Directory: | ./ |
---|---|
File: | include/crocoddyl/core/numdiff/diff-action.hpp |
Date: | 2025-01-16 08:47:40 |
Exec | Total | Coverage | |
---|---|---|---|
Lines: | 20 | 20 | 100.0% |
Branches: | 19 | 34 | 55.9% |
Line | Branch | Exec | Source |
---|---|---|---|
1 | /////////////////////////////////////////////////////////////////////////////// | ||
2 | // BSD 3-Clause License | ||
3 | // | ||
4 | // Copyright (C) 2019-2024, LAAS-CNRS, University of Edinburgh, | ||
5 | // New York University, Max Planck Gesellschaft | ||
6 | // Heriot-Watt University | ||
7 | // Copyright note valid unless otherwise stated in individual files. | ||
8 | // All rights reserved. | ||
9 | /////////////////////////////////////////////////////////////////////////////// | ||
10 | |||
11 | #ifndef CROCODDYL_CORE_NUMDIFF_DIFF_ACTION_HPP_ | ||
12 | #define CROCODDYL_CORE_NUMDIFF_DIFF_ACTION_HPP_ | ||
13 | |||
14 | #include <iostream> | ||
15 | #include <vector> | ||
16 | |||
17 | #include "crocoddyl/core/diff-action-base.hpp" | ||
18 | |||
19 | namespace crocoddyl { | ||
20 | |||
21 | /** | ||
22 | * @brief This class computes the numerical differentiation of a differential | ||
23 | * action model. | ||
24 | * | ||
25 | * It computes the Jacobian of the cost, its residual and dynamics via numerical | ||
26 | * differentiation. It considers that the action model owns a cost residual and | ||
27 | * the cost is the square of this residual, i.e., | ||
28 | * \f$\ell(\mathbf{x},\mathbf{u})=\frac{1}{2}\|\mathbf{r}(\mathbf{x},\mathbf{u})\|^2\f$, | ||
29 | * where \f$\mathbf{r}(\mathbf{x},\mathbf{u})\f$ is the residual vector. The | ||
30 | * Hessian is computed only through the Gauss-Newton approximation, i.e., | ||
31 | * \f{eqnarray*}{ | ||
32 | * \mathbf{\ell}_\mathbf{xx} &=& \mathbf{R_x}^T\mathbf{R_x} \\ | ||
33 | * \mathbf{\ell}_\mathbf{uu} &=& \mathbf{R_u}^T\mathbf{R_u} \\ | ||
34 | * \mathbf{\ell}_\mathbf{xu} &=& \mathbf{R_x}^T\mathbf{R_u} | ||
35 | * \f} | ||
36 | * where the Jacobians of the cost residuals are denoted by \f$\mathbf{R_x}\f$ | ||
37 | * and \f$\mathbf{R_u}\f$. Note that this approximation ignores the tensor | ||
38 | * products (e.g., \f$\mathbf{R_{xx}}\mathbf{r}\f$). | ||
39 | * | ||
40 | * Finally, in the case that the cost does not have a residual, we set the | ||
41 | * Hessian to zero, i.e., \f$\mathbf{L_{xx}} = \mathbf{L_{xu}} = \mathbf{L_{uu}} | ||
42 | * = \mathbf{0}\f$. | ||
43 | * | ||
44 | * \sa `DifferentialActionModelAbstractTpl()`, `calcDiff()` | ||
45 | */ | ||
46 | template <typename _Scalar> | ||
47 | class DifferentialActionModelNumDiffTpl | ||
48 | : public DifferentialActionModelAbstractTpl<_Scalar> { | ||
49 | public: | ||
50 | EIGEN_MAKE_ALIGNED_OPERATOR_NEW | ||
51 | |||
52 | typedef _Scalar Scalar; | ||
53 | typedef MathBaseTpl<Scalar> MathBase; | ||
54 | typedef DifferentialActionModelAbstractTpl<Scalar> Base; | ||
55 | typedef DifferentialActionDataNumDiffTpl<Scalar> Data; | ||
56 | typedef DifferentialActionDataAbstractTpl<Scalar> | ||
57 | DifferentialActionDataAbstract; | ||
58 | typedef typename MathBase::VectorXs VectorXs; | ||
59 | typedef typename MathBase::MatrixXs MatrixXs; | ||
60 | |||
61 | /** | ||
62 | * @brief Initialize the numdiff differential action model | ||
63 | * | ||
64 | * @param[in] model Differential action model that we want to | ||
65 | * apply the numerical differentiation | ||
66 | * @param[in] with_gauss_approx True if we want to use the Gauss | ||
67 | * approximation for computing the Hessians | ||
68 | */ | ||
69 | explicit DifferentialActionModelNumDiffTpl( | ||
70 | boost::shared_ptr<Base> model, const bool with_gauss_approx = false); | ||
71 | virtual ~DifferentialActionModelNumDiffTpl(); | ||
72 | |||
73 | /** | ||
74 | * @brief @copydoc Base::calc() | ||
75 | */ | ||
76 | virtual void calc( | ||
77 | const boost::shared_ptr<DifferentialActionDataAbstract>& data, | ||
78 | const Eigen::Ref<const VectorXs>& x, const Eigen::Ref<const VectorXs>& u); | ||
79 | |||
80 | /** | ||
81 | * @brief @copydoc Base::calc(const | ||
82 | * boost::shared_ptr<DifferentialActionDataAbstract>& data, const | ||
83 | * Eigen::Ref<const VectorXs>& x) | ||
84 | */ | ||
85 | virtual void calc( | ||
86 | const boost::shared_ptr<DifferentialActionDataAbstract>& data, | ||
87 | const Eigen::Ref<const VectorXs>& x); | ||
88 | |||
89 | /** | ||
90 | * @brief @copydoc Base::calcDiff() | ||
91 | */ | ||
92 | virtual void calcDiff( | ||
93 | const boost::shared_ptr<DifferentialActionDataAbstract>& data, | ||
94 | const Eigen::Ref<const VectorXs>& x, const Eigen::Ref<const VectorXs>& u); | ||
95 | |||
96 | /** | ||
97 | * @brief @copydoc Base::calcDiff(const | ||
98 | * boost::shared_ptr<DifferentialActionDataAbstract>& data, const | ||
99 | * Eigen::Ref<const VectorXs>& x) | ||
100 | */ | ||
101 | virtual void calcDiff( | ||
102 | const boost::shared_ptr<DifferentialActionDataAbstract>& data, | ||
103 | const Eigen::Ref<const VectorXs>& x); | ||
104 | |||
105 | /** | ||
106 | * @brief @copydoc Base::createData() | ||
107 | */ | ||
108 | virtual boost::shared_ptr<DifferentialActionDataAbstract> createData(); | ||
109 | |||
110 | /** | ||
111 | * @brief @copydoc Base::quasiStatic() | ||
112 | */ | ||
113 | virtual void quasiStatic( | ||
114 | const boost::shared_ptr<DifferentialActionDataAbstract>& data, | ||
115 | Eigen::Ref<VectorXs> u, const Eigen::Ref<const VectorXs>& x, | ||
116 | const std::size_t maxiter = 100, const Scalar tol = Scalar(1e-9)); | ||
117 | |||
118 | /** | ||
119 | * @brief Return the differential acton model that we use to numerical | ||
120 | * differentiate | ||
121 | */ | ||
122 | const boost::shared_ptr<Base>& get_model() const; | ||
123 | |||
124 | /** | ||
125 | * @brief Return the disturbance constant used in the numerical | ||
126 | * differentiation routine | ||
127 | */ | ||
128 | const Scalar get_disturbance() const; | ||
129 | |||
130 | /** | ||
131 | * @brief Modify the disturbance constant used in the numerical | ||
132 | * differentiation routine | ||
133 | */ | ||
134 | void set_disturbance(const Scalar disturbance); | ||
135 | |||
136 | /** | ||
137 | * @brief Identify if the Gauss approximation is going to be used or not. | ||
138 | */ | ||
139 | bool get_with_gauss_approx(); | ||
140 | |||
141 | /** | ||
142 | * @brief Print relevant information of the action numdiff model | ||
143 | * | ||
144 | * @param[out] os Output stream object | ||
145 | */ | ||
146 | virtual void print(std::ostream& os) const; | ||
147 | |||
148 | protected: | ||
149 | using Base::has_control_limits_; //!< Indicates whether any of the control | ||
150 | //!< limits | ||
151 | using Base::nr_; //!< Dimension of the cost residual | ||
152 | using Base::nu_; //!< Control dimension | ||
153 | using Base::state_; //!< Model of the state | ||
154 | using Base::u_lb_; //!< Lower control limits | ||
155 | using Base::u_ub_; //!< Upper control limits | ||
156 | |||
157 | private: | ||
158 | void assertStableStateFD(const Eigen::Ref<const VectorXs>& x); | ||
159 | boost::shared_ptr<Base> model_; | ||
160 | bool with_gauss_approx_; | ||
161 | Scalar e_jac_; //!< Constant used for computing disturbances in Jacobian | ||
162 | //!< calculation | ||
163 | Scalar e_hess_; //!< Constant used for computing disturbances in Hessian | ||
164 | //!< calculation | ||
165 | }; | ||
166 | |||
167 | template <typename _Scalar> | ||
168 | struct DifferentialActionDataNumDiffTpl | ||
169 | : public DifferentialActionDataAbstractTpl<_Scalar> { | ||
170 | EIGEN_MAKE_ALIGNED_OPERATOR_NEW | ||
171 | |||
172 | typedef _Scalar Scalar; | ||
173 | typedef MathBaseTpl<Scalar> MathBase; | ||
174 | typedef DifferentialActionDataAbstractTpl<Scalar> Base; | ||
175 | typedef typename MathBase::VectorXs VectorXs; | ||
176 | typedef typename MathBase::MatrixXs MatrixXs; | ||
177 | |||
178 | /** | ||
179 | * @brief Construct a new ActionDataNumDiff object | ||
180 | * | ||
181 | * @tparam Model is the type of the ActionModel. | ||
182 | * @param model is the object to compute the numerical differentiation from. | ||
183 | */ | ||
184 | template <template <typename Scalar> class Model> | ||
185 | 86 | explicit DifferentialActionDataNumDiffTpl(Model<Scalar>* const model) | |
186 | : Base(model), | ||
187 |
1/2✓ Branch 3 taken 86 times.
✗ Branch 4 not taken.
|
86 | Rx(model->get_model()->get_nr(), |
188 | 86 | model->get_model()->get_state()->get_ndx()), | |
189 |
1/2✓ Branch 7 taken 86 times.
✗ Branch 8 not taken.
|
86 | Ru(model->get_model()->get_nr(), model->get_model()->get_nu()), |
190 |
1/2✓ Branch 6 taken 86 times.
✗ Branch 7 not taken.
|
86 | dx(model->get_model()->get_state()->get_ndx()), |
191 |
1/2✓ Branch 4 taken 86 times.
✗ Branch 5 not taken.
|
86 | du(model->get_model()->get_nu()), |
192 |
1/2✓ Branch 8 taken 86 times.
✗ Branch 9 not taken.
|
172 | xp(model->get_model()->get_state()->get_nx()) { |
193 |
1/2✓ Branch 1 taken 86 times.
✗ Branch 2 not taken.
|
86 | Rx.setZero(); |
194 |
1/2✓ Branch 1 taken 86 times.
✗ Branch 2 not taken.
|
86 | Ru.setZero(); |
195 |
1/2✓ Branch 1 taken 86 times.
✗ Branch 2 not taken.
|
86 | dx.setZero(); |
196 |
1/2✓ Branch 1 taken 86 times.
✗ Branch 2 not taken.
|
86 | du.setZero(); |
197 |
1/2✓ Branch 1 taken 86 times.
✗ Branch 2 not taken.
|
86 | xp.setZero(); |
198 | |||
199 | 86 | const std::size_t ndx = model->get_model()->get_state()->get_ndx(); | |
200 | 86 | const std::size_t nu = model->get_model()->get_nu(); | |
201 |
1/2✓ Branch 3 taken 86 times.
✗ Branch 4 not taken.
|
86 | data_0 = model->get_model()->createData(); |
202 |
2/2✓ Branch 0 taken 4596 times.
✓ Branch 1 taken 86 times.
|
4682 | for (std::size_t i = 0; i < ndx; ++i) { |
203 |
2/4✓ Branch 3 taken 4596 times.
✗ Branch 4 not taken.
✓ Branch 6 taken 4596 times.
✗ Branch 7 not taken.
|
4596 | data_x.push_back(model->get_model()->createData()); |
204 | } | ||
205 |
2/2✓ Branch 0 taken 1960 times.
✓ Branch 1 taken 86 times.
|
2046 | for (std::size_t i = 0; i < nu; ++i) { |
206 |
2/4✓ Branch 3 taken 1960 times.
✗ Branch 4 not taken.
✓ Branch 6 taken 1960 times.
✗ Branch 7 not taken.
|
1960 | data_u.push_back(model->get_model()->createData()); |
207 | } | ||
208 | 86 | } | |
209 | |||
210 | Scalar x_norm; //!< Norm of the state vector | ||
211 | Scalar | ||
212 | xh_jac; //!< Disturbance value used for computing \f$ \ell_\mathbf{x} \f$ | ||
213 | Scalar | ||
214 | uh_jac; //!< Disturbance value used for computing \f$ \ell_\mathbf{u} \f$ | ||
215 | Scalar xh_hess; //!< Disturbance value used for computing \f$ | ||
216 | //!< \ell_\mathbf{xx} \f$ | ||
217 | Scalar uh_hess; //!< Disturbance value used for computing \f$ | ||
218 | //!< \ell_\mathbf{uu} \f$ | ||
219 | Scalar xh_hess_pow2; | ||
220 | Scalar uh_hess_pow2; | ||
221 | Scalar xuh_hess_pow2; | ||
222 | MatrixXs Rx; | ||
223 | MatrixXs Ru; | ||
224 | VectorXs dx; | ||
225 | VectorXs du; | ||
226 | VectorXs xp; | ||
227 | boost::shared_ptr<Base> data_0; | ||
228 | std::vector<boost::shared_ptr<Base> > data_x; | ||
229 | std::vector<boost::shared_ptr<Base> > data_u; | ||
230 | |||
231 | using Base::cost; | ||
232 | using Base::Fu; | ||
233 | using Base::Fx; | ||
234 | using Base::g; | ||
235 | using Base::Gu; | ||
236 | using Base::Gx; | ||
237 | using Base::h; | ||
238 | using Base::Hu; | ||
239 | using Base::Hx; | ||
240 | using Base::Lu; | ||
241 | using Base::Luu; | ||
242 | using Base::Lx; | ||
243 | using Base::Lxu; | ||
244 | using Base::Lxx; | ||
245 | using Base::r; | ||
246 | using Base::xout; | ||
247 | }; | ||
248 | |||
249 | } // namespace crocoddyl | ||
250 | |||
251 | /* --- Details -------------------------------------------------------------- */ | ||
252 | /* --- Details -------------------------------------------------------------- */ | ||
253 | /* --- Details -------------------------------------------------------------- */ | ||
254 | #include "crocoddyl/core/numdiff/diff-action.hxx" | ||
255 | |||
256 | #endif // CROCODDYL_CORE_NUMDIFF_DIFF_ACTION_HPP_ | ||
257 |