Line |
Branch |
Exec |
Source |
1 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
2 |
|
|
// BSD 3-Clause License |
3 |
|
|
// |
4 |
|
|
// Copyright (C) 2019-2025, LAAS-CNRS, University of Edinburgh, |
5 |
|
|
// New York University, Heriot-Watt University |
6 |
|
|
// Max Planck Gesellschaft |
7 |
|
|
// Copyright note valid unless otherwise stated in individual files. |
8 |
|
|
// All rights reserved. |
9 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
10 |
|
|
|
11 |
|
|
#include "crocoddyl/core/numdiff/diff-action.hpp" |
12 |
|
|
|
13 |
|
|
namespace crocoddyl { |
14 |
|
|
|
15 |
|
|
template <typename Scalar> |
16 |
|
✗ |
DifferentialActionModelNumDiffTpl<Scalar>::DifferentialActionModelNumDiffTpl( |
17 |
|
|
std::shared_ptr<Base> model, const bool with_gauss_approx) |
18 |
|
|
: Base(model->get_state(), model->get_nu(), model->get_nr(), |
19 |
|
✗ |
model->get_ng(), model->get_nh(), model->get_ng_T(), |
20 |
|
✗ |
model->get_nh_T()), |
21 |
|
✗ |
model_(model), |
22 |
|
✗ |
with_gauss_approx_(with_gauss_approx), |
23 |
|
✗ |
e_jac_(sqrt(Scalar(2.0) * std::numeric_limits<Scalar>::epsilon())) { |
24 |
|
✗ |
e_hess_ = sqrt(Scalar(2.0) * e_jac_); |
25 |
|
✗ |
if (with_gauss_approx_ && nr_ == 1) |
26 |
|
✗ |
throw_pretty("No Gauss approximation possible with nr = 1"); |
27 |
|
|
} |
28 |
|
|
|
29 |
|
|
template <typename Scalar> |
30 |
|
✗ |
void DifferentialActionModelNumDiffTpl<Scalar>::calc( |
31 |
|
|
const std::shared_ptr<DifferentialActionDataAbstract>& data, |
32 |
|
|
const Eigen::Ref<const VectorXs>& x, const Eigen::Ref<const VectorXs>& u) { |
33 |
|
✗ |
if (static_cast<std::size_t>(x.size()) != state_->get_nx()) { |
34 |
|
✗ |
throw_pretty( |
35 |
|
|
"Invalid argument: " << "x has wrong dimension (it should be " + |
36 |
|
|
std::to_string(state_->get_nx()) + ")"); |
37 |
|
|
} |
38 |
|
✗ |
if (static_cast<std::size_t>(u.size()) != nu_) { |
39 |
|
✗ |
throw_pretty( |
40 |
|
|
"Invalid argument: " << "u has wrong dimension (it should be " + |
41 |
|
|
std::to_string(nu_) + ")"); |
42 |
|
|
} |
43 |
|
✗ |
Data* d = static_cast<Data*>(data.get()); |
44 |
|
✗ |
model_->calc(d->data_0, x, u); |
45 |
|
✗ |
data->xout = d->data_0->xout; |
46 |
|
✗ |
data->cost = d->data_0->cost; |
47 |
|
✗ |
d->g = d->data_0->g; |
48 |
|
✗ |
d->h = d->data_0->h; |
49 |
|
|
} |
50 |
|
|
|
51 |
|
|
template <typename Scalar> |
52 |
|
✗ |
void DifferentialActionModelNumDiffTpl<Scalar>::calc( |
53 |
|
|
const std::shared_ptr<DifferentialActionDataAbstract>& data, |
54 |
|
|
const Eigen::Ref<const VectorXs>& x) { |
55 |
|
✗ |
if (static_cast<std::size_t>(x.size()) != state_->get_nx()) { |
56 |
|
✗ |
throw_pretty( |
57 |
|
|
"Invalid argument: " << "x has wrong dimension (it should be " + |
58 |
|
|
std::to_string(state_->get_nx()) + ")"); |
59 |
|
|
} |
60 |
|
✗ |
Data* d = static_cast<Data*>(data.get()); |
61 |
|
✗ |
model_->calc(d->data_0, x); |
62 |
|
✗ |
data->xout = d->data_0->xout; |
63 |
|
✗ |
data->cost = d->data_0->cost; |
64 |
|
✗ |
d->g = d->data_0->g; |
65 |
|
✗ |
d->h = d->data_0->h; |
66 |
|
|
} |
67 |
|
|
|
68 |
|
|
template <typename Scalar> |
69 |
|
✗ |
void DifferentialActionModelNumDiffTpl<Scalar>::calcDiff( |
70 |
|
|
const std::shared_ptr<DifferentialActionDataAbstract>& data, |
71 |
|
|
const Eigen::Ref<const VectorXs>& x, const Eigen::Ref<const VectorXs>& u) { |
72 |
|
|
// For details about the finite difference formulas see |
73 |
|
|
// http://www.it.uom.gr/teaching/linearalgebra/NumericalRecipiesInC/c5-7.pdf |
74 |
|
✗ |
if (static_cast<std::size_t>(x.size()) != state_->get_nx()) { |
75 |
|
✗ |
throw_pretty( |
76 |
|
|
"Invalid argument: " << "x has wrong dimension (it should be " + |
77 |
|
|
std::to_string(state_->get_nx()) + ")"); |
78 |
|
|
} |
79 |
|
✗ |
if (static_cast<std::size_t>(u.size()) != nu_) { |
80 |
|
✗ |
throw_pretty( |
81 |
|
|
"Invalid argument: " << "u has wrong dimension (it should be " + |
82 |
|
|
std::to_string(nu_) + ")"); |
83 |
|
|
} |
84 |
|
✗ |
Data* d = static_cast<Data*>(data.get()); |
85 |
|
|
|
86 |
|
✗ |
const VectorXs& x0 = d->data_0->xout; |
87 |
|
✗ |
const Scalar c0 = d->data_0->cost; |
88 |
|
✗ |
const VectorXs& g0 = d->g; |
89 |
|
✗ |
const VectorXs& h0 = d->h; |
90 |
|
✗ |
const std::size_t ndx = state_->get_ndx(); |
91 |
|
✗ |
const std::size_t nu = model_->get_nu(); |
92 |
|
✗ |
const std::size_t ng = model_->get_ng(); |
93 |
|
✗ |
const std::size_t nh = model_->get_nh(); |
94 |
|
✗ |
d->Gx.conservativeResize(ng, ndx); |
95 |
|
✗ |
d->Gu.conservativeResize(ng, nu); |
96 |
|
✗ |
d->Hx.conservativeResize(nh, ndx); |
97 |
|
✗ |
d->Hu.conservativeResize(nh, nu); |
98 |
|
✗ |
d->du.setZero(); |
99 |
|
|
|
100 |
|
✗ |
assertStableStateFD(x); |
101 |
|
|
|
102 |
|
|
// Computing the d action(x,u) / dx |
103 |
|
✗ |
model_->get_state()->diff(model_->get_state()->zero(), x, d->dx); |
104 |
|
✗ |
d->x_norm = d->dx.norm(); |
105 |
|
✗ |
d->dx.setZero(); |
106 |
|
✗ |
d->xh_jac = e_jac_ * std::max(Scalar(1.), d->x_norm); |
107 |
|
✗ |
for (std::size_t ix = 0; ix < ndx; ++ix) { |
108 |
|
✗ |
d->dx(ix) = d->xh_jac; |
109 |
|
✗ |
model_->get_state()->integrate(x, d->dx, d->xp); |
110 |
|
✗ |
model_->calc(d->data_x[ix], d->xp, u); |
111 |
|
|
// dynamics |
112 |
|
✗ |
data->Fx.col(ix) = (d->data_x[ix]->xout - x0) / d->xh_jac; |
113 |
|
|
// constraint |
114 |
|
✗ |
data->Gx.col(ix) = (d->data_x[ix]->g - g0) / d->xh_jac; |
115 |
|
✗ |
data->Hx.col(ix) = (d->data_x[ix]->h - h0) / d->xh_jac; |
116 |
|
|
// cost |
117 |
|
✗ |
data->Lx(ix) = (d->data_x[ix]->cost - c0) / d->xh_jac; |
118 |
|
✗ |
d->Rx.col(ix) = (d->data_x[ix]->r - d->data_0->r) / d->xh_jac; |
119 |
|
✗ |
d->dx(ix) = Scalar(0.); |
120 |
|
|
} |
121 |
|
|
|
122 |
|
|
// Computing the d action(x,u) / du |
123 |
|
✗ |
d->uh_jac = e_jac_ * std::max(Scalar(1.), u.norm()); |
124 |
|
✗ |
for (std::size_t iu = 0; iu < nu; ++iu) { |
125 |
|
✗ |
d->du(iu) = d->uh_jac; |
126 |
|
✗ |
model_->calc(d->data_u[iu], x, u + d->du); |
127 |
|
|
// dynamics |
128 |
|
✗ |
data->Fu.col(iu) = (d->data_u[iu]->xout - x0) / d->uh_jac; |
129 |
|
|
// constraint |
130 |
|
✗ |
data->Gu.col(iu) = (d->data_u[iu]->g - g0) / d->uh_jac; |
131 |
|
✗ |
data->Hu.col(iu) = (d->data_u[iu]->h - h0) / d->uh_jac; |
132 |
|
|
// cost |
133 |
|
✗ |
data->Lu(iu) = (d->data_u[iu]->cost - c0) / d->uh_jac; |
134 |
|
✗ |
d->Ru.col(iu) = (d->data_u[iu]->r - d->data_0->r) / d->uh_jac; |
135 |
|
✗ |
d->du(iu) = Scalar(0.); |
136 |
|
|
} |
137 |
|
|
|
138 |
|
|
#ifdef NDEBUG |
139 |
|
|
// Computing the d^2 cost(x,u) / dx^2 |
140 |
|
|
d->xh_hess = e_hess_ * std::max(Scalar(1.), d->x_norm); |
141 |
|
|
d->xh_hess_pow2 = d->xh_hess * d->xh_hess; |
142 |
|
|
for (std::size_t ix = 0; ix < ndx; ++ix) { |
143 |
|
|
d->dx(ix) = d->xh_hess; |
144 |
|
|
model_->get_state()->integrate(x, d->dx, d->xp); |
145 |
|
|
model_->calc(d->data_x[ix], d->xp, u); |
146 |
|
|
const Scalar cp = d->data_x[ix]->cost; |
147 |
|
|
model_->get_state()->integrate(x, -d->dx, d->xp); |
148 |
|
|
model_->calc(d->data_x[ix], d->xp, u); |
149 |
|
|
const Scalar cm = d->data_x[ix]->cost; |
150 |
|
|
data->Lxx(ix, ix) = (cp - 2 * c0 + cm) / d->xh_hess_pow2; |
151 |
|
|
for (std::size_t jx = ix + 1; jx < ndx; ++jx) { |
152 |
|
|
d->dx(jx) = d->xh_hess; |
153 |
|
|
model_->get_state()->integrate(x, d->dx, d->xp); |
154 |
|
|
model_->calc(d->data_x[ix], d->xp, u); |
155 |
|
|
const Scalar cpp = |
156 |
|
|
d->data_x[ix] |
157 |
|
|
->cost; // cost due to positive disturbance in both directions |
158 |
|
|
d->dx(ix) = Scalar(0.); |
159 |
|
|
model_->get_state()->integrate(x, d->dx, d->xp); |
160 |
|
|
model_->calc(d->data_x[ix], d->xp, u); |
161 |
|
|
const Scalar czp = |
162 |
|
|
d->data_x[ix]->cost; // cost due to zero disturance in 'i' and |
163 |
|
|
// positive disturbance in 'j' direction |
164 |
|
|
data->Lxx(ix, jx) = (cpp - czp - cp + c0) / d->xh_hess_pow2; |
165 |
|
|
data->Lxx(jx, ix) = data->Lxx(ix, jx); |
166 |
|
|
d->dx(ix) = d->xh_hess; |
167 |
|
|
d->dx(jx) = Scalar(0.); |
168 |
|
|
} |
169 |
|
|
d->dx(ix) = Scalar(0.); |
170 |
|
|
} |
171 |
|
|
|
172 |
|
|
// Computing the d^2 cost(x,u) / du^2 |
173 |
|
|
d->uh_hess = e_hess_ * std::max(Scalar(1.), u.norm()); |
174 |
|
|
d->uh_hess_pow2 = d->uh_hess * d->uh_hess; |
175 |
|
|
for (std::size_t iu = 0; iu < nu; ++iu) { |
176 |
|
|
d->du(iu) = d->uh_hess; |
177 |
|
|
model_->calc(d->data_u[iu], x, u + d->du); |
178 |
|
|
const Scalar cp = d->data_u[iu]->cost; |
179 |
|
|
model_->calc(d->data_u[iu], x, u - d->du); |
180 |
|
|
const Scalar cm = d->data_u[iu]->cost; |
181 |
|
|
data->Luu(iu, iu) = (cp - 2 * c0 + cm) / d->uh_hess_pow2; |
182 |
|
|
for (std::size_t ju = iu + 1; ju < nu; ++ju) { |
183 |
|
|
d->du(ju) = d->uh_hess; |
184 |
|
|
model_->calc(d->data_u[iu], x, u + d->du); |
185 |
|
|
const Scalar cpp = |
186 |
|
|
d->data_u[iu] |
187 |
|
|
->cost; // cost due to positive disturbance in both directions |
188 |
|
|
d->du(iu) = Scalar(0.); |
189 |
|
|
model_->calc(d->data_u[iu], x, u + d->du); |
190 |
|
|
const Scalar czp = |
191 |
|
|
d->data_u[iu]->cost; // cost due to zero disturance in 'i' and |
192 |
|
|
// positive disturbance in 'j' direction |
193 |
|
|
data->Luu(iu, ju) = (cpp - czp - cp + c0) / d->uh_hess_pow2; |
194 |
|
|
data->Luu(ju, iu) = data->Luu(iu, ju); |
195 |
|
|
d->du(iu) = d->uh_hess; |
196 |
|
|
d->du(ju) = Scalar(0.); |
197 |
|
|
} |
198 |
|
|
d->du(iu) = Scalar(0.); |
199 |
|
|
} |
200 |
|
|
|
201 |
|
|
// Computing the d^2 cost(x,u) / dxu |
202 |
|
|
d->xuh_hess_pow2 = Scalar(4.) * d->xh_hess * d->uh_hess; |
203 |
|
|
for (std::size_t ix = 0; ix < ndx; ++ix) { |
204 |
|
|
for (std::size_t ju = 0; ju < nu; ++ju) { |
205 |
|
|
d->dx(ix) = d->xh_hess; |
206 |
|
|
model_->get_state()->integrate(x, d->dx, d->xp); |
207 |
|
|
d->du(ju) = d->uh_hess; |
208 |
|
|
model_->calc(d->data_x[ix], d->xp, u + d->du); |
209 |
|
|
const Scalar cpp = d->data_x[ix]->cost; |
210 |
|
|
model_->calc(d->data_x[ix], d->xp, u - d->du); |
211 |
|
|
const Scalar cpm = d->data_x[ix]->cost; |
212 |
|
|
model_->get_state()->integrate(x, -d->dx, d->xp); |
213 |
|
|
model_->calc(d->data_x[ix], d->xp, u + d->du); |
214 |
|
|
const Scalar cmp = d->data_x[ix]->cost; |
215 |
|
|
model_->calc(d->data_x[ix], d->xp, u - d->du); |
216 |
|
|
const Scalar cmm = d->data_x[ix]->cost; |
217 |
|
|
data->Lxu(ix, ju) = (cpp - cpm - cmp + cmm) / d->xuh_hess_pow2; |
218 |
|
|
d->dx(ix) = Scalar(0.); |
219 |
|
|
d->du(ju) = Scalar(0.); |
220 |
|
|
} |
221 |
|
|
} |
222 |
|
|
#endif |
223 |
|
|
|
224 |
|
✗ |
if (with_gauss_approx_) { |
225 |
|
✗ |
data->Lxx = d->Rx.transpose() * d->Rx; |
226 |
|
✗ |
data->Lxu = d->Rx.transpose() * d->Ru; |
227 |
|
✗ |
data->Luu = d->Ru.transpose() * d->Ru; |
228 |
|
|
} |
229 |
|
|
} |
230 |
|
|
|
231 |
|
|
template <typename Scalar> |
232 |
|
✗ |
void DifferentialActionModelNumDiffTpl<Scalar>::calcDiff( |
233 |
|
|
const std::shared_ptr<DifferentialActionDataAbstract>& data, |
234 |
|
|
const Eigen::Ref<const VectorXs>& x) { |
235 |
|
|
// For details about the finite difference formulas see |
236 |
|
|
// http://www.it.uom.gr/teaching/linearalgebra/NumericalRecipiesInC/c5-7.pdf |
237 |
|
✗ |
if (static_cast<std::size_t>(x.size()) != state_->get_nx()) { |
238 |
|
✗ |
throw_pretty( |
239 |
|
|
"Invalid argument: " << "x has wrong dimension (it should be " + |
240 |
|
|
std::to_string(state_->get_nx()) + ")"); |
241 |
|
|
} |
242 |
|
✗ |
Data* d = static_cast<Data*>(data.get()); |
243 |
|
|
|
244 |
|
✗ |
const Scalar c0 = d->data_0->cost; |
245 |
|
✗ |
const VectorXs& g0 = d->g; |
246 |
|
✗ |
const VectorXs& h0 = d->h; |
247 |
|
✗ |
const std::size_t ndx = state_->get_ndx(); |
248 |
|
✗ |
d->Gx.conservativeResize(model_->get_ng_T(), ndx); |
249 |
|
✗ |
d->Hx.conservativeResize(model_->get_nh_T(), ndx); |
250 |
|
|
|
251 |
|
✗ |
assertStableStateFD(x); |
252 |
|
|
|
253 |
|
|
// Computing the d action(x,u) / dx |
254 |
|
✗ |
model_->get_state()->diff(model_->get_state()->zero(), x, d->dx); |
255 |
|
✗ |
d->x_norm = d->dx.norm(); |
256 |
|
✗ |
d->dx.setZero(); |
257 |
|
✗ |
d->xh_jac = e_jac_ * std::max(Scalar(1.), d->x_norm); |
258 |
|
✗ |
for (std::size_t ix = 0; ix < ndx; ++ix) { |
259 |
|
✗ |
d->dx(ix) = d->xh_jac; |
260 |
|
✗ |
model_->get_state()->integrate(x, d->dx, d->xp); |
261 |
|
✗ |
model_->calc(d->data_x[ix], d->xp); |
262 |
|
|
// cost |
263 |
|
✗ |
data->Lx(ix) = (d->data_x[ix]->cost - c0) / d->xh_jac; |
264 |
|
✗ |
d->Rx.col(ix) = (d->data_x[ix]->r - d->data_0->r) / d->xh_jac; |
265 |
|
|
// constraint |
266 |
|
✗ |
data->Gx.col(ix) = (d->data_x[ix]->g - g0) / d->xh_jac; |
267 |
|
✗ |
data->Hx.col(ix) = (d->data_x[ix]->h - h0) / d->xh_jac; |
268 |
|
✗ |
d->dx(ix) = Scalar(0.); |
269 |
|
|
} |
270 |
|
|
|
271 |
|
|
#ifdef NDEBUG |
272 |
|
|
// Computing the d^2 cost(x,u) / dx^2 |
273 |
|
|
d->xh_hess = e_hess_ * std::max(Scalar(1.), d->x_norm); |
274 |
|
|
d->xh_hess_pow2 = d->xh_hess * d->xh_hess; |
275 |
|
|
for (std::size_t ix = 0; ix < ndx; ++ix) { |
276 |
|
|
// We can apply the same formulas for finite difference as above |
277 |
|
|
d->dx(ix) = d->xh_hess; |
278 |
|
|
model_->get_state()->integrate(x, d->dx, d->xp); |
279 |
|
|
model_->calc(d->data_x[ix], d->xp); |
280 |
|
|
const Scalar cp = d->data_x[ix]->cost; |
281 |
|
|
model_->get_state()->integrate(x, -d->dx, d->xp); |
282 |
|
|
model_->calc(d->data_x[ix], d->xp); |
283 |
|
|
const Scalar cm = d->data_x[ix]->cost; |
284 |
|
|
data->Lxx(ix, ix) = (cp - 2 * c0 + cm) / d->xh_hess_pow2; |
285 |
|
|
for (std::size_t jx = ix + 1; jx < ndx; ++jx) { |
286 |
|
|
d->dx(jx) = d->xh_hess; |
287 |
|
|
model_->get_state()->integrate(x, d->dx, d->xp); |
288 |
|
|
model_->calc(d->data_x[ix], d->xp); |
289 |
|
|
const Scalar cpp = |
290 |
|
|
d->data_x[ix] |
291 |
|
|
->cost; // cost due to positive disturbance in both directions |
292 |
|
|
d->dx(ix) = Scalar(0.); |
293 |
|
|
model_->get_state()->integrate(x, d->dx, d->xp); |
294 |
|
|
model_->calc(d->data_x[ix], d->xp); |
295 |
|
|
const Scalar czp = |
296 |
|
|
d->data_x[ix]->cost; // cost due to zero disturance in 'i' and |
297 |
|
|
// positive disturbance in 'j' direction |
298 |
|
|
data->Lxx(ix, jx) = (cpp - czp - cp + c0) / d->xh_hess_pow2; |
299 |
|
|
data->Lxx(jx, ix) = data->Lxx(ix, jx); |
300 |
|
|
d->dx(ix) = d->xh_hess; |
301 |
|
|
d->dx(jx) = Scalar(0.); |
302 |
|
|
} |
303 |
|
|
d->dx(ix) = Scalar(0.); |
304 |
|
|
} |
305 |
|
|
#endif |
306 |
|
|
|
307 |
|
✗ |
if (with_gauss_approx_) { |
308 |
|
✗ |
data->Lxx = d->Rx.transpose() * d->Rx; |
309 |
|
|
} |
310 |
|
|
} |
311 |
|
|
|
312 |
|
|
template <typename Scalar> |
313 |
|
|
std::shared_ptr<DifferentialActionDataAbstractTpl<Scalar> > |
314 |
|
✗ |
DifferentialActionModelNumDiffTpl<Scalar>::createData() { |
315 |
|
✗ |
return std::allocate_shared<Data>(Eigen::aligned_allocator<Data>(), this); |
316 |
|
|
} |
317 |
|
|
|
318 |
|
|
template <typename Scalar> |
319 |
|
✗ |
void DifferentialActionModelNumDiffTpl<Scalar>::quasiStatic( |
320 |
|
|
const std::shared_ptr<DifferentialActionDataAbstract>& data, |
321 |
|
|
Eigen::Ref<VectorXs> u, const Eigen::Ref<const VectorXs>& x, |
322 |
|
|
const std::size_t maxiter, const Scalar tol) { |
323 |
|
✗ |
Data* d = static_cast<Data*>(data.get()); |
324 |
|
✗ |
model_->quasiStatic(d->data_0, u, x, maxiter, tol); |
325 |
|
|
} |
326 |
|
|
|
327 |
|
|
template <typename Scalar> |
328 |
|
|
template <typename NewScalar> |
329 |
|
|
DifferentialActionModelNumDiffTpl<NewScalar> |
330 |
|
✗ |
DifferentialActionModelNumDiffTpl<Scalar>::cast() const { |
331 |
|
|
typedef DifferentialActionModelNumDiffTpl<NewScalar> ReturnType; |
332 |
|
✗ |
ReturnType res(model_->template cast<NewScalar>()); |
333 |
|
✗ |
return res; |
334 |
|
|
} |
335 |
|
|
|
336 |
|
|
template <typename Scalar> |
337 |
|
|
const std::shared_ptr<DifferentialActionModelAbstractTpl<Scalar> >& |
338 |
|
✗ |
DifferentialActionModelNumDiffTpl<Scalar>::get_model() const { |
339 |
|
✗ |
return model_; |
340 |
|
|
} |
341 |
|
|
|
342 |
|
|
template <typename Scalar> |
343 |
|
✗ |
const Scalar DifferentialActionModelNumDiffTpl<Scalar>::get_disturbance() |
344 |
|
|
const { |
345 |
|
✗ |
return e_jac_; |
346 |
|
|
} |
347 |
|
|
|
348 |
|
|
template <typename Scalar> |
349 |
|
✗ |
void DifferentialActionModelNumDiffTpl<Scalar>::set_disturbance( |
350 |
|
|
const Scalar disturbance) { |
351 |
|
✗ |
if (disturbance < Scalar(0.)) { |
352 |
|
✗ |
throw_pretty("Invalid argument: " << "Disturbance constant is positive"); |
353 |
|
|
} |
354 |
|
✗ |
e_jac_ = disturbance; |
355 |
|
✗ |
e_hess_ = sqrt(Scalar(2.0) * e_jac_); |
356 |
|
|
} |
357 |
|
|
|
358 |
|
|
template <typename Scalar> |
359 |
|
✗ |
bool DifferentialActionModelNumDiffTpl<Scalar>::get_with_gauss_approx() { |
360 |
|
✗ |
return with_gauss_approx_; |
361 |
|
|
} |
362 |
|
|
|
363 |
|
|
template <typename Scalar> |
364 |
|
✗ |
void DifferentialActionModelNumDiffTpl<Scalar>::print(std::ostream& os) const { |
365 |
|
✗ |
os << "DifferentialActionModelNumDiffTpl {action=" << *model_ << "}"; |
366 |
|
|
} |
367 |
|
|
|
368 |
|
|
template <typename Scalar> |
369 |
|
✗ |
void DifferentialActionModelNumDiffTpl<Scalar>::assertStableStateFD( |
370 |
|
|
const Eigen::Ref<const VectorXs>& /** x */) { |
371 |
|
|
// TODO(cmastalli): First we need to do it AMNumDiff and then to replicate it. |
372 |
|
|
} |
373 |
|
|
|
374 |
|
|
} // namespace crocoddyl |
375 |
|
|
|