| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | /////////////////////////////////////////////////////////////////////////////// | ||
| 2 | // BSD 3-Clause License | ||
| 3 | // | ||
| 4 | // Copyright (C) 2019-2025, University of Edinburgh, LAAS-CNRS, | ||
| 5 | // Heriot-Watt University | ||
| 6 | // Copyright note valid unless otherwise stated in individual files. | ||
| 7 | // All rights reserved. | ||
| 8 | /////////////////////////////////////////////////////////////////////////////// | ||
| 9 | |||
| 10 | #include "crocoddyl/core/numdiff/cost.hpp" | ||
| 11 | |||
| 12 | namespace crocoddyl { | ||
| 13 | |||
| 14 | template <typename Scalar> | ||
| 15 | ✗ | CostModelNumDiffTpl<Scalar>::CostModelNumDiffTpl( | |
| 16 | const std::shared_ptr<Base>& model) | ||
| 17 | : Base(model->get_state(), model->get_activation(), model->get_nu()), | ||
| 18 | ✗ | model_(model), | |
| 19 | ✗ | e_jac_(sqrt(Scalar(2.0) * std::numeric_limits<Scalar>::epsilon())) {} | |
| 20 | |||
| 21 | template <typename Scalar> | ||
| 22 | ✗ | void CostModelNumDiffTpl<Scalar>::calc( | |
| 23 | const std::shared_ptr<CostDataAbstract>& data, | ||
| 24 | const Eigen::Ref<const VectorXs>& x, const Eigen::Ref<const VectorXs>& u) { | ||
| 25 | ✗ | Data* d = static_cast<Data*>(data.get()); | |
| 26 | ✗ | d->data_0->cost = Scalar(0.); | |
| 27 | ✗ | model_->calc(d->data_0, x, u); | |
| 28 | ✗ | d->cost = d->data_0->cost; | |
| 29 | ✗ | d->residual->r = d->data_0->residual->r; | |
| 30 | ✗ | } | |
| 31 | |||
| 32 | template <typename Scalar> | ||
| 33 | ✗ | void CostModelNumDiffTpl<Scalar>::calc( | |
| 34 | const std::shared_ptr<CostDataAbstract>& data, | ||
| 35 | const Eigen::Ref<const VectorXs>& x) { | ||
| 36 | ✗ | Data* d = static_cast<Data*>(data.get()); | |
| 37 | ✗ | d->data_0->cost = Scalar(0.); | |
| 38 | ✗ | model_->calc(d->data_0, x); | |
| 39 | ✗ | d->cost = d->data_0->cost; | |
| 40 | ✗ | d->residual->r = d->data_0->residual->r; | |
| 41 | ✗ | } | |
| 42 | |||
| 43 | template <typename Scalar> | ||
| 44 | ✗ | void CostModelNumDiffTpl<Scalar>::calcDiff( | |
| 45 | const std::shared_ptr<CostDataAbstract>& data, | ||
| 46 | const Eigen::Ref<const VectorXs>& x, const Eigen::Ref<const VectorXs>& u) { | ||
| 47 | ✗ | Data* d = static_cast<Data*>(data.get()); | |
| 48 | |||
| 49 | ✗ | const Scalar c0 = d->cost; | |
| 50 | ✗ | const VectorXs& r0 = d->residual->r; | |
| 51 | ✗ | if (get_with_gauss_approx()) { | |
| 52 | ✗ | model_->get_activation()->calc(d->data_0->activation, r0); | |
| 53 | ✗ | model_->get_activation()->calcDiff(d->data_0->activation, r0); | |
| 54 | } | ||
| 55 | ✗ | d->du.setZero(); | |
| 56 | |||
| 57 | ✗ | assertStableStateFD(x); | |
| 58 | |||
| 59 | // Computing the d cost(x,u) / dx | ||
| 60 | ✗ | model_->get_state()->diff(model_->get_state()->zero(), x, d->dx); | |
| 61 | ✗ | d->x_norm = d->dx.norm(); | |
| 62 | ✗ | d->dx.setZero(); | |
| 63 | ✗ | d->xh_jac = e_jac_ * std::max(Scalar(1.), d->x_norm); | |
| 64 | ✗ | for (std::size_t ix = 0; ix < state_->get_ndx(); ++ix) { | |
| 65 | ✗ | d->dx(ix) = d->xh_jac; | |
| 66 | ✗ | model_->get_state()->integrate(x, d->dx, d->xp); | |
| 67 | // call the update function on the pinocchio data | ||
| 68 | ✗ | for (size_t i = 0; i < reevals_.size(); ++i) { | |
| 69 | ✗ | reevals_[i](d->xp, u); | |
| 70 | } | ||
| 71 | ✗ | model_->calc(d->data_x[ix], d->xp, u); | |
| 72 | ✗ | d->Lx(ix) = (d->data_x[ix]->cost - c0) / d->xh_jac; | |
| 73 | ✗ | if (get_with_gauss_approx()) { | |
| 74 | ✗ | d->residual->Rx.col(ix) = (d->data_x[ix]->residual->r - r0) / d->xh_jac; | |
| 75 | } | ||
| 76 | ✗ | d->dx(ix) = Scalar(0.); | |
| 77 | } | ||
| 78 | |||
| 79 | // Computing the d cost(x,u) / du | ||
| 80 | ✗ | d->uh_jac = e_jac_ * std::max(Scalar(1.), u.norm()); | |
| 81 | ✗ | for (std::size_t iu = 0; iu < model_->get_nu(); ++iu) { | |
| 82 | ✗ | d->du(iu) = d->uh_jac; | |
| 83 | ✗ | d->up = u + d->du; | |
| 84 | // call the update function | ||
| 85 | ✗ | for (std::size_t i = 0; i < reevals_.size(); ++i) { | |
| 86 | ✗ | reevals_[i](x, d->up); | |
| 87 | } | ||
| 88 | ✗ | model_->calc(d->data_u[iu], x, d->up); | |
| 89 | ✗ | d->Lu(iu) = (d->data_u[iu]->cost - c0) / d->uh_jac; | |
| 90 | ✗ | if (get_with_gauss_approx()) { | |
| 91 | ✗ | d->residual->Ru.col(iu) = (d->data_u[iu]->residual->r - r0) / d->uh_jac; | |
| 92 | } | ||
| 93 | ✗ | d->du(iu) = Scalar(0.); | |
| 94 | } | ||
| 95 | |||
| 96 | ✗ | if (get_with_gauss_approx()) { | |
| 97 | ✗ | const MatrixXs& Arr = d->data_0->activation->Arr; | |
| 98 | ✗ | d->Lxx = d->residual->Rx.transpose() * Arr * d->residual->Rx; | |
| 99 | ✗ | d->Lxu = d->residual->Rx.transpose() * Arr * d->residual->Ru; | |
| 100 | ✗ | d->Luu = d->residual->Ru.transpose() * Arr * d->residual->Ru; | |
| 101 | ✗ | } else { | |
| 102 | ✗ | d->Lxx.fill(Scalar(0.)); | |
| 103 | ✗ | d->Lxu.fill(Scalar(0.)); | |
| 104 | ✗ | d->Luu.fill(Scalar(0.)); | |
| 105 | } | ||
| 106 | ✗ | } | |
| 107 | |||
| 108 | template <typename Scalar> | ||
| 109 | ✗ | void CostModelNumDiffTpl<Scalar>::calcDiff( | |
| 110 | const std::shared_ptr<CostDataAbstract>& data, | ||
| 111 | const Eigen::Ref<const VectorXs>& x) { | ||
| 112 | ✗ | Data* d = static_cast<Data*>(data.get()); | |
| 113 | |||
| 114 | ✗ | const Scalar c0 = d->cost; | |
| 115 | ✗ | const VectorXs& r0 = d->residual->r; | |
| 116 | ✗ | if (get_with_gauss_approx()) { | |
| 117 | ✗ | model_->get_activation()->calc(d->data_0->activation, r0); | |
| 118 | ✗ | model_->get_activation()->calcDiff(d->data_0->activation, r0); | |
| 119 | } | ||
| 120 | ✗ | d->dx.setZero(); | |
| 121 | |||
| 122 | ✗ | assertStableStateFD(x); | |
| 123 | |||
| 124 | // Computing the d cost(x,u) / dx | ||
| 125 | ✗ | d->xh_jac = e_jac_ * std::max(Scalar(1.), x.norm()); | |
| 126 | ✗ | for (std::size_t ix = 0; ix < state_->get_ndx(); ++ix) { | |
| 127 | ✗ | d->dx(ix) = d->xh_jac; | |
| 128 | ✗ | model_->get_state()->integrate(x, d->dx, d->xp); | |
| 129 | // call the update function on the pinocchio data | ||
| 130 | ✗ | for (size_t i = 0; i < reevals_.size(); ++i) { | |
| 131 | ✗ | reevals_[i](d->xp, unone_); | |
| 132 | } | ||
| 133 | ✗ | model_->calc(d->data_x[ix], d->xp); | |
| 134 | ✗ | d->Lx(ix) = (d->data_x[ix]->cost - c0) / d->xh_jac; | |
| 135 | ✗ | if (get_with_gauss_approx()) { | |
| 136 | ✗ | d->residual->Rx.col(ix) = (d->data_x[ix]->residual->r - r0) / d->xh_jac; | |
| 137 | } | ||
| 138 | ✗ | d->dx(ix) = Scalar(0.); | |
| 139 | } | ||
| 140 | |||
| 141 | ✗ | if (get_with_gauss_approx()) { | |
| 142 | ✗ | const MatrixXs& Arr = d->data_0->activation->Arr; | |
| 143 | ✗ | d->Lxx = d->residual->Rx.transpose() * Arr * d->residual->Rx; | |
| 144 | ✗ | } else { | |
| 145 | ✗ | d->Lxx.fill(Scalar(0.)); | |
| 146 | } | ||
| 147 | ✗ | } | |
| 148 | |||
| 149 | template <typename Scalar> | ||
| 150 | std::shared_ptr<CostDataAbstractTpl<Scalar> > | ||
| 151 | ✗ | CostModelNumDiffTpl<Scalar>::createData(DataCollectorAbstract* const data) { | |
| 152 | ✗ | return std::allocate_shared<Data>(Eigen::aligned_allocator<Data>(), this, | |
| 153 | ✗ | data); | |
| 154 | } | ||
| 155 | |||
| 156 | template <typename Scalar> | ||
| 157 | template <typename NewScalar> | ||
| 158 | ✗ | CostModelNumDiffTpl<NewScalar> CostModelNumDiffTpl<Scalar>::cast() const { | |
| 159 | typedef CostModelNumDiffTpl<NewScalar> ReturnType; | ||
| 160 | ✗ | ReturnType res(model_->template cast<NewScalar>()); | |
| 161 | ✗ | return res; | |
| 162 | } | ||
| 163 | |||
| 164 | template <typename Scalar> | ||
| 165 | const std::shared_ptr<CostModelAbstractTpl<Scalar> >& | ||
| 166 | ✗ | CostModelNumDiffTpl<Scalar>::get_model() const { | |
| 167 | ✗ | return model_; | |
| 168 | } | ||
| 169 | |||
| 170 | template <typename Scalar> | ||
| 171 | ✗ | const Scalar CostModelNumDiffTpl<Scalar>::get_disturbance() const { | |
| 172 | ✗ | return e_jac_; | |
| 173 | } | ||
| 174 | |||
| 175 | template <typename Scalar> | ||
| 176 | ✗ | void CostModelNumDiffTpl<Scalar>::set_disturbance(const Scalar disturbance) { | |
| 177 | ✗ | if (disturbance < Scalar(0.)) { | |
| 178 | ✗ | throw_pretty("Invalid argument: " << "Disturbance constant is positive"); | |
| 179 | } | ||
| 180 | ✗ | e_jac_ = disturbance; | |
| 181 | ✗ | } | |
| 182 | |||
| 183 | template <typename Scalar> | ||
| 184 | ✗ | bool CostModelNumDiffTpl<Scalar>::get_with_gauss_approx() { | |
| 185 | ✗ | return activation_->get_nr() > 0; | |
| 186 | } | ||
| 187 | |||
| 188 | template <typename Scalar> | ||
| 189 | ✗ | void CostModelNumDiffTpl<Scalar>::set_reevals( | |
| 190 | const std::vector<ReevaluationFunction>& reevals) { | ||
| 191 | ✗ | reevals_ = reevals; | |
| 192 | ✗ | } | |
| 193 | |||
| 194 | template <typename Scalar> | ||
| 195 | ✗ | void CostModelNumDiffTpl<Scalar>::assertStableStateFD( | |
| 196 | const Eigen::Ref<const VectorXs>& /*x*/) { | ||
| 197 | // do nothing in the general case | ||
| 198 | ✗ | } | |
| 199 | |||
| 200 | } // namespace crocoddyl | ||
| 201 |