GCC Code Coverage Report


Directory: ./
File: include/crocoddyl/core/numdiff/diff-action.hpp
Date: 2025-05-13 10:30:51
Exec Total Coverage
Lines: 0 21 0.0%
Branches: 0 86 0.0%

Line Branch Exec Source
1 ///////////////////////////////////////////////////////////////////////////////
2 // BSD 3-Clause License
3 //
4 // Copyright (C) 2019-2025, LAAS-CNRS, University of Edinburgh,
5 // New York University, Max Planck Gesellschaft
6 // Heriot-Watt University
7 // Copyright note valid unless otherwise stated in individual files.
8 // All rights reserved.
9 ///////////////////////////////////////////////////////////////////////////////
10
11 #ifndef CROCODDYL_CORE_NUMDIFF_DIFF_ACTION_HPP_
12 #define CROCODDYL_CORE_NUMDIFF_DIFF_ACTION_HPP_
13
14 #include "crocoddyl/core/diff-action-base.hpp"
15
16 namespace crocoddyl {
17
18 /**
19 * @brief This class computes the numerical differentiation of a differential
20 * action model.
21 *
22 * It computes the Jacobian of the cost, its residual and dynamics via numerical
23 * differentiation. It considers that the action model owns a cost residual and
24 * the cost is the square of this residual, i.e.,
25 * \f$\ell(\mathbf{x},\mathbf{u})=\frac{1}{2}\|\mathbf{r}(\mathbf{x},\mathbf{u})\|^2\f$,
26 * where \f$\mathbf{r}(\mathbf{x},\mathbf{u})\f$ is the residual vector. The
27 * Hessian is computed only through the Gauss-Newton approximation, i.e.,
28 * \f{eqnarray*}{
29 * \mathbf{\ell}_\mathbf{xx} &=& \mathbf{R_x}^T\mathbf{R_x} \\
30 * \mathbf{\ell}_\mathbf{uu} &=& \mathbf{R_u}^T\mathbf{R_u} \\
31 * \mathbf{\ell}_\mathbf{xu} &=& \mathbf{R_x}^T\mathbf{R_u}
32 * \f}
33 * where the Jacobians of the cost residuals are denoted by \f$\mathbf{R_x}\f$
34 * and \f$\mathbf{R_u}\f$. Note that this approximation ignores the tensor
35 * products (e.g., \f$\mathbf{R_{xx}}\mathbf{r}\f$).
36 *
37 * Finally, in the case that the cost does not have a residual, we set the
38 * Hessian to zero, i.e., \f$\mathbf{L_{xx}} = \mathbf{L_{xu}} = \mathbf{L_{uu}}
39 * = \mathbf{0}\f$.
40 *
41 * \sa `DifferentialActionModelAbstractTpl()`, `calcDiff()`
42 */
43 template <typename _Scalar>
44 class DifferentialActionModelNumDiffTpl
45 : public DifferentialActionModelAbstractTpl<_Scalar> {
46 public:
47 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
48 CROCODDYL_DERIVED_CAST(DifferentialActionModelBase,
49 DifferentialActionModelNumDiffTpl)
50
51 typedef _Scalar Scalar;
52 typedef MathBaseTpl<Scalar> MathBase;
53 typedef DifferentialActionModelAbstractTpl<Scalar> Base;
54 typedef DifferentialActionDataNumDiffTpl<Scalar> Data;
55 typedef DifferentialActionDataAbstractTpl<Scalar>
56 DifferentialActionDataAbstract;
57 typedef typename MathBase::VectorXs VectorXs;
58 typedef typename MathBase::MatrixXs MatrixXs;
59
60 /**
61 * @brief Initialize the numdiff differential action model
62 *
63 * @param[in] model Differential action model that we want to
64 * apply the numerical differentiation
65 * @param[in] with_gauss_approx True if we want to use the Gauss
66 * approximation for computing the Hessians
67 */
68 explicit DifferentialActionModelNumDiffTpl(
69 std::shared_ptr<Base> model, const bool with_gauss_approx = false);
70 virtual ~DifferentialActionModelNumDiffTpl() = default;
71
72 /**
73 * @brief @copydoc Base::calc()
74 */
75 virtual void calc(const std::shared_ptr<DifferentialActionDataAbstract>& data,
76 const Eigen::Ref<const VectorXs>& x,
77 const Eigen::Ref<const VectorXs>& u) override;
78
79 /**
80 * @brief @copydoc Base::calc(const
81 * std::shared_ptr<DifferentialActionDataAbstract>& data, const
82 * Eigen::Ref<const VectorXs>& x)
83 */
84 virtual void calc(const std::shared_ptr<DifferentialActionDataAbstract>& data,
85 const Eigen::Ref<const VectorXs>& x) override;
86
87 /**
88 * @brief @copydoc Base::calcDiff()
89 */
90 virtual void calcDiff(
91 const std::shared_ptr<DifferentialActionDataAbstract>& data,
92 const Eigen::Ref<const VectorXs>& x,
93 const Eigen::Ref<const VectorXs>& u) override;
94
95 /**
96 * @brief @copydoc Base::calcDiff(const
97 * std::shared_ptr<DifferentialActionDataAbstract>& data, const
98 * Eigen::Ref<const VectorXs>& x)
99 */
100 virtual void calcDiff(
101 const std::shared_ptr<DifferentialActionDataAbstract>& data,
102 const Eigen::Ref<const VectorXs>& x) override;
103
104 /**
105 * @brief @copydoc Base::createData()
106 */
107 virtual std::shared_ptr<DifferentialActionDataAbstract> createData() override;
108
109 /**
110 * @brief Cast the diff-action numdiff model to a different scalar type.
111 *
112 * It is useful for operations requiring different precision or scalar types.
113 *
114 * @tparam NewScalar The new scalar type to cast to.
115 * @return DifferentialActionModelNumDiffTpl<NewScalar> A differential-action
116 * model with the new scalar type.
117 */
118 template <typename NewScalar>
119 DifferentialActionModelNumDiffTpl<NewScalar> cast() const;
120
121 /**
122 * @brief @copydoc Base::quasiStatic()
123 */
124 virtual void quasiStatic(
125 const std::shared_ptr<DifferentialActionDataAbstract>& data,
126 Eigen::Ref<VectorXs> u, const Eigen::Ref<const VectorXs>& x,
127 const std::size_t maxiter = 100,
128 const Scalar tol = Scalar(1e-9)) override;
129
130 /**
131 * @brief Return the differential acton model that we use to numerical
132 * differentiate
133 */
134 const std::shared_ptr<Base>& get_model() const;
135
136 /**
137 * @brief Return the disturbance constant used in the numerical
138 * differentiation routine
139 */
140 const Scalar get_disturbance() const;
141
142 /**
143 * @brief Modify the disturbance constant used in the numerical
144 * differentiation routine
145 */
146 void set_disturbance(const Scalar disturbance);
147
148 /**
149 * @brief Identify if the Gauss approximation is going to be used or not.
150 */
151 bool get_with_gauss_approx();
152
153 /**
154 * @brief Print relevant information of the action numdiff model
155 *
156 * @param[out] os Output stream object
157 */
158 virtual void print(std::ostream& os) const override;
159
160 protected:
161 using Base::has_control_limits_; //!< Indicates whether any of the control
162 //!< limits
163 using Base::nr_; //!< Dimension of the cost residual
164 using Base::nu_; //!< Control dimension
165 using Base::state_; //!< Model of the state
166 using Base::u_lb_; //!< Lower control limits
167 using Base::u_ub_; //!< Upper control limits
168
169 private:
170 void assertStableStateFD(const Eigen::Ref<const VectorXs>& x);
171 std::shared_ptr<Base> model_;
172 bool with_gauss_approx_;
173 Scalar e_jac_; //!< Constant used for computing disturbances in Jacobian
174 //!< calculation
175 Scalar e_hess_; //!< Constant used for computing disturbances in Hessian
176 //!< calculation
177 };
178
179 template <typename _Scalar>
180 struct DifferentialActionDataNumDiffTpl
181 : public DifferentialActionDataAbstractTpl<_Scalar> {
182 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
183
184 typedef _Scalar Scalar;
185 typedef MathBaseTpl<Scalar> MathBase;
186 typedef DifferentialActionDataAbstractTpl<Scalar> Base;
187 typedef typename MathBase::VectorXs VectorXs;
188 typedef typename MathBase::MatrixXs MatrixXs;
189
190 /**
191 * @brief Construct a new ActionDataNumDiff object
192 *
193 * @tparam Model is the type of the ActionModel.
194 * @param model is the object to compute the numerical differentiation from.
195 */
196 template <template <typename Scalar> class Model>
197 explicit DifferentialActionDataNumDiffTpl(Model<Scalar>* const model)
198 : Base(model),
199 Rx(model->get_model()->get_nr(),
200 model->get_model()->get_state()->get_ndx()),
201 Ru(model->get_model()->get_nr(), model->get_model()->get_nu()),
202 dx(model->get_model()->get_state()->get_ndx()),
203 du(model->get_model()->get_nu()),
204 xp(model->get_model()->get_state()->get_nx()) {
205 Rx.setZero();
206 Ru.setZero();
207 dx.setZero();
208 du.setZero();
209 xp.setZero();
210
211 const std::size_t ndx = model->get_model()->get_state()->get_ndx();
212 const std::size_t nu = model->get_model()->get_nu();
213 data_0 = model->get_model()->createData();
214 for (std::size_t i = 0; i < ndx; ++i) {
215 data_x.push_back(model->get_model()->createData());
216 }
217 for (std::size_t i = 0; i < nu; ++i) {
218 data_u.push_back(model->get_model()->createData());
219 }
220 }
221
222 Scalar x_norm; //!< Norm of the state vector
223 Scalar
224 xh_jac; //!< Disturbance value used for computing \f$ \ell_\mathbf{x} \f$
225 Scalar
226 uh_jac; //!< Disturbance value used for computing \f$ \ell_\mathbf{u} \f$
227 Scalar xh_hess; //!< Disturbance value used for computing \f$
228 //!< \ell_\mathbf{xx} \f$
229 Scalar uh_hess; //!< Disturbance value used for computing \f$
230 //!< \ell_\mathbf{uu} \f$
231 Scalar xh_hess_pow2;
232 Scalar uh_hess_pow2;
233 Scalar xuh_hess_pow2;
234 MatrixXs Rx;
235 MatrixXs Ru;
236 VectorXs dx;
237 VectorXs du;
238 VectorXs xp;
239 std::shared_ptr<Base> data_0;
240 std::vector<std::shared_ptr<Base> > data_x;
241 std::vector<std::shared_ptr<Base> > data_u;
242
243 using Base::cost;
244 using Base::Fu;
245 using Base::Fx;
246 using Base::g;
247 using Base::Gu;
248 using Base::Gx;
249 using Base::h;
250 using Base::Hu;
251 using Base::Hx;
252 using Base::Lu;
253 using Base::Luu;
254 using Base::Lx;
255 using Base::Lxu;
256 using Base::Lxx;
257 using Base::r;
258 using Base::xout;
259 };
260
261 } // namespace crocoddyl
262
263 /* --- Details -------------------------------------------------------------- */
264 /* --- Details -------------------------------------------------------------- */
265 /* --- Details -------------------------------------------------------------- */
266 #include "crocoddyl/core/numdiff/diff-action.hxx"
267
268 CROCODDYL_DECLARE_EXTERN_TEMPLATE_CLASS(
269 crocoddyl::DifferentialActionModelNumDiffTpl)
270 CROCODDYL_DECLARE_EXTERN_TEMPLATE_STRUCT(
271 crocoddyl::DifferentialActionDataNumDiffTpl)
272
273 #endif // CROCODDYL_CORE_NUMDIFF_DIFF_ACTION_HPP_
274