GCC Code Coverage Report


Directory: ./
File: bindings/python/crocoddyl/core/solvers/ddp-float.cpp
Date: 2025-04-18 16:41:15
Exec Total Coverage
Lines: 0 1 0.0%
Branches: 0 0 -%

Line Branch Exec Source
1 ///////////////////////////////////////////////////////////////////////////////
2 // BSD 3-Clause License
3 //
4 // Copyright (C) 2019-2025, LAAS-CNRS, University of Edinburgh,
5 // Heriot-Watt University
6 // Copyright note valid unless otherwise stated in individual files.
7 // All rights reserved.
8 ///////////////////////////////////////////////////////////////////////////////
9
10 #include "crocoddyl/core/solvers/ddp.hpp"
11
12 #include "python/crocoddyl/core/core.hpp"
13 #include "python/crocoddyl/utils/copyable.hpp"
14 #include "python/crocoddyl/utils/deprecate.hpp"
15
16 #define SCALAR_float32
17
18 namespace crocoddyl {
19 namespace python {
20
21 BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS(SolverDDP_solves, SolverDDP::solve, 0, 5)
22 BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS(SolverDDP_computeDirections,
23 SolverDDP::computeDirection, 0, 1)
24 BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS(SolverDDP_trySteps, SolverDDP::tryStep,
25 0, 1)
26
27 void exposeSolverDDP() {
28 #ifdef SCALAR_float64
29 bp::register_ptr_to_python<std::shared_ptr<SolverDDP> >();
30
31 bp::class_<SolverDDP, bp::bases<SolverAbstract> >(
32 "SolverDDP",
33 "DDP solver.\n\n"
34 "The DDP solver computes an optimal trajectory and control commands by "
35 "iterates\n"
36 "running backward and forward passes. The backward-pass updates locally "
37 "the\n"
38 "quadratic approximation of the problem and computes descent direction,\n"
39 "and the forward-pass rollouts this new policy by integrating the system "
40 "dynamics\n"
41 "along a tuple of optimized control commands U*.\n"
42 ":param shootingProblem: shooting problem (list of action models along "
43 "trajectory.)",
44 bp::init<std::shared_ptr<ShootingProblem> >(
45 bp::args("self", "problem"),
46 "Initialize the vector dimension.\n\n"
47 ":param problem: shooting problem."))
48 .def("solve", &SolverDDP::solve,
49 SolverDDP_solves(
50 bp::args("self", "init_xs", "init_us", "maxiter", "is_feasible",
51 "init_reg"),
52 "Compute the optimal trajectory xopt, uopt as lists of T+1 and "
53 "T terms.\n\n"
54 "From an initial guess init_xs,init_us (feasible or not), "
55 "iterate\n"
56 "over computeDirection and tryStep until stoppingCriteria is "
57 "below\n"
58 "threshold. It also describes the globalization strategy used\n"
59 "during the numerical optimization.\n"
60 ":param init_xs: initial guess for state trajectory with T+1 "
61 "elements (default []).\n"
62 ":param init_us: initial guess for control trajectory with T "
63 "elements (default []) (default []).\n"
64 ":param maxiter: maximum allowed number of iterations (default "
65 "100).\n"
66 ":param is_feasible: true if the init_xs are obtained from "
67 "integrating the init_us (rollout)\n"
68 "(default False).\n"
69 ":param init_reg: initial guess for the regularization value. "
70 "Very low values are typical\n"
71 " used with very good guess points (default "
72 "1e-9).\n"
73 ":returns the optimal trajectory xopt, uopt and a boolean that "
74 "describes if convergence was reached."))
75 .def("computeDirection", &SolverDDP::computeDirection,
76 SolverDDP_computeDirections(
77 bp::args("self", "recalc"),
78 "Compute the search direction (dx, du) for the current guess "
79 "(xs, us).\n\n"
80 "You must call setCandidate first in order to define the "
81 "current\n"
82 "guess. A current guess defines a state and control trajectory\n"
83 "(xs, us) of T+1 and T elements, respectively.\n"
84 ":params recalc: true for recalculating the derivatives at "
85 "current state and control.\n"
86 ":returns the search direction dx, du and the dual lambdas as "
87 "lists of T+1, T and T+1 lengths."))
88 .def("tryStep", &SolverDDP::tryStep,
89 SolverDDP_trySteps(
90 bp::args("self", "stepLength"),
91 "Rollout the system with a predefined step length.\n\n"
92 ":param stepLength: step length (default 1)\n"
93 ":returns the cost improvement."))
94 .def("stoppingCriteria", &SolverDDP::stoppingCriteria, bp::args("self"),
95 "Return a sum of positive parameters whose sum quantifies the DDP "
96 "termination.")
97 .def("expectedImprovement", &SolverDDP::expectedImprovement,
98 bp::return_value_policy<bp::reference_existing_object>(),
99 bp::args("self"),
100 "Return two scalars denoting the quadratic improvement model\n\n"
101 "For computing the expected improvement, you need to compute first\n"
102 "the search direction by running computeDirection. The quadratic\n"
103 "improvement model is described as dV = f_0 - f_+ = d1*a + "
104 "d2*a**2/2.")
105 .def("calcDiff", &SolverDDP::calcDiff, bp::args("self"),
106 "Update the Jacobian and Hessian of the optimal control problem\n\n"
107 "These derivatives are computed around the guess state and control\n"
108 "trajectory. These trajectory can be set by using setCandidate.\n"
109 ":return the total cost around the guess trajectory.")
110 .def("backwardPass", &SolverDDP::backwardPass, bp::args("self"),
111 "Run the backward pass (Riccati sweep)\n\n"
112 "It assumes that the Jacobian and Hessians of the optimal control "
113 "problem have been\n"
114 "compute. These terms are computed by running calc.")
115 .def("forwardPass", &SolverDDP::forwardPass,
116 bp::args("self", "stepLength"),
117 "Run the forward pass or rollout\n\n"
118 "It rollouts the action model given the computed policy "
119 "(feedforward terns and feedback\n"
120 "gains) by the backwardPass. We can define different step lengths\n"
121 ":param stepLength: applied step length (<= 1. and >= 0.)")
122 .def("computeActionValueFunction", &SolverDDP::computeActionValueFunction,
123 bp::args("self", "t", "model", "data"),
124 "Compute the linear-quadratic model of the control Hamiltonian\n\n"
125 ":param t: time instance\n"
126 ":param model: action model in the given time instance\n"
127 ":param data: action data in the given time instance")
128 .def("computeValueFunction", &SolverDDP::computeValueFunction,
129 bp::args("self", "t", "model"),
130 "Compute the quadratic model of the value function.\n\n"
131 "This function is called in the backward pass after updating the "
132 "local Hamiltonian.\n"
133 ":param t: time instance\n"
134 ":param model: action model in the given time instance")
135 .add_property(
136 "Vxx",
137 make_function(
138 &SolverDDP::get_Vxx,
139 bp::return_value_policy<bp::reference_existing_object>()),
140 "Vxx")
141 .add_property(
142 "Vx",
143 make_function(
144 &SolverDDP::get_Vx,
145 bp::return_value_policy<bp::reference_existing_object>()),
146 "Vx")
147 .add_property(
148 "Qxx",
149 make_function(
150 &SolverDDP::get_Qxx,
151 bp::return_value_policy<bp::reference_existing_object>()),
152 "Qxx")
153 .add_property(
154 "Qxu",
155 make_function(
156 &SolverDDP::get_Qxu,
157 bp::return_value_policy<bp::reference_existing_object>()),
158 "Qxu")
159 .add_property(
160 "Quu",
161 make_function(
162 &SolverDDP::get_Quu,
163 bp::return_value_policy<bp::reference_existing_object>()),
164 "Quu")
165 .add_property(
166 "Qx",
167 make_function(
168 &SolverDDP::get_Qx,
169 bp::return_value_policy<bp::reference_existing_object>()),
170 "Qx")
171 .add_property(
172 "Qu",
173 make_function(
174 &SolverDDP::get_Qu,
175 bp::return_value_policy<bp::reference_existing_object>()),
176 "Qu")
177 .add_property(
178 "K",
179 make_function(
180 &SolverDDP::get_K,
181 bp::return_value_policy<bp::reference_existing_object>()),
182 "K")
183 .add_property(
184 "k",
185 make_function(
186 &SolverDDP::get_k,
187 bp::return_value_policy<bp::reference_existing_object>()),
188 "k")
189 .add_property(
190 "reg_incFactor", bp::make_function(&SolverDDP::get_reg_incfactor),
191 bp::make_function(&SolverDDP::set_reg_incfactor),
192 "regularization factor used for increasing the damping value.")
193 .add_property(
194 "reg_decFactor", bp::make_function(&SolverDDP::get_reg_decfactor),
195 bp::make_function(&SolverDDP::set_reg_decfactor),
196 "regularization factor used for decreasing the damping value.")
197 .add_property(
198 "regFactor",
199 bp::make_function(
200 &SolverDDP::get_reg_incfactor,
201 deprecated<>("Deprecated. Use reg_incfactor or reg_decfactor")),
202 bp::make_function(
203 &SolverDDP::set_reg_incfactor,
204 deprecated<>("Deprecated. Use reg_incfactor or reg_decfactor")),
205 "regularization factor used for increasing or decreasing the damping "
206 "value.")
207 .add_property("reg_min", bp::make_function(&SolverDDP::get_reg_min),
208 bp::make_function(&SolverDDP::set_reg_min),
209 "minimum regularization value.")
210 .add_property("reg_max", bp::make_function(&SolverDDP::get_reg_max),
211 bp::make_function(&SolverDDP::set_reg_max),
212 "maximum regularization value.")
213 .add_property("regMin",
214 bp::make_function(&SolverDDP::get_reg_min,
215 deprecated<>("Deprecated. Use reg_min")),
216 bp::make_function(&SolverDDP::set_reg_min,
217 deprecated<>("Deprecated. Use reg_min")),
218 "minimum regularization value.")
219 .add_property("regMax",
220 bp::make_function(&SolverDDP::get_reg_max,
221 deprecated<>("Deprecated. Use reg_max")),
222 bp::make_function(&SolverDDP::set_reg_max,
223 deprecated<>("Deprecated. Use reg_max")),
224 "maximum regularization value.")
225 .add_property("th_stepDec", bp::make_function(&SolverDDP::get_th_stepdec),
226 bp::make_function(&SolverDDP::set_th_stepdec),
227 "threshold for decreasing the regularization after "
228 "approving a step (higher values decreases the "
229 "regularization)")
230 .add_property("th_stepInc", bp::make_function(&SolverDDP::get_th_stepinc),
231 bp::make_function(&SolverDDP::set_th_stepinc),
232 "threshold for increasing the regularization after "
233 "approving a step (higher values decreases the "
234 "regularization)")
235 .add_property("th_grad", bp::make_function(&SolverDDP::get_th_grad),
236 bp::make_function(&SolverDDP::set_th_grad),
237 "threshold for accepting step which gradients is lower "
238 "than this value")
239 .add_property(
240 "th_gaptol",
241 bp::make_function(&SolverDDP::get_th_gaptol,
242 deprecated<>("Deprecated. Use th_gapTol")),
243 bp::make_function(&SolverDDP::set_th_gaptol,
244 deprecated<>("Deprecated. Use th_gapTol")),
245 "threshold for accepting a gap as non-zero")
246 .add_property(
247 "alphas",
248 bp::make_function(
249 &SolverDDP::get_alphas,
250 bp::return_value_policy<bp::reference_existing_object>()),
251 bp::make_function(&SolverDDP::set_alphas),
252 "list of step length (alpha) values")
253 .def(CopyableVisitor<SolverDDP>());
254 #endif
255 }
256
257 } // namespace python
258 } // namespace crocoddyl
259