GCC Code Coverage Report


Directory: ./
File: bindings/python/crocoddyl/core/solvers/fddp-double.cpp
Date: 2025-04-18 16:41:15
Exec Total Coverage
Lines: 0 16 0.0%
Branches: 0 22 0.0%

Line Branch Exec Source
1 ///////////////////////////////////////////////////////////////////////////////
2 // BSD 3-Clause License
3 //
4 // Copyright (C) 2019-2025, LAAS-CNRS, University of Edinburgh,
5 // Heriot-Watt University
6 // Copyright note valid unless otherwise stated in individual files.
7 // All rights reserved.
8 ///////////////////////////////////////////////////////////////////////////////
9
10 #include "crocoddyl/core/solvers/fddp.hpp"
11
12 #include "python/crocoddyl/core/core.hpp"
13 #include "python/crocoddyl/utils/copyable.hpp"
14
15 #define SCALAR_float64
16
17 namespace crocoddyl {
18 namespace python {
19
20 BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS(SolverFDDP_solves, SolverFDDP::solve, 0,
21 5)
22 BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS(SolverFDDP_computeDirections,
23 SolverDDP::computeDirection, 0, 1)
24
25 void exposeSolverFDDP() {
26 #ifdef SCALAR_float64
27 bp::register_ptr_to_python<std::shared_ptr<SolverFDDP> >();
28
29 bp::class_<SolverFDDP, bp::bases<SolverDDP> >(
30 "SolverFDDP",
31 "Feasibility-driven DDP (FDDP) solver.\n\n"
32 "The FDDP solver computes an optimal trajectory and control commands by "
33 "iterates\n"
34 "running backward and forward passes. The backward-pass updates locally "
35 "the\n"
36 "quadratic approximation of the problem and computes descent direction,\n"
37 "and the forward-pass rollouts this new policy by integrating the system "
38 "dynamics\n"
39 "along a tuple of optimized control commands U*.\n"
40 ":param shootingProblem: shooting problem (list of action models along "
41 "trajectory.)",
42 bp::init<std::shared_ptr<ShootingProblem> >(
43 bp::args("self", "problem"),
44 "Initialize the vector dimension.\n\n"
45 ":param problem: shooting problem."))
46 .def("solve", &SolverFDDP::solve,
47 SolverFDDP_solves(
48 bp::args("self", "init_xs", "init_us", "maxiter", "is_feasible",
49 "init_reg"),
50 "Compute the optimal trajectory xopt, uopt as lists of T+1 and "
51 "T terms.\n\n"
52 "From an initial guess init_xs,init_us (feasible or not), "
53 "iterate\n"
54 "over computeDirection and tryStep until stoppingCriteria is "
55 "below\n"
56 "threshold. It also describes the globalization strategy used\n"
57 "during the numerical optimization.\n"
58 ":param init_xs: initial guess for state trajectory with T+1 "
59 "elements (default [])\n"
60 ":param init_us: initial guess for control trajectory with T "
61 "elements (default []).\n"
62 ":param maxiter: maximum allowed number of iterations (default "
63 "100).\n"
64 ":param is_feasible: true if the init_xs are obtained from "
65 "integrating the init_us (rollout)\n"
66 "(default False).\n"
67 ":param init_reg: initial guess for the regularization value. "
68 "Very low values are typical\n"
69 " used with very good guess points (default "
70 "1e-9).\n"
71 ":returns the optimal trajectory xopt, uopt and a boolean that "
72 "describes if convergence was reached."))
73 .def("updateExpectedImprovement", &SolverFDDP::updateExpectedImprovement,
74 bp::return_value_policy<bp::reference_existing_object>(),
75 bp::args("self"), "Update the expected improvement model\n\n")
76 .add_property("th_acceptNegStep",
77 bp::make_function(&SolverFDDP::get_th_acceptnegstep),
78 bp::make_function(&SolverFDDP::set_th_acceptnegstep),
79 "threshold for step acceptance in ascent direction")
80 .def(CopyableVisitor<SolverFDDP>());
81 #endif
82 }
83
84 } // namespace python
85 } // namespace crocoddyl
86