > 1. || steplength < 0.) { |
114 |
|
✗ |
throw_pretty("Invalid argument: " |
115 |
|
|
<< "invalid step length, value is between 0. to 1."); |
116 |
|
|
} |
117 |
|
✗ |
START_PROFILER("SolverBoxDDP::forwardPass"); |
118 |
|
✗ |
cost_try_ = 0.; |
119 |
|
✗ |
xnext_ = problem_->get_x0(); |
120 |
|
✗ |
const std::size_t T = problem_->get_T(); |
121 |
|
|
const std::vector<std::shared_ptr<ActionModelAbstract> >& models = |
122 |
|
✗ |
problem_->get_runningModels(); |
123 |
|
|
const std::vector<std::shared_ptr<ActionDataAbstract> >& datas = |
124 |
|
✗ |
problem_->get_runningDatas(); |
125 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
126 |
|
✗ |
const std::shared_ptr<ActionModelAbstract>& m = models[t]; |
127 |
|
✗ |
const std::shared_ptr<ActionDataAbstract>& d = datas[t]; |
128 |
|
✗ |
const std::size_t nu = m->get_nu(); |
129 |
|
|
|
130 |
|
✗ |
xs_try_[t] = xnext_; |
131 |
|
✗ |
m->get_state()->diff(xs_[t], xs_try_[t], dx_[t]); |
132 |
|
✗ |
if (nu != 0) { |
133 |
|
✗ |
us_try_[t].noalias() = us_[t] - k_[t] * steplength - K_[t] * dx_[t]; |
134 |
|
✗ |
if (m->get_has_control_limits()) { // clamp control |
135 |
|
✗ |
us_try_[t] = us_try_[t].cwiseMax(m->get_u_lb()).cwiseMin(m->get_u_ub()); |
136 |
|
|
} |
137 |
|
✗ |
m->calc(d, xs_try_[t], us_try_[t]); |
138 |
|
|
} else { |
139 |
|
✗ |
m->calc(d, xs_try_[t]); |
140 |
|
|
} |
141 |
|
✗ |
xnext_ = d->xnext; |
142 |
|
✗ |
cost_try_ += d->cost; |
143 |
|
|
|
144 |
|
✗ |
if (raiseIfNaN(cost_try_)) { |
145 |
|
✗ |
STOP_PROFILER("SolverBoxDDP::forwardPass"); |
146 |
|
✗ |
throw_pretty("forward_error"); |
147 |
|
|
} |
148 |
|
✗ |
if (raiseIfNaN(xnext_.lpNorm<Eigen::Infinity>())) { |
149 |
|
✗ |
STOP_PROFILER("SolverBoxDDP::forwardPass"); |
150 |
|
✗ |
throw_pretty("forward_error"); |
151 |
|
|
} |
152 |
|
|
} |
153 |
|
|
|
154 |
|
✗ |
const std::shared_ptr<ActionModelAbstract>& m = problem_->get_terminalModel(); |
155 |
|
✗ |
const std::shared_ptr<ActionDataAbstract>& d = problem_->get_terminalData(); |
156 |
|
✗ |
if ((is_feasible_) || (steplength == 1)) { |
157 |
|
✗ |
xs_try_.back() = xnext_; |
158 |
|
|
} else { |
159 |
|
✗ |
m->get_state()->integrate(xnext_, fs_.back() * (steplength - 1), |
160 |
|
✗ |
xs_try_.back()); |
161 |
|
|
} |
162 |
|
✗ |
m->calc(d, xs_try_.back()); |
163 |
|
✗ |
cost_try_ += d->cost; |
164 |
|
|
|
165 |
|
✗ |
if (raiseIfNaN(cost_try_)) { |
166 |
|
✗ |
STOP_PROFILER("SolverBoxDDP::forwardPass"); |
167 |
|
✗ |
throw_pretty("forward_error"); |
168 |
|
|
} |
169 |
|
|
} |
170 |
|
|
|
171 |
|
✗ |
const std::vector<Eigen::MatrixXd>& SolverBoxDDP::get_Quu_inv() const { |
172 |
|
✗ |
return Quu_inv_; |
173 |
|
|
} |
174 |
|
|
|
175 |
|
|
} // namespace crocoddyl |
176 |
|
|
|