Line |
Branch |
Exec |
Source |
1 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
2 |
|
|
// BSD 3-Clause License |
3 |
|
|
// |
4 |
|
|
// Copyright (C) 2019-2022, LAAS-CNRS, University of Edinburgh |
5 |
|
|
// Heriot-Watt University |
6 |
|
|
// Copyright note valid unless otherwise stated in individual files. |
7 |
|
|
// All rights reserved. |
8 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
9 |
|
|
|
10 |
|
|
#ifdef CROCODDYL_WITH_MULTITHREADING |
11 |
|
|
#include <omp.h> |
12 |
|
|
#endif // CROCODDYL_WITH_MULTITHREADING |
13 |
|
|
|
14 |
|
|
#include "crocoddyl/core/solvers/fddp.hpp" |
15 |
|
|
|
16 |
|
|
namespace crocoddyl { |
17 |
|
|
|
18 |
|
✗ |
SolverFDDP::SolverFDDP(std::shared_ptr<ShootingProblem> problem) |
19 |
|
✗ |
: SolverDDP(problem), dg_(0), dq_(0), dv_(0), th_acceptnegstep_(2) {} |
20 |
|
|
|
21 |
|
✗ |
SolverFDDP::~SolverFDDP() {} |
22 |
|
|
|
23 |
|
✗ |
bool SolverFDDP::solve(const std::vector<Eigen::VectorXd>& init_xs, |
24 |
|
|
const std::vector<Eigen::VectorXd>& init_us, |
25 |
|
|
const std::size_t maxiter, const bool is_feasible, |
26 |
|
|
const double init_reg) { |
27 |
|
✗ |
START_PROFILER("SolverFDDP::solve"); |
28 |
|
✗ |
if (problem_->is_updated()) { |
29 |
|
✗ |
resizeData(); |
30 |
|
|
} |
31 |
|
✗ |
xs_try_[0] = |
32 |
|
✗ |
problem_->get_x0(); // it is needed in case that init_xs[0] is infeasible |
33 |
|
✗ |
setCandidate(init_xs, init_us, is_feasible); |
34 |
|
|
|
35 |
|
✗ |
if (std::isnan(init_reg)) { |
36 |
|
✗ |
preg_ = reg_min_; |
37 |
|
✗ |
dreg_ = reg_min_; |
38 |
|
|
} else { |
39 |
|
✗ |
preg_ = init_reg; |
40 |
|
✗ |
dreg_ = init_reg; |
41 |
|
|
} |
42 |
|
✗ |
was_feasible_ = false; |
43 |
|
|
|
44 |
|
✗ |
bool recalcDiff = true; |
45 |
|
✗ |
for (iter_ = 0; iter_ < maxiter; ++iter_) { |
46 |
|
|
while (true) { |
47 |
|
|
try { |
48 |
|
✗ |
computeDirection(recalcDiff); |
49 |
|
✗ |
} catch (std::exception& e) { |
50 |
|
✗ |
recalcDiff = false; |
51 |
|
✗ |
increaseRegularization(); |
52 |
|
✗ |
if (preg_ == reg_max_) { |
53 |
|
✗ |
return false; |
54 |
|
|
} else { |
55 |
|
✗ |
continue; |
56 |
|
|
} |
57 |
|
|
} |
58 |
|
✗ |
break; |
59 |
|
|
} |
60 |
|
✗ |
updateExpectedImprovement(); |
61 |
|
|
|
62 |
|
|
// We need to recalculate the derivatives when the step length passes |
63 |
|
✗ |
recalcDiff = false; |
64 |
|
✗ |
for (std::vector<double>::const_iterator it = alphas_.begin(); |
65 |
|
✗ |
it != alphas_.end(); ++it) { |
66 |
|
✗ |
steplength_ = *it; |
67 |
|
|
|
68 |
|
|
try { |
69 |
|
✗ |
dV_ = tryStep(steplength_); |
70 |
|
✗ |
} catch (std::exception& e) { |
71 |
|
✗ |
continue; |
72 |
|
|
} |
73 |
|
✗ |
expectedImprovement(); |
74 |
|
✗ |
dVexp_ = steplength_ * (d_[0] + 0.5 * steplength_ * d_[1]); |
75 |
|
|
|
76 |
|
✗ |
if (dVexp_ >= 0) { // descend direction |
77 |
|
✗ |
if (std::abs(d_[0]) < th_grad_ || dV_ > th_acceptstep_ * dVexp_) { |
78 |
|
✗ |
was_feasible_ = is_feasible_; |
79 |
|
✗ |
setCandidate(xs_try_, us_try_, (was_feasible_) || (steplength_ == 1)); |
80 |
|
✗ |
cost_ = cost_try_; |
81 |
|
✗ |
recalcDiff = true; |
82 |
|
✗ |
break; |
83 |
|
|
} |
84 |
|
|
} else { // reducing the gaps by allowing a small increment in the cost |
85 |
|
|
// value |
86 |
|
✗ |
if (!is_feasible_ && dV_ > th_acceptnegstep_ * dVexp_) { |
87 |
|
✗ |
was_feasible_ = is_feasible_; |
88 |
|
✗ |
setCandidate(xs_try_, us_try_, (was_feasible_) || (steplength_ == 1)); |
89 |
|
✗ |
cost_ = cost_try_; |
90 |
|
✗ |
recalcDiff = true; |
91 |
|
✗ |
break; |
92 |
|
|
} |
93 |
|
|
} |
94 |
|
|
} |
95 |
|
|
|
96 |
|
✗ |
if (steplength_ > th_stepdec_) { |
97 |
|
✗ |
decreaseRegularization(); |
98 |
|
|
} |
99 |
|
✗ |
if (steplength_ <= th_stepinc_) { |
100 |
|
✗ |
increaseRegularization(); |
101 |
|
✗ |
if (preg_ == reg_max_) { |
102 |
|
✗ |
STOP_PROFILER("SolverFDDP::solve"); |
103 |
|
✗ |
return false; |
104 |
|
|
} |
105 |
|
|
} |
106 |
|
✗ |
stoppingCriteria(); |
107 |
|
|
|
108 |
|
✗ |
const std::size_t n_callbacks = callbacks_.size(); |
109 |
|
✗ |
for (std::size_t c = 0; c < n_callbacks; ++c) { |
110 |
|
✗ |
CallbackAbstract& callback = *callbacks_[c]; |
111 |
|
✗ |
callback(*this); |
112 |
|
|
} |
113 |
|
|
|
114 |
|
✗ |
if (was_feasible_ && stop_ < th_stop_) { |
115 |
|
✗ |
STOP_PROFILER("SolverFDDP::solve"); |
116 |
|
✗ |
return true; |
117 |
|
|
} |
118 |
|
|
} |
119 |
|
✗ |
STOP_PROFILER("SolverFDDP::solve"); |
120 |
|
✗ |
return false; |
121 |
|
|
} |
122 |
|
|
|
123 |
|
✗ |
const Eigen::Vector2d& SolverFDDP::expectedImprovement() { |
124 |
|
✗ |
dv_ = 0; |
125 |
|
✗ |
const std::size_t T = this->problem_->get_T(); |
126 |
|
✗ |
if (!is_feasible_) { |
127 |
|
|
// NB: The dimension of vectors xs_try_ and xs_ are T+1, whereas the |
128 |
|
|
// dimension of dx_ is T. Here, we are re-using the final element of dx_ for |
129 |
|
|
// the computation of the difference at the terminal node. Using the access |
130 |
|
|
// iterator back() this re-use of the final element is fine. Cf. the |
131 |
|
|
// discussion at https://github.com/loco-3d/crocoddyl/issues/1022 |
132 |
|
✗ |
problem_->get_terminalModel()->get_state()->diff(xs_try_.back(), xs_.back(), |
133 |
|
✗ |
dx_.back()); |
134 |
|
✗ |
fTVxx_p_.noalias() = Vxx_.back() * dx_.back(); |
135 |
|
✗ |
dv_ -= fs_.back().dot(fTVxx_p_); |
136 |
|
|
const std::vector<std::shared_ptr<ActionModelAbstract> >& models = |
137 |
|
✗ |
problem_->get_runningModels(); |
138 |
|
|
|
139 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
140 |
|
✗ |
models[t]->get_state()->diff(xs_try_[t], xs_[t], dx_[t]); |
141 |
|
✗ |
fTVxx_p_.noalias() = Vxx_[t] * dx_[t]; |
142 |
|
✗ |
dv_ -= fs_[t].dot(fTVxx_p_); |
143 |
|
|
} |
144 |
|
|
} |
145 |
|
✗ |
d_[0] = dg_ + dv_; |
146 |
|
✗ |
d_[1] = dq_ - 2 * dv_; |
147 |
|
✗ |
return d_; |
148 |
|
|
} |
149 |
|
|
|
150 |
|
✗ |
void SolverFDDP::updateExpectedImprovement() { |
151 |
|
✗ |
dg_ = 0; |
152 |
|
✗ |
dq_ = 0; |
153 |
|
✗ |
const std::size_t T = this->problem_->get_T(); |
154 |
|
✗ |
if (!is_feasible_) { |
155 |
|
✗ |
dg_ -= Vx_.back().dot(fs_.back()); |
156 |
|
✗ |
fTVxx_p_.noalias() = Vxx_.back() * fs_.back(); |
157 |
|
✗ |
dq_ += fs_.back().dot(fTVxx_p_); |
158 |
|
|
} |
159 |
|
|
const std::vector<std::shared_ptr<ActionModelAbstract> >& models = |
160 |
|
✗ |
problem_->get_runningModels(); |
161 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
162 |
|
✗ |
const std::size_t nu = models[t]->get_nu(); |
163 |
|
✗ |
if (nu != 0) { |
164 |
|
✗ |
dg_ += Qu_[t].dot(k_[t]); |
165 |
|
✗ |
dq_ -= k_[t].dot(Quuk_[t]); |
166 |
|
|
} |
167 |
|
✗ |
if (!is_feasible_) { |
168 |
|
✗ |
dg_ -= Vx_[t].dot(fs_[t]); |
169 |
|
✗ |
fTVxx_p_.noalias() = Vxx_[t] * fs_[t]; |
170 |
|
✗ |
dq_ += fs_[t].dot(fTVxx_p_); |
171 |
|
|
} |
172 |
|
|
} |
173 |
|
|
} |
174 |
|
|
|
175 |
|
✗ |
void SolverFDDP::forwardPass(const double steplength) { |
176 |
|
✗ |
if (steplength > 1. || steplength < 0.) { |
177 |
|
✗ |
throw_pretty("Invalid argument: " |
178 |
|
|
<< "invalid step length, value is between 0. to 1."); |
179 |
|
|
} |
180 |
|
✗ |
START_PROFILER("SolverFDDP::forwardPass"); |
181 |
|
✗ |
cost_try_ = 0.; |
182 |
|
✗ |
xnext_ = problem_->get_x0(); |
183 |
|
✗ |
const std::size_t T = problem_->get_T(); |
184 |
|
|
const std::vector<std::shared_ptr<ActionModelAbstract> >& models = |
185 |
|
✗ |
problem_->get_runningModels(); |
186 |
|
|
const std::vector<std::shared_ptr<ActionDataAbstract> >& datas = |
187 |
|
✗ |
problem_->get_runningDatas(); |
188 |
|
✗ |
if ((is_feasible_) || (steplength == 1)) { |
189 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
190 |
|
✗ |
const std::shared_ptr<ActionModelAbstract>& m = models[t]; |
191 |
|
✗ |
const std::shared_ptr<ActionDataAbstract>& d = datas[t]; |
192 |
|
✗ |
const std::size_t nu = m->get_nu(); |
193 |
|
|
|
194 |
|
✗ |
xs_try_[t] = xnext_; |
195 |
|
✗ |
m->get_state()->diff(xs_[t], xs_try_[t], dx_[t]); |
196 |
|
✗ |
if (nu != 0) { |
197 |
|
✗ |
us_try_[t].noalias() = us_[t] - k_[t] * steplength - K_[t] * dx_[t]; |
198 |
|
✗ |
m->calc(d, xs_try_[t], us_try_[t]); |
199 |
|
|
} else { |
200 |
|
✗ |
m->calc(d, xs_try_[t]); |
201 |
|
|
} |
202 |
|
✗ |
xnext_ = d->xnext; |
203 |
|
✗ |
cost_try_ += d->cost; |
204 |
|
|
|
205 |
|
✗ |
if (raiseIfNaN(cost_try_)) { |
206 |
|
✗ |
STOP_PROFILER("SolverFDDP::forwardPass"); |
207 |
|
✗ |
throw_pretty("forward_error"); |
208 |
|
|
} |
209 |
|
✗ |
if (raiseIfNaN(xnext_.lpNorm<Eigen::Infinity>())) { |
210 |
|
✗ |
STOP_PROFILER("SolverFDDP::forwardPass"); |
211 |
|
✗ |
throw_pretty("forward_error"); |
212 |
|
|
} |
213 |
|
|
} |
214 |
|
|
|
215 |
|
|
const std::shared_ptr<ActionModelAbstract>& m = |
216 |
|
✗ |
problem_->get_terminalModel(); |
217 |
|
✗ |
const std::shared_ptr<ActionDataAbstract>& d = problem_->get_terminalData(); |
218 |
|
✗ |
xs_try_.back() = xnext_; |
219 |
|
✗ |
m->calc(d, xs_try_.back()); |
220 |
|
✗ |
cost_try_ += d->cost; |
221 |
|
|
|
222 |
|
✗ |
if (raiseIfNaN(cost_try_)) { |
223 |
|
✗ |
STOP_PROFILER("SolverFDDP::forwardPass"); |
224 |
|
✗ |
throw_pretty("forward_error"); |
225 |
|
|
} |
226 |
|
✗ |
} else { |
227 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
228 |
|
✗ |
const std::shared_ptr<ActionModelAbstract>& m = models[t]; |
229 |
|
✗ |
const std::shared_ptr<ActionDataAbstract>& d = datas[t]; |
230 |
|
✗ |
const std::size_t nu = m->get_nu(); |
231 |
|
✗ |
m->get_state()->integrate(xnext_, fs_[t] * (steplength - 1), xs_try_[t]); |
232 |
|
✗ |
m->get_state()->diff(xs_[t], xs_try_[t], dx_[t]); |
233 |
|
✗ |
if (nu != 0) { |
234 |
|
✗ |
us_try_[t].noalias() = us_[t] - k_[t] * steplength - K_[t] * dx_[t]; |
235 |
|
✗ |
m->calc(d, xs_try_[t], us_try_[t]); |
236 |
|
|
} else { |
237 |
|
✗ |
m->calc(d, xs_try_[t]); |
238 |
|
|
} |
239 |
|
✗ |
xnext_ = d->xnext; |
240 |
|
✗ |
cost_try_ += d->cost; |
241 |
|
|
|
242 |
|
✗ |
if (raiseIfNaN(cost_try_)) { |
243 |
|
✗ |
STOP_PROFILER("SolverFDDP::forwardPass"); |
244 |
|
✗ |
throw_pretty("forward_error"); |
245 |
|
|
} |
246 |
|
✗ |
if (raiseIfNaN(xnext_.lpNorm<Eigen::Infinity>())) { |
247 |
|
✗ |
STOP_PROFILER("SolverFDDP::forwardPass"); |
248 |
|
✗ |
throw_pretty("forward_error"); |
249 |
|
|
} |
250 |
|
|
} |
251 |
|
|
|
252 |
|
|
const std::shared_ptr<ActionModelAbstract>& m = |
253 |
|
✗ |
problem_->get_terminalModel(); |
254 |
|
✗ |
const std::shared_ptr<ActionDataAbstract>& d = problem_->get_terminalData(); |
255 |
|
✗ |
m->get_state()->integrate(xnext_, fs_.back() * (steplength - 1), |
256 |
|
✗ |
xs_try_.back()); |
257 |
|
✗ |
m->calc(d, xs_try_.back()); |
258 |
|
✗ |
cost_try_ += d->cost; |
259 |
|
|
|
260 |
|
✗ |
if (raiseIfNaN(cost_try_)) { |
261 |
|
✗ |
STOP_PROFILER("SolverFDDP::forwardPass"); |
262 |
|
✗ |
throw_pretty("forward_error"); |
263 |
|
|
} |
264 |
|
|
} |
265 |
|
✗ |
STOP_PROFILER("SolverFDDP::forwardPass"); |
266 |
|
|
} |
267 |
|
|
|
268 |
|
✗ |
double SolverFDDP::get_th_acceptnegstep() const { return th_acceptnegstep_; } |
269 |
|
|
|
270 |
|
✗ |
void SolverFDDP::set_th_acceptnegstep(const double th_acceptnegstep) { |
271 |
|
✗ |
if (0. > th_acceptnegstep) { |
272 |
|
✗ |
throw_pretty( |
273 |
|
|
"Invalid argument: " << "th_acceptnegstep value has to be positive."); |
274 |
|
|
} |
275 |
|
✗ |
th_acceptnegstep_ = th_acceptnegstep; |
276 |
|
|
} |
277 |
|
|
|
278 |
|
|
} // namespace crocoddyl |
279 |
|
|
|