Line |
Branch |
Exec |
Source |
1 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
2 |
|
|
// BSD 3-Clause License |
3 |
|
|
// |
4 |
|
|
// Copyright (C) 2019-2025, University of Edinburgh, LAAS-CNRS, |
5 |
|
|
// Heriot-Watt University |
6 |
|
|
// Copyright note valid unless otherwise stated in individual files. |
7 |
|
|
// All rights reserved. |
8 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
9 |
|
|
|
10 |
|
|
#include "crocoddyl/core/numdiff/cost.hpp" |
11 |
|
|
|
12 |
|
|
namespace crocoddyl { |
13 |
|
|
|
14 |
|
|
template <typename Scalar> |
15 |
|
✗ |
CostModelNumDiffTpl<Scalar>::CostModelNumDiffTpl( |
16 |
|
|
const std::shared_ptr<Base>& model) |
17 |
|
|
: Base(model->get_state(), model->get_activation(), model->get_nu()), |
18 |
|
✗ |
model_(model), |
19 |
|
✗ |
e_jac_(sqrt(Scalar(2.0) * std::numeric_limits<Scalar>::epsilon())) {} |
20 |
|
|
|
21 |
|
|
template <typename Scalar> |
22 |
|
✗ |
void CostModelNumDiffTpl<Scalar>::calc( |
23 |
|
|
const std::shared_ptr<CostDataAbstract>& data, |
24 |
|
|
const Eigen::Ref<const VectorXs>& x, const Eigen::Ref<const VectorXs>& u) { |
25 |
|
✗ |
Data* d = static_cast<Data*>(data.get()); |
26 |
|
✗ |
d->data_0->cost = Scalar(0.); |
27 |
|
✗ |
model_->calc(d->data_0, x, u); |
28 |
|
✗ |
d->cost = d->data_0->cost; |
29 |
|
✗ |
d->residual->r = d->data_0->residual->r; |
30 |
|
|
} |
31 |
|
|
|
32 |
|
|
template <typename Scalar> |
33 |
|
✗ |
void CostModelNumDiffTpl<Scalar>::calc( |
34 |
|
|
const std::shared_ptr<CostDataAbstract>& data, |
35 |
|
|
const Eigen::Ref<const VectorXs>& x) { |
36 |
|
✗ |
Data* d = static_cast<Data*>(data.get()); |
37 |
|
✗ |
d->data_0->cost = Scalar(0.); |
38 |
|
✗ |
model_->calc(d->data_0, x); |
39 |
|
✗ |
d->cost = d->data_0->cost; |
40 |
|
✗ |
d->residual->r = d->data_0->residual->r; |
41 |
|
|
} |
42 |
|
|
|
43 |
|
|
template <typename Scalar> |
44 |
|
✗ |
void CostModelNumDiffTpl<Scalar>::calcDiff( |
45 |
|
|
const std::shared_ptr<CostDataAbstract>& data, |
46 |
|
|
const Eigen::Ref<const VectorXs>& x, const Eigen::Ref<const VectorXs>& u) { |
47 |
|
✗ |
Data* d = static_cast<Data*>(data.get()); |
48 |
|
|
|
49 |
|
✗ |
const Scalar c0 = d->cost; |
50 |
|
✗ |
const VectorXs& r0 = d->residual->r; |
51 |
|
✗ |
if (get_with_gauss_approx()) { |
52 |
|
✗ |
model_->get_activation()->calc(d->data_0->activation, r0); |
53 |
|
✗ |
model_->get_activation()->calcDiff(d->data_0->activation, r0); |
54 |
|
|
} |
55 |
|
✗ |
d->du.setZero(); |
56 |
|
|
|
57 |
|
✗ |
assertStableStateFD(x); |
58 |
|
|
|
59 |
|
|
// Computing the d cost(x,u) / dx |
60 |
|
✗ |
model_->get_state()->diff(model_->get_state()->zero(), x, d->dx); |
61 |
|
✗ |
d->x_norm = d->dx.norm(); |
62 |
|
✗ |
d->dx.setZero(); |
63 |
|
✗ |
d->xh_jac = e_jac_ * std::max(Scalar(1.), d->x_norm); |
64 |
|
✗ |
for (std::size_t ix = 0; ix < state_->get_ndx(); ++ix) { |
65 |
|
✗ |
d->dx(ix) = d->xh_jac; |
66 |
|
✗ |
model_->get_state()->integrate(x, d->dx, d->xp); |
67 |
|
|
// call the update function on the pinocchio data |
68 |
|
✗ |
for (size_t i = 0; i < reevals_.size(); ++i) { |
69 |
|
✗ |
reevals_[i](d->xp, u); |
70 |
|
|
} |
71 |
|
✗ |
model_->calc(d->data_x[ix], d->xp, u); |
72 |
|
✗ |
d->Lx(ix) = (d->data_x[ix]->cost - c0) / d->xh_jac; |
73 |
|
✗ |
if (get_with_gauss_approx()) { |
74 |
|
✗ |
d->residual->Rx.col(ix) = (d->data_x[ix]->residual->r - r0) / d->xh_jac; |
75 |
|
|
} |
76 |
|
✗ |
d->dx(ix) = Scalar(0.); |
77 |
|
|
} |
78 |
|
|
|
79 |
|
|
// Computing the d cost(x,u) / du |
80 |
|
✗ |
d->uh_jac = e_jac_ * std::max(Scalar(1.), u.norm()); |
81 |
|
✗ |
for (std::size_t iu = 0; iu < model_->get_nu(); ++iu) { |
82 |
|
✗ |
d->du(iu) = d->uh_jac; |
83 |
|
✗ |
d->up = u + d->du; |
84 |
|
|
// call the update function |
85 |
|
✗ |
for (std::size_t i = 0; i < reevals_.size(); ++i) { |
86 |
|
✗ |
reevals_[i](x, d->up); |
87 |
|
|
} |
88 |
|
✗ |
model_->calc(d->data_u[iu], x, d->up); |
89 |
|
✗ |
d->Lu(iu) = (d->data_u[iu]->cost - c0) / d->uh_jac; |
90 |
|
✗ |
if (get_with_gauss_approx()) { |
91 |
|
✗ |
d->residual->Ru.col(iu) = (d->data_u[iu]->residual->r - r0) / d->uh_jac; |
92 |
|
|
} |
93 |
|
✗ |
d->du(iu) = Scalar(0.); |
94 |
|
|
} |
95 |
|
|
|
96 |
|
✗ |
if (get_with_gauss_approx()) { |
97 |
|
✗ |
const MatrixXs& Arr = d->data_0->activation->Arr; |
98 |
|
✗ |
d->Lxx = d->residual->Rx.transpose() * Arr * d->residual->Rx; |
99 |
|
✗ |
d->Lxu = d->residual->Rx.transpose() * Arr * d->residual->Ru; |
100 |
|
✗ |
d->Luu = d->residual->Ru.transpose() * Arr * d->residual->Ru; |
101 |
|
✗ |
} else { |
102 |
|
✗ |
d->Lxx.fill(Scalar(0.)); |
103 |
|
✗ |
d->Lxu.fill(Scalar(0.)); |
104 |
|
✗ |
d->Luu.fill(Scalar(0.)); |
105 |
|
|
} |
106 |
|
|
} |
107 |
|
|
|
108 |
|
|
template <typename Scalar> |
109 |
|
✗ |
void CostModelNumDiffTpl<Scalar>::calcDiff( |
110 |
|
|
const std::shared_ptr<CostDataAbstract>& data, |
111 |
|
|
const Eigen::Ref<const VectorXs>& x) { |
112 |
|
✗ |
Data* d = static_cast<Data*>(data.get()); |
113 |
|
|
|
114 |
|
✗ |
const Scalar c0 = d->cost; |
115 |
|
✗ |
const VectorXs& r0 = d->residual->r; |
116 |
|
✗ |
if (get_with_gauss_approx()) { |
117 |
|
✗ |
model_->get_activation()->calc(d->data_0->activation, r0); |
118 |
|
✗ |
model_->get_activation()->calcDiff(d->data_0->activation, r0); |
119 |
|
|
} |
120 |
|
✗ |
d->dx.setZero(); |
121 |
|
|
|
122 |
|
✗ |
assertStableStateFD(x); |
123 |
|
|
|
124 |
|
|
// Computing the d cost(x,u) / dx |
125 |
|
✗ |
d->xh_jac = e_jac_ * std::max(Scalar(1.), x.norm()); |
126 |
|
✗ |
for (std::size_t ix = 0; ix < state_->get_ndx(); ++ix) { |
127 |
|
✗ |
d->dx(ix) = d->xh_jac; |
128 |
|
✗ |
model_->get_state()->integrate(x, d->dx, d->xp); |
129 |
|
|
// call the update function on the pinocchio data |
130 |
|
✗ |
for (size_t i = 0; i < reevals_.size(); ++i) { |
131 |
|
✗ |
reevals_[i](d->xp, unone_); |
132 |
|
|
} |
133 |
|
✗ |
model_->calc(d->data_x[ix], d->xp); |
134 |
|
✗ |
d->Lx(ix) = (d->data_x[ix]->cost - c0) / d->xh_jac; |
135 |
|
✗ |
if (get_with_gauss_approx()) { |
136 |
|
✗ |
d->residual->Rx.col(ix) = (d->data_x[ix]->residual->r - r0) / d->xh_jac; |
137 |
|
|
} |
138 |
|
✗ |
d->dx(ix) = Scalar(0.); |
139 |
|
|
} |
140 |
|
|
|
141 |
|
✗ |
if (get_with_gauss_approx()) { |
142 |
|
✗ |
const MatrixXs& Arr = d->data_0->activation->Arr; |
143 |
|
✗ |
d->Lxx = d->residual->Rx.transpose() * Arr * d->residual->Rx; |
144 |
|
✗ |
} else { |
145 |
|
✗ |
d->Lxx.fill(Scalar(0.)); |
146 |
|
|
} |
147 |
|
|
} |
148 |
|
|
|
149 |
|
|
template <typename Scalar> |
150 |
|
|
std::shared_ptr<CostDataAbstractTpl<Scalar> > |
151 |
|
✗ |
CostModelNumDiffTpl<Scalar>::createData(DataCollectorAbstract* const data) { |
152 |
|
✗ |
return std::allocate_shared<Data>(Eigen::aligned_allocator<Data>(), this, |
153 |
|
✗ |
data); |
154 |
|
|
} |
155 |
|
|
|
156 |
|
|
template <typename Scalar> |
157 |
|
|
template <typename NewScalar> |
158 |
|
✗ |
CostModelNumDiffTpl<NewScalar> CostModelNumDiffTpl<Scalar>::cast() const { |
159 |
|
|
typedef CostModelNumDiffTpl<NewScalar> ReturnType; |
160 |
|
✗ |
ReturnType res(model_->template cast<NewScalar>()); |
161 |
|
✗ |
return res; |
162 |
|
|
} |
163 |
|
|
|
164 |
|
|
template <typename Scalar> |
165 |
|
|
const std::shared_ptr<CostModelAbstractTpl<Scalar> >& |
166 |
|
✗ |
CostModelNumDiffTpl<Scalar>::get_model() const { |
167 |
|
✗ |
return model_; |
168 |
|
|
} |
169 |
|
|
|
170 |
|
|
template <typename Scalar> |
171 |
|
✗ |
const Scalar CostModelNumDiffTpl<Scalar>::get_disturbance() const { |
172 |
|
✗ |
return e_jac_; |
173 |
|
|
} |
174 |
|
|
|
175 |
|
|
template <typename Scalar> |
176 |
|
✗ |
void CostModelNumDiffTpl<Scalar>::set_disturbance(const Scalar disturbance) { |
177 |
|
✗ |
if (disturbance < Scalar(0.)) { |
178 |
|
✗ |
throw_pretty("Invalid argument: " << "Disturbance constant is positive"); |
179 |
|
|
} |
180 |
|
✗ |
e_jac_ = disturbance; |
181 |
|
|
} |
182 |
|
|
|
183 |
|
|
template <typename Scalar> |
184 |
|
✗ |
bool CostModelNumDiffTpl<Scalar>::get_with_gauss_approx() { |
185 |
|
✗ |
return activation_->get_nr() > 0; |
186 |
|
|
} |
187 |
|
|
|
188 |
|
|
template <typename Scalar> |
189 |
|
✗ |
void CostModelNumDiffTpl<Scalar>::set_reevals( |
190 |
|
|
const std::vector<ReevaluationFunction>& reevals) { |
191 |
|
✗ |
reevals_ = reevals; |
192 |
|
|
} |
193 |
|
|
|
194 |
|
|
template <typename Scalar> |
195 |
|
✗ |
void CostModelNumDiffTpl<Scalar>::assertStableStateFD( |
196 |
|
|
const Eigen::Ref<const VectorXs>& /*x*/) { |
197 |
|
|
// do nothing in the general case |
198 |
|
|
} |
199 |
|
|
|
200 |
|
|
} // namespace crocoddyl |
201 |
|
|
|