Directory: | ./ |
---|---|
File: | include/crocoddyl/core/numdiff/diff-action.hxx |
Date: | 2025-03-26 19:23:43 |
Exec | Total | Coverage | |
---|---|---|---|
Lines: | 107 | 131 | 81.7% |
Branches: | 66 | 272 | 24.3% |
Line | Branch | Exec | Source |
---|---|---|---|
1 | /////////////////////////////////////////////////////////////////////////////// | ||
2 | // BSD 3-Clause License | ||
3 | // | ||
4 | // Copyright (C) 2019-2025, LAAS-CNRS, University of Edinburgh, | ||
5 | // New York University, Heriot-Watt University | ||
6 | // Max Planck Gesellschaft | ||
7 | // Copyright note valid unless otherwise stated in individual files. | ||
8 | // All rights reserved. | ||
9 | /////////////////////////////////////////////////////////////////////////////// | ||
10 | |||
11 | #include "crocoddyl/core/numdiff/diff-action.hpp" | ||
12 | |||
13 | namespace crocoddyl { | ||
14 | |||
15 | template <typename Scalar> | ||
16 | 85 | DifferentialActionModelNumDiffTpl<Scalar>::DifferentialActionModelNumDiffTpl( | |
17 | std::shared_ptr<Base> model, const bool with_gauss_approx) | ||
18 | : Base(model->get_state(), model->get_nu(), model->get_nr(), | ||
19 | 510 | model->get_ng(), model->get_nh(), model->get_ng_T(), | |
20 | 170 | model->get_nh_T()), | |
21 | 85 | model_(model), | |
22 | 85 | with_gauss_approx_(with_gauss_approx), | |
23 |
1/2✓ Branch 16 taken 85 times.
✗ Branch 17 not taken.
|
85 | e_jac_(sqrt(Scalar(2.0) * std::numeric_limits<Scalar>::epsilon())) { |
24 | 85 | e_hess_ = sqrt(Scalar(2.0) * e_jac_); | |
25 |
1/4✗ Branch 0 not taken.
✓ Branch 1 taken 85 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
85 | if (with_gauss_approx_ && nr_ == 1) |
26 | ✗ | throw_pretty("No Gauss approximation possible with nr = 1"); | |
27 | 85 | } | |
28 | |||
29 | template <typename Scalar> | ||
30 | 84 | void DifferentialActionModelNumDiffTpl<Scalar>::calc( | |
31 | const std::shared_ptr<DifferentialActionDataAbstract>& data, | ||
32 | const Eigen::Ref<const VectorXs>& x, const Eigen::Ref<const VectorXs>& u) { | ||
33 |
1/2✗ Branch 3 not taken.
✓ Branch 4 taken 84 times.
|
84 | if (static_cast<std::size_t>(x.size()) != state_->get_nx()) { |
34 | ✗ | throw_pretty( | |
35 | "Invalid argument: " << "x has wrong dimension (it should be " + | ||
36 | std::to_string(state_->get_nx()) + ")"); | ||
37 | } | ||
38 |
1/2✗ Branch 1 not taken.
✓ Branch 2 taken 84 times.
|
84 | if (static_cast<std::size_t>(u.size()) != nu_) { |
39 | ✗ | throw_pretty( | |
40 | "Invalid argument: " << "u has wrong dimension (it should be " + | ||
41 | std::to_string(nu_) + ")"); | ||
42 | } | ||
43 | 84 | Data* d = static_cast<Data*>(data.get()); | |
44 | 84 | model_->calc(d->data_0, x, u); | |
45 | 84 | data->xout = d->data_0->xout; | |
46 | 84 | data->cost = d->data_0->cost; | |
47 | 84 | d->g = d->data_0->g; | |
48 | 84 | d->h = d->data_0->h; | |
49 | 84 | } | |
50 | |||
51 | template <typename Scalar> | ||
52 | 84 | void DifferentialActionModelNumDiffTpl<Scalar>::calc( | |
53 | const std::shared_ptr<DifferentialActionDataAbstract>& data, | ||
54 | const Eigen::Ref<const VectorXs>& x) { | ||
55 |
1/2✗ Branch 3 not taken.
✓ Branch 4 taken 84 times.
|
84 | if (static_cast<std::size_t>(x.size()) != state_->get_nx()) { |
56 | ✗ | throw_pretty( | |
57 | "Invalid argument: " << "x has wrong dimension (it should be " + | ||
58 | std::to_string(state_->get_nx()) + ")"); | ||
59 | } | ||
60 | 84 | Data* d = static_cast<Data*>(data.get()); | |
61 | 84 | model_->calc(d->data_0, x); | |
62 | 84 | data->xout = d->data_0->xout; | |
63 | 84 | data->cost = d->data_0->cost; | |
64 | 84 | d->g = d->data_0->g; | |
65 | 84 | d->h = d->data_0->h; | |
66 | 84 | } | |
67 | |||
68 | template <typename Scalar> | ||
69 | 84 | void DifferentialActionModelNumDiffTpl<Scalar>::calcDiff( | |
70 | const std::shared_ptr<DifferentialActionDataAbstract>& data, | ||
71 | const Eigen::Ref<const VectorXs>& x, const Eigen::Ref<const VectorXs>& u) { | ||
72 | // For details about the finite difference formulas see | ||
73 | // http://www.it.uom.gr/teaching/linearalgebra/NumericalRecipiesInC/c5-7.pdf | ||
74 |
1/2✗ Branch 3 not taken.
✓ Branch 4 taken 84 times.
|
84 | if (static_cast<std::size_t>(x.size()) != state_->get_nx()) { |
75 | ✗ | throw_pretty( | |
76 | "Invalid argument: " << "x has wrong dimension (it should be " + | ||
77 | std::to_string(state_->get_nx()) + ")"); | ||
78 | } | ||
79 |
1/2✗ Branch 1 not taken.
✓ Branch 2 taken 84 times.
|
84 | if (static_cast<std::size_t>(u.size()) != nu_) { |
80 | ✗ | throw_pretty( | |
81 | "Invalid argument: " << "u has wrong dimension (it should be " + | ||
82 | std::to_string(nu_) + ")"); | ||
83 | } | ||
84 | 84 | Data* d = static_cast<Data*>(data.get()); | |
85 | |||
86 | 84 | const VectorXs& x0 = d->data_0->xout; | |
87 | 84 | const Scalar c0 = d->data_0->cost; | |
88 | 84 | const VectorXs& g0 = d->g; | |
89 | 84 | const VectorXs& h0 = d->h; | |
90 | 84 | const std::size_t ndx = state_->get_ndx(); | |
91 | 84 | const std::size_t nu = model_->get_nu(); | |
92 | 84 | const std::size_t ng = model_->get_ng(); | |
93 | 84 | const std::size_t nh = model_->get_nh(); | |
94 | 84 | d->Gx.conservativeResize(ng, ndx); | |
95 | 84 | d->Gu.conservativeResize(ng, nu); | |
96 | 84 | d->Hx.conservativeResize(nh, ndx); | |
97 | 84 | d->Hu.conservativeResize(nh, nu); | |
98 | 84 | d->du.setZero(); | |
99 | |||
100 | 84 | assertStableStateFD(x); | |
101 | |||
102 | // Computing the d action(x,u) / dx | ||
103 |
4/8✓ Branch 6 taken 84 times.
✗ Branch 7 not taken.
✓ Branch 10 taken 84 times.
✗ Branch 11 not taken.
✓ Branch 13 taken 84 times.
✗ Branch 14 not taken.
✓ Branch 16 taken 84 times.
✗ Branch 17 not taken.
|
84 | model_->get_state()->diff(model_->get_state()->zero(), x, d->dx); |
104 | 84 | d->x_norm = d->dx.norm(); | |
105 | 84 | d->dx.setZero(); | |
106 | 84 | d->xh_jac = e_jac_ * std::max(Scalar(1.), d->x_norm); | |
107 |
2/2✓ Branch 0 taken 4588 times.
✓ Branch 1 taken 84 times.
|
4672 | for (std::size_t ix = 0; ix < ndx; ++ix) { |
108 | 4588 | d->dx(ix) = d->xh_jac; | |
109 |
2/4✓ Branch 5 taken 4588 times.
✗ Branch 6 not taken.
✓ Branch 8 taken 4588 times.
✗ Branch 9 not taken.
|
4588 | model_->get_state()->integrate(x, d->dx, d->xp); |
110 |
1/2✓ Branch 4 taken 4588 times.
✗ Branch 5 not taken.
|
4588 | model_->calc(d->data_x[ix], d->xp, u); |
111 | // dynamics | ||
112 |
3/6✓ Branch 4 taken 4588 times.
✗ Branch 5 not taken.
✓ Branch 8 taken 4588 times.
✗ Branch 9 not taken.
✓ Branch 11 taken 4588 times.
✗ Branch 12 not taken.
|
4588 | data->Fx.col(ix) = (d->data_x[ix]->xout - x0) / d->xh_jac; |
113 | // constraint | ||
114 |
3/6✓ Branch 4 taken 4588 times.
✗ Branch 5 not taken.
✓ Branch 8 taken 4588 times.
✗ Branch 9 not taken.
✓ Branch 11 taken 4588 times.
✗ Branch 12 not taken.
|
4588 | data->Gx.col(ix) = (d->data_x[ix]->g - g0) / d->xh_jac; |
115 |
3/6✓ Branch 4 taken 4588 times.
✗ Branch 5 not taken.
✓ Branch 8 taken 4588 times.
✗ Branch 9 not taken.
✓ Branch 11 taken 4588 times.
✗ Branch 12 not taken.
|
4588 | data->Hx.col(ix) = (d->data_x[ix]->h - h0) / d->xh_jac; |
116 | // cost | ||
117 | 4588 | data->Lx(ix) = (d->data_x[ix]->cost - c0) / d->xh_jac; | |
118 |
3/6✓ Branch 5 taken 4588 times.
✗ Branch 6 not taken.
✓ Branch 8 taken 4588 times.
✗ Branch 9 not taken.
✓ Branch 11 taken 4588 times.
✗ Branch 12 not taken.
|
4588 | d->Rx.col(ix) = (d->data_x[ix]->r - d->data_0->r) / d->xh_jac; |
119 | 4588 | d->dx(ix) = Scalar(0.); | |
120 | } | ||
121 | |||
122 | // Computing the d action(x,u) / du | ||
123 | 84 | d->uh_jac = e_jac_ * std::max(Scalar(1.), u.norm()); | |
124 |
2/2✓ Branch 0 taken 1956 times.
✓ Branch 1 taken 84 times.
|
2040 | for (std::size_t iu = 0; iu < nu; ++iu) { |
125 | 1956 | d->du(iu) = d->uh_jac; | |
126 |
2/4✓ Branch 3 taken 1956 times.
✗ Branch 4 not taken.
✓ Branch 7 taken 1956 times.
✗ Branch 8 not taken.
|
1956 | model_->calc(d->data_u[iu], x, u + d->du); |
127 | // dynamics | ||
128 |
3/6✓ Branch 4 taken 1956 times.
✗ Branch 5 not taken.
✓ Branch 8 taken 1956 times.
✗ Branch 9 not taken.
✓ Branch 11 taken 1956 times.
✗ Branch 12 not taken.
|
1956 | data->Fu.col(iu) = (d->data_u[iu]->xout - x0) / d->uh_jac; |
129 | // constraint | ||
130 |
3/6✓ Branch 4 taken 1956 times.
✗ Branch 5 not taken.
✓ Branch 8 taken 1956 times.
✗ Branch 9 not taken.
✓ Branch 11 taken 1956 times.
✗ Branch 12 not taken.
|
1956 | data->Gu.col(iu) = (d->data_u[iu]->g - g0) / d->uh_jac; |
131 |
3/6✓ Branch 4 taken 1956 times.
✗ Branch 5 not taken.
✓ Branch 8 taken 1956 times.
✗ Branch 9 not taken.
✓ Branch 11 taken 1956 times.
✗ Branch 12 not taken.
|
1956 | data->Hu.col(iu) = (d->data_u[iu]->h - h0) / d->uh_jac; |
132 | // cost | ||
133 | 1956 | data->Lu(iu) = (d->data_u[iu]->cost - c0) / d->uh_jac; | |
134 |
3/6✓ Branch 5 taken 1956 times.
✗ Branch 6 not taken.
✓ Branch 8 taken 1956 times.
✗ Branch 9 not taken.
✓ Branch 11 taken 1956 times.
✗ Branch 12 not taken.
|
1956 | d->Ru.col(iu) = (d->data_u[iu]->r - d->data_0->r) / d->uh_jac; |
135 | 1956 | d->du(iu) = Scalar(0.); | |
136 | } | ||
137 | |||
138 | #ifdef NDEBUG | ||
139 | // Computing the d^2 cost(x,u) / dx^2 | ||
140 | d->xh_hess = e_hess_ * std::max(Scalar(1.), d->x_norm); | ||
141 | d->xh_hess_pow2 = d->xh_hess * d->xh_hess; | ||
142 | for (std::size_t ix = 0; ix < ndx; ++ix) { | ||
143 | d->dx(ix) = d->xh_hess; | ||
144 | model_->get_state()->integrate(x, d->dx, d->xp); | ||
145 | model_->calc(d->data_x[ix], d->xp, u); | ||
146 | const Scalar cp = d->data_x[ix]->cost; | ||
147 | model_->get_state()->integrate(x, -d->dx, d->xp); | ||
148 | model_->calc(d->data_x[ix], d->xp, u); | ||
149 | const Scalar cm = d->data_x[ix]->cost; | ||
150 | data->Lxx(ix, ix) = (cp - 2 * c0 + cm) / d->xh_hess_pow2; | ||
151 | for (std::size_t jx = ix + 1; jx < ndx; ++jx) { | ||
152 | d->dx(jx) = d->xh_hess; | ||
153 | model_->get_state()->integrate(x, d->dx, d->xp); | ||
154 | model_->calc(d->data_x[ix], d->xp, u); | ||
155 | const Scalar cpp = | ||
156 | d->data_x[ix] | ||
157 | ->cost; // cost due to positive disturbance in both directions | ||
158 | d->dx(ix) = Scalar(0.); | ||
159 | model_->get_state()->integrate(x, d->dx, d->xp); | ||
160 | model_->calc(d->data_x[ix], d->xp, u); | ||
161 | const Scalar czp = | ||
162 | d->data_x[ix]->cost; // cost due to zero disturance in 'i' and | ||
163 | // positive disturbance in 'j' direction | ||
164 | data->Lxx(ix, jx) = (cpp - czp - cp + c0) / d->xh_hess_pow2; | ||
165 | data->Lxx(jx, ix) = data->Lxx(ix, jx); | ||
166 | d->dx(ix) = d->xh_hess; | ||
167 | d->dx(jx) = Scalar(0.); | ||
168 | } | ||
169 | d->dx(ix) = Scalar(0.); | ||
170 | } | ||
171 | |||
172 | // Computing the d^2 cost(x,u) / du^2 | ||
173 | d->uh_hess = e_hess_ * std::max(Scalar(1.), u.norm()); | ||
174 | d->uh_hess_pow2 = d->uh_hess * d->uh_hess; | ||
175 | for (std::size_t iu = 0; iu < nu; ++iu) { | ||
176 | d->du(iu) = d->uh_hess; | ||
177 | model_->calc(d->data_u[iu], x, u + d->du); | ||
178 | const Scalar cp = d->data_u[iu]->cost; | ||
179 | model_->calc(d->data_u[iu], x, u - d->du); | ||
180 | const Scalar cm = d->data_u[iu]->cost; | ||
181 | data->Luu(iu, iu) = (cp - 2 * c0 + cm) / d->uh_hess_pow2; | ||
182 | for (std::size_t ju = iu + 1; ju < nu; ++ju) { | ||
183 | d->du(ju) = d->uh_hess; | ||
184 | model_->calc(d->data_u[iu], x, u + d->du); | ||
185 | const Scalar cpp = | ||
186 | d->data_u[iu] | ||
187 | ->cost; // cost due to positive disturbance in both directions | ||
188 | d->du(iu) = Scalar(0.); | ||
189 | model_->calc(d->data_u[iu], x, u + d->du); | ||
190 | const Scalar czp = | ||
191 | d->data_u[iu]->cost; // cost due to zero disturance in 'i' and | ||
192 | // positive disturbance in 'j' direction | ||
193 | data->Luu(iu, ju) = (cpp - czp - cp + c0) / d->uh_hess_pow2; | ||
194 | data->Luu(ju, iu) = data->Luu(iu, ju); | ||
195 | d->du(iu) = d->uh_hess; | ||
196 | d->du(ju) = Scalar(0.); | ||
197 | } | ||
198 | d->du(iu) = Scalar(0.); | ||
199 | } | ||
200 | |||
201 | // Computing the d^2 cost(x,u) / dxu | ||
202 | d->xuh_hess_pow2 = Scalar(4.) * d->xh_hess * d->uh_hess; | ||
203 | for (std::size_t ix = 0; ix < ndx; ++ix) { | ||
204 | for (std::size_t ju = 0; ju < nu; ++ju) { | ||
205 | d->dx(ix) = d->xh_hess; | ||
206 | model_->get_state()->integrate(x, d->dx, d->xp); | ||
207 | d->du(ju) = d->uh_hess; | ||
208 | model_->calc(d->data_x[ix], d->xp, u + d->du); | ||
209 | const Scalar cpp = d->data_x[ix]->cost; | ||
210 | model_->calc(d->data_x[ix], d->xp, u - d->du); | ||
211 | const Scalar cpm = d->data_x[ix]->cost; | ||
212 | model_->get_state()->integrate(x, -d->dx, d->xp); | ||
213 | model_->calc(d->data_x[ix], d->xp, u + d->du); | ||
214 | const Scalar cmp = d->data_x[ix]->cost; | ||
215 | model_->calc(d->data_x[ix], d->xp, u - d->du); | ||
216 | const Scalar cmm = d->data_x[ix]->cost; | ||
217 | data->Lxu(ix, ju) = (cpp - cpm - cmp + cmm) / d->xuh_hess_pow2; | ||
218 | d->dx(ix) = Scalar(0.); | ||
219 | d->du(ju) = Scalar(0.); | ||
220 | } | ||
221 | } | ||
222 | #endif | ||
223 | |||
224 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 84 times.
|
84 | if (with_gauss_approx_) { |
225 | ✗ | data->Lxx = d->Rx.transpose() * d->Rx; | |
226 | ✗ | data->Lxu = d->Rx.transpose() * d->Ru; | |
227 | ✗ | data->Luu = d->Ru.transpose() * d->Ru; | |
228 | } | ||
229 | 84 | } | |
230 | |||
231 | template <typename Scalar> | ||
232 | 84 | void DifferentialActionModelNumDiffTpl<Scalar>::calcDiff( | |
233 | const std::shared_ptr<DifferentialActionDataAbstract>& data, | ||
234 | const Eigen::Ref<const VectorXs>& x) { | ||
235 | // For details about the finite difference formulas see | ||
236 | // http://www.it.uom.gr/teaching/linearalgebra/NumericalRecipiesInC/c5-7.pdf | ||
237 |
1/2✗ Branch 3 not taken.
✓ Branch 4 taken 84 times.
|
84 | if (static_cast<std::size_t>(x.size()) != state_->get_nx()) { |
238 | ✗ | throw_pretty( | |
239 | "Invalid argument: " << "x has wrong dimension (it should be " + | ||
240 | std::to_string(state_->get_nx()) + ")"); | ||
241 | } | ||
242 | 84 | Data* d = static_cast<Data*>(data.get()); | |
243 | |||
244 | 84 | const Scalar c0 = d->data_0->cost; | |
245 | 84 | const VectorXs& g0 = d->g; | |
246 | 84 | const VectorXs& h0 = d->h; | |
247 | 84 | const std::size_t ndx = state_->get_ndx(); | |
248 | 84 | d->Gx.conservativeResize(model_->get_ng_T(), ndx); | |
249 | 84 | d->Hx.conservativeResize(model_->get_nh_T(), ndx); | |
250 | |||
251 | 84 | assertStableStateFD(x); | |
252 | |||
253 | // Computing the d action(x,u) / dx | ||
254 |
4/8✓ Branch 6 taken 84 times.
✗ Branch 7 not taken.
✓ Branch 10 taken 84 times.
✗ Branch 11 not taken.
✓ Branch 13 taken 84 times.
✗ Branch 14 not taken.
✓ Branch 16 taken 84 times.
✗ Branch 17 not taken.
|
84 | model_->get_state()->diff(model_->get_state()->zero(), x, d->dx); |
255 | 84 | d->x_norm = d->dx.norm(); | |
256 | 84 | d->dx.setZero(); | |
257 | 84 | d->xh_jac = e_jac_ * std::max(Scalar(1.), d->x_norm); | |
258 |
2/2✓ Branch 0 taken 4588 times.
✓ Branch 1 taken 84 times.
|
4672 | for (std::size_t ix = 0; ix < ndx; ++ix) { |
259 | 4588 | d->dx(ix) = d->xh_jac; | |
260 |
2/4✓ Branch 5 taken 4588 times.
✗ Branch 6 not taken.
✓ Branch 8 taken 4588 times.
✗ Branch 9 not taken.
|
4588 | model_->get_state()->integrate(x, d->dx, d->xp); |
261 |
1/2✓ Branch 4 taken 4588 times.
✗ Branch 5 not taken.
|
4588 | model_->calc(d->data_x[ix], d->xp); |
262 | // cost | ||
263 | 4588 | data->Lx(ix) = (d->data_x[ix]->cost - c0) / d->xh_jac; | |
264 |
3/6✓ Branch 5 taken 4588 times.
✗ Branch 6 not taken.
✓ Branch 8 taken 4588 times.
✗ Branch 9 not taken.
✓ Branch 11 taken 4588 times.
✗ Branch 12 not taken.
|
4588 | d->Rx.col(ix) = (d->data_x[ix]->r - d->data_0->r) / d->xh_jac; |
265 | // constraint | ||
266 |
3/6✓ Branch 4 taken 4588 times.
✗ Branch 5 not taken.
✓ Branch 8 taken 4588 times.
✗ Branch 9 not taken.
✓ Branch 11 taken 4588 times.
✗ Branch 12 not taken.
|
4588 | data->Gx.col(ix) = (d->data_x[ix]->g - g0) / d->xh_jac; |
267 |
3/6✓ Branch 4 taken 4588 times.
✗ Branch 5 not taken.
✓ Branch 8 taken 4588 times.
✗ Branch 9 not taken.
✓ Branch 11 taken 4588 times.
✗ Branch 12 not taken.
|
4588 | data->Hx.col(ix) = (d->data_x[ix]->h - h0) / d->xh_jac; |
268 | 4588 | d->dx(ix) = Scalar(0.); | |
269 | } | ||
270 | |||
271 | #ifdef NDEBUG | ||
272 | // Computing the d^2 cost(x,u) / dx^2 | ||
273 | d->xh_hess = e_hess_ * std::max(Scalar(1.), d->x_norm); | ||
274 | d->xh_hess_pow2 = d->xh_hess * d->xh_hess; | ||
275 | for (std::size_t ix = 0; ix < ndx; ++ix) { | ||
276 | // We can apply the same formulas for finite difference as above | ||
277 | d->dx(ix) = d->xh_hess; | ||
278 | model_->get_state()->integrate(x, d->dx, d->xp); | ||
279 | model_->calc(d->data_x[ix], d->xp); | ||
280 | const Scalar cp = d->data_x[ix]->cost; | ||
281 | model_->get_state()->integrate(x, -d->dx, d->xp); | ||
282 | model_->calc(d->data_x[ix], d->xp); | ||
283 | const Scalar cm = d->data_x[ix]->cost; | ||
284 | data->Lxx(ix, ix) = (cp - 2 * c0 + cm) / d->xh_hess_pow2; | ||
285 | for (std::size_t jx = ix + 1; jx < ndx; ++jx) { | ||
286 | d->dx(jx) = d->xh_hess; | ||
287 | model_->get_state()->integrate(x, d->dx, d->xp); | ||
288 | model_->calc(d->data_x[ix], d->xp); | ||
289 | const Scalar cpp = | ||
290 | d->data_x[ix] | ||
291 | ->cost; // cost due to positive disturbance in both directions | ||
292 | d->dx(ix) = Scalar(0.); | ||
293 | model_->get_state()->integrate(x, d->dx, d->xp); | ||
294 | model_->calc(d->data_x[ix], d->xp); | ||
295 | const Scalar czp = | ||
296 | d->data_x[ix]->cost; // cost due to zero disturance in 'i' and | ||
297 | // positive disturbance in 'j' direction | ||
298 | data->Lxx(ix, jx) = (cpp - czp - cp + c0) / d->xh_hess_pow2; | ||
299 | data->Lxx(jx, ix) = data->Lxx(ix, jx); | ||
300 | d->dx(ix) = d->xh_hess; | ||
301 | d->dx(jx) = Scalar(0.); | ||
302 | } | ||
303 | d->dx(ix) = Scalar(0.); | ||
304 | } | ||
305 | #endif | ||
306 | |||
307 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 84 times.
|
84 | if (with_gauss_approx_) { |
308 | ✗ | data->Lxx = d->Rx.transpose() * d->Rx; | |
309 | } | ||
310 | 84 | } | |
311 | |||
312 | template <typename Scalar> | ||
313 | std::shared_ptr<DifferentialActionDataAbstractTpl<Scalar> > | ||
314 | 86 | DifferentialActionModelNumDiffTpl<Scalar>::createData() { | |
315 |
1/2✓ Branch 2 taken 86 times.
✗ Branch 3 not taken.
|
86 | return std::allocate_shared<Data>(Eigen::aligned_allocator<Data>(), this); |
316 | } | ||
317 | |||
318 | template <typename Scalar> | ||
319 | ✗ | void DifferentialActionModelNumDiffTpl<Scalar>::quasiStatic( | |
320 | const std::shared_ptr<DifferentialActionDataAbstract>& data, | ||
321 | Eigen::Ref<VectorXs> u, const Eigen::Ref<const VectorXs>& x, | ||
322 | const std::size_t maxiter, const Scalar tol) { | ||
323 | ✗ | Data* d = static_cast<Data*>(data.get()); | |
324 | ✗ | model_->quasiStatic(d->data_0, u, x, maxiter, tol); | |
325 | } | ||
326 | |||
327 | template <typename Scalar> | ||
328 | template <typename NewScalar> | ||
329 | DifferentialActionModelNumDiffTpl<NewScalar> | ||
330 | ✗ | DifferentialActionModelNumDiffTpl<Scalar>::cast() const { | |
331 | typedef DifferentialActionModelNumDiffTpl<NewScalar> ReturnType; | ||
332 | ✗ | ReturnType res(model_->template cast<NewScalar>()); | |
333 | ✗ | return res; | |
334 | } | ||
335 | |||
336 | template <typename Scalar> | ||
337 | const std::shared_ptr<DifferentialActionModelAbstractTpl<Scalar> >& | ||
338 | 7416 | DifferentialActionModelNumDiffTpl<Scalar>::get_model() const { | |
339 | 7416 | return model_; | |
340 | } | ||
341 | |||
342 | template <typename Scalar> | ||
343 | 84 | const Scalar DifferentialActionModelNumDiffTpl<Scalar>::get_disturbance() | |
344 | const { | ||
345 | 84 | return e_jac_; | |
346 | } | ||
347 | |||
348 | template <typename Scalar> | ||
349 | ✗ | void DifferentialActionModelNumDiffTpl<Scalar>::set_disturbance( | |
350 | const Scalar disturbance) { | ||
351 | ✗ | if (disturbance < Scalar(0.)) { | |
352 | ✗ | throw_pretty("Invalid argument: " << "Disturbance constant is positive"); | |
353 | } | ||
354 | ✗ | e_jac_ = disturbance; | |
355 | ✗ | e_hess_ = sqrt(Scalar(2.0) * e_jac_); | |
356 | } | ||
357 | |||
358 | template <typename Scalar> | ||
359 | 142 | bool DifferentialActionModelNumDiffTpl<Scalar>::get_with_gauss_approx() { | |
360 | 142 | return with_gauss_approx_; | |
361 | } | ||
362 | |||
363 | template <typename Scalar> | ||
364 | ✗ | void DifferentialActionModelNumDiffTpl<Scalar>::print(std::ostream& os) const { | |
365 | ✗ | os << "DifferentialActionModelNumDiffTpl {action=" << *model_ << "}"; | |
366 | } | ||
367 | |||
368 | template <typename Scalar> | ||
369 | 168 | void DifferentialActionModelNumDiffTpl<Scalar>::assertStableStateFD( | |
370 | const Eigen::Ref<const VectorXs>& /** x */) { | ||
371 | // TODO(cmastalli): First we need to do it AMNumDiff and then to replicate it. | ||
372 | 168 | } | |
373 | |||
374 | } // namespace crocoddyl | ||
375 |