| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | /////////////////////////////////////////////////////////////////////////////// | ||
| 2 | // BSD 3-Clause License | ||
| 3 | // | ||
| 4 | // Copyright (C) 2019-2022, LAAS-CNRS, University of Edinburgh | ||
| 5 | // Heriot-Watt University | ||
| 6 | // Copyright note valid unless otherwise stated in individual files. | ||
| 7 | // All rights reserved. | ||
| 8 | /////////////////////////////////////////////////////////////////////////////// | ||
| 9 | |||
| 10 | #ifdef CROCODDYL_WITH_MULTITHREADING | ||
| 11 | #include <omp.h> | ||
| 12 | #endif // CROCODDYL_WITH_MULTITHREADING | ||
| 13 | |||
| 14 | #include "crocoddyl/core/solvers/fddp.hpp" | ||
| 15 | |||
| 16 | namespace crocoddyl { | ||
| 17 | |||
| 18 | ✗ | SolverFDDP::SolverFDDP(std::shared_ptr<ShootingProblem> problem) | |
| 19 | ✗ | : SolverDDP(problem), dg_(0), dq_(0), dv_(0), th_acceptnegstep_(2) {} | |
| 20 | |||
| 21 | ✗ | SolverFDDP::~SolverFDDP() {} | |
| 22 | |||
| 23 | ✗ | bool SolverFDDP::solve(const std::vector<Eigen::VectorXd>& init_xs, | |
| 24 | const std::vector<Eigen::VectorXd>& init_us, | ||
| 25 | const std::size_t maxiter, const bool is_feasible, | ||
| 26 | const double init_reg) { | ||
| 27 | ✗ | START_PROFILER("SolverFDDP::solve"); | |
| 28 | ✗ | if (problem_->is_updated()) { | |
| 29 | ✗ | resizeData(); | |
| 30 | } | ||
| 31 | ✗ | xs_try_[0] = | |
| 32 | ✗ | problem_->get_x0(); // it is needed in case that init_xs[0] is infeasible | |
| 33 | ✗ | setCandidate(init_xs, init_us, is_feasible); | |
| 34 | |||
| 35 | ✗ | if (std::isnan(init_reg)) { | |
| 36 | ✗ | preg_ = reg_min_; | |
| 37 | ✗ | dreg_ = reg_min_; | |
| 38 | } else { | ||
| 39 | ✗ | preg_ = init_reg; | |
| 40 | ✗ | dreg_ = init_reg; | |
| 41 | } | ||
| 42 | ✗ | was_feasible_ = false; | |
| 43 | |||
| 44 | ✗ | bool recalcDiff = true; | |
| 45 | ✗ | for (iter_ = 0; iter_ < maxiter; ++iter_) { | |
| 46 | while (true) { | ||
| 47 | try { | ||
| 48 | ✗ | computeDirection(recalcDiff); | |
| 49 | ✗ | } catch (std::exception& e) { | |
| 50 | ✗ | recalcDiff = false; | |
| 51 | ✗ | increaseRegularization(); | |
| 52 | ✗ | if (preg_ == reg_max_) { | |
| 53 | ✗ | return false; | |
| 54 | } else { | ||
| 55 | ✗ | continue; | |
| 56 | } | ||
| 57 | ✗ | } | |
| 58 | ✗ | break; | |
| 59 | ✗ | } | |
| 60 | ✗ | updateExpectedImprovement(); | |
| 61 | |||
| 62 | // We need to recalculate the derivatives when the step length passes | ||
| 63 | ✗ | recalcDiff = false; | |
| 64 | ✗ | for (std::vector<double>::const_iterator it = alphas_.begin(); | |
| 65 | ✗ | it != alphas_.end(); ++it) { | |
| 66 | ✗ | steplength_ = *it; | |
| 67 | |||
| 68 | try { | ||
| 69 | ✗ | dV_ = tryStep(steplength_); | |
| 70 | ✗ | } catch (std::exception& e) { | |
| 71 | ✗ | continue; | |
| 72 | ✗ | } | |
| 73 | ✗ | expectedImprovement(); | |
| 74 | ✗ | dVexp_ = steplength_ * (d_[0] + 0.5 * steplength_ * d_[1]); | |
| 75 | |||
| 76 | ✗ | if (dVexp_ >= 0) { // descend direction | |
| 77 | ✗ | if (std::abs(d_[0]) < th_grad_ || dV_ > th_acceptstep_ * dVexp_) { | |
| 78 | ✗ | was_feasible_ = is_feasible_; | |
| 79 | ✗ | setCandidate(xs_try_, us_try_, (was_feasible_) || (steplength_ == 1)); | |
| 80 | ✗ | cost_ = cost_try_; | |
| 81 | ✗ | recalcDiff = true; | |
| 82 | ✗ | break; | |
| 83 | } | ||
| 84 | } else { // reducing the gaps by allowing a small increment in the cost | ||
| 85 | // value | ||
| 86 | ✗ | if (!is_feasible_ && dV_ > th_acceptnegstep_ * dVexp_) { | |
| 87 | ✗ | was_feasible_ = is_feasible_; | |
| 88 | ✗ | setCandidate(xs_try_, us_try_, (was_feasible_) || (steplength_ == 1)); | |
| 89 | ✗ | cost_ = cost_try_; | |
| 90 | ✗ | recalcDiff = true; | |
| 91 | ✗ | break; | |
| 92 | } | ||
| 93 | } | ||
| 94 | } | ||
| 95 | |||
| 96 | ✗ | if (steplength_ > th_stepdec_) { | |
| 97 | ✗ | decreaseRegularization(); | |
| 98 | } | ||
| 99 | ✗ | if (steplength_ <= th_stepinc_) { | |
| 100 | ✗ | increaseRegularization(); | |
| 101 | ✗ | if (preg_ == reg_max_) { | |
| 102 | ✗ | STOP_PROFILER("SolverFDDP::solve"); | |
| 103 | ✗ | return false; | |
| 104 | } | ||
| 105 | } | ||
| 106 | ✗ | stoppingCriteria(); | |
| 107 | |||
| 108 | ✗ | const std::size_t n_callbacks = callbacks_.size(); | |
| 109 | ✗ | for (std::size_t c = 0; c < n_callbacks; ++c) { | |
| 110 | ✗ | CallbackAbstract& callback = *callbacks_[c]; | |
| 111 | ✗ | callback(*this); | |
| 112 | } | ||
| 113 | |||
| 114 | ✗ | if (was_feasible_ && stop_ < th_stop_) { | |
| 115 | ✗ | STOP_PROFILER("SolverFDDP::solve"); | |
| 116 | ✗ | return true; | |
| 117 | } | ||
| 118 | } | ||
| 119 | ✗ | STOP_PROFILER("SolverFDDP::solve"); | |
| 120 | ✗ | return false; | |
| 121 | } | ||
| 122 | |||
| 123 | ✗ | const Eigen::Vector2d& SolverFDDP::expectedImprovement() { | |
| 124 | ✗ | dv_ = 0; | |
| 125 | ✗ | const std::size_t T = this->problem_->get_T(); | |
| 126 | ✗ | if (!is_feasible_) { | |
| 127 | // NB: The dimension of vectors xs_try_ and xs_ are T+1, whereas the | ||
| 128 | // dimension of dx_ is T. Here, we are re-using the final element of dx_ for | ||
| 129 | // the computation of the difference at the terminal node. Using the access | ||
| 130 | // iterator back() this re-use of the final element is fine. Cf. the | ||
| 131 | // discussion at https://github.com/loco-3d/crocoddyl/issues/1022 | ||
| 132 | ✗ | problem_->get_terminalModel()->get_state()->diff(xs_try_.back(), xs_.back(), | |
| 133 | ✗ | dx_.back()); | |
| 134 | ✗ | fTVxx_p_.noalias() = Vxx_.back() * dx_.back(); | |
| 135 | ✗ | dv_ -= fs_.back().dot(fTVxx_p_); | |
| 136 | const std::vector<std::shared_ptr<ActionModelAbstract> >& models = | ||
| 137 | ✗ | problem_->get_runningModels(); | |
| 138 | |||
| 139 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
| 140 | ✗ | models[t]->get_state()->diff(xs_try_[t], xs_[t], dx_[t]); | |
| 141 | ✗ | fTVxx_p_.noalias() = Vxx_[t] * dx_[t]; | |
| 142 | ✗ | dv_ -= fs_[t].dot(fTVxx_p_); | |
| 143 | } | ||
| 144 | } | ||
| 145 | ✗ | d_[0] = dg_ + dv_; | |
| 146 | ✗ | d_[1] = dq_ - 2 * dv_; | |
| 147 | ✗ | return d_; | |
| 148 | } | ||
| 149 | |||
| 150 | ✗ | void SolverFDDP::updateExpectedImprovement() { | |
| 151 | ✗ | dg_ = 0; | |
| 152 | ✗ | dq_ = 0; | |
| 153 | ✗ | const std::size_t T = this->problem_->get_T(); | |
| 154 | ✗ | if (!is_feasible_) { | |
| 155 | ✗ | dg_ -= Vx_.back().dot(fs_.back()); | |
| 156 | ✗ | fTVxx_p_.noalias() = Vxx_.back() * fs_.back(); | |
| 157 | ✗ | dq_ += fs_.back().dot(fTVxx_p_); | |
| 158 | } | ||
| 159 | const std::vector<std::shared_ptr<ActionModelAbstract> >& models = | ||
| 160 | ✗ | problem_->get_runningModels(); | |
| 161 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
| 162 | ✗ | const std::size_t nu = models[t]->get_nu(); | |
| 163 | ✗ | if (nu != 0) { | |
| 164 | ✗ | dg_ += Qu_[t].dot(k_[t]); | |
| 165 | ✗ | dq_ -= k_[t].dot(Quuk_[t]); | |
| 166 | } | ||
| 167 | ✗ | if (!is_feasible_) { | |
| 168 | ✗ | dg_ -= Vx_[t].dot(fs_[t]); | |
| 169 | ✗ | fTVxx_p_.noalias() = Vxx_[t] * fs_[t]; | |
| 170 | ✗ | dq_ += fs_[t].dot(fTVxx_p_); | |
| 171 | } | ||
| 172 | } | ||
| 173 | ✗ | } | |
| 174 | |||
| 175 | ✗ | void SolverFDDP::forwardPass(const double steplength) { | |
| 176 | ✗ | if (steplength > 1. || steplength < 0.) { | |
| 177 | ✗ | throw_pretty("Invalid argument: " | |
| 178 | << "invalid step length, value is between 0. to 1."); | ||
| 179 | } | ||
| 180 | ✗ | START_PROFILER("SolverFDDP::forwardPass"); | |
| 181 | ✗ | cost_try_ = 0.; | |
| 182 | ✗ | xnext_ = problem_->get_x0(); | |
| 183 | ✗ | const std::size_t T = problem_->get_T(); | |
| 184 | const std::vector<std::shared_ptr<ActionModelAbstract> >& models = | ||
| 185 | ✗ | problem_->get_runningModels(); | |
| 186 | const std::vector<std::shared_ptr<ActionDataAbstract> >& datas = | ||
| 187 | ✗ | problem_->get_runningDatas(); | |
| 188 | ✗ | if ((is_feasible_) || (steplength == 1)) { | |
| 189 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
| 190 | ✗ | const std::shared_ptr<ActionModelAbstract>& m = models[t]; | |
| 191 | ✗ | const std::shared_ptr<ActionDataAbstract>& d = datas[t]; | |
| 192 | ✗ | const std::size_t nu = m->get_nu(); | |
| 193 | |||
| 194 | ✗ | xs_try_[t] = xnext_; | |
| 195 | ✗ | m->get_state()->diff(xs_[t], xs_try_[t], dx_[t]); | |
| 196 | ✗ | if (nu != 0) { | |
| 197 | ✗ | us_try_[t].noalias() = us_[t] - k_[t] * steplength - K_[t] * dx_[t]; | |
| 198 | ✗ | m->calc(d, xs_try_[t], us_try_[t]); | |
| 199 | } else { | ||
| 200 | ✗ | m->calc(d, xs_try_[t]); | |
| 201 | } | ||
| 202 | ✗ | xnext_ = d->xnext; | |
| 203 | ✗ | cost_try_ += d->cost; | |
| 204 | |||
| 205 | ✗ | if (raiseIfNaN(cost_try_)) { | |
| 206 | ✗ | STOP_PROFILER("SolverFDDP::forwardPass"); | |
| 207 | ✗ | throw_pretty("forward_error"); | |
| 208 | } | ||
| 209 | ✗ | if (raiseIfNaN(xnext_.lpNorm<Eigen::Infinity>())) { | |
| 210 | ✗ | STOP_PROFILER("SolverFDDP::forwardPass"); | |
| 211 | ✗ | throw_pretty("forward_error"); | |
| 212 | } | ||
| 213 | } | ||
| 214 | |||
| 215 | const std::shared_ptr<ActionModelAbstract>& m = | ||
| 216 | ✗ | problem_->get_terminalModel(); | |
| 217 | ✗ | const std::shared_ptr<ActionDataAbstract>& d = problem_->get_terminalData(); | |
| 218 | ✗ | xs_try_.back() = xnext_; | |
| 219 | ✗ | m->calc(d, xs_try_.back()); | |
| 220 | ✗ | cost_try_ += d->cost; | |
| 221 | |||
| 222 | ✗ | if (raiseIfNaN(cost_try_)) { | |
| 223 | ✗ | STOP_PROFILER("SolverFDDP::forwardPass"); | |
| 224 | ✗ | throw_pretty("forward_error"); | |
| 225 | } | ||
| 226 | ✗ | } else { | |
| 227 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
| 228 | ✗ | const std::shared_ptr<ActionModelAbstract>& m = models[t]; | |
| 229 | ✗ | const std::shared_ptr<ActionDataAbstract>& d = datas[t]; | |
| 230 | ✗ | const std::size_t nu = m->get_nu(); | |
| 231 | ✗ | m->get_state()->integrate(xnext_, fs_[t] * (steplength - 1), xs_try_[t]); | |
| 232 | ✗ | m->get_state()->diff(xs_[t], xs_try_[t], dx_[t]); | |
| 233 | ✗ | if (nu != 0) { | |
| 234 | ✗ | us_try_[t].noalias() = us_[t] - k_[t] * steplength - K_[t] * dx_[t]; | |
| 235 | ✗ | m->calc(d, xs_try_[t], us_try_[t]); | |
| 236 | } else { | ||
| 237 | ✗ | m->calc(d, xs_try_[t]); | |
| 238 | } | ||
| 239 | ✗ | xnext_ = d->xnext; | |
| 240 | ✗ | cost_try_ += d->cost; | |
| 241 | |||
| 242 | ✗ | if (raiseIfNaN(cost_try_)) { | |
| 243 | ✗ | STOP_PROFILER("SolverFDDP::forwardPass"); | |
| 244 | ✗ | throw_pretty("forward_error"); | |
| 245 | } | ||
| 246 | ✗ | if (raiseIfNaN(xnext_.lpNorm<Eigen::Infinity>())) { | |
| 247 | ✗ | STOP_PROFILER("SolverFDDP::forwardPass"); | |
| 248 | ✗ | throw_pretty("forward_error"); | |
| 249 | } | ||
| 250 | } | ||
| 251 | |||
| 252 | const std::shared_ptr<ActionModelAbstract>& m = | ||
| 253 | ✗ | problem_->get_terminalModel(); | |
| 254 | ✗ | const std::shared_ptr<ActionDataAbstract>& d = problem_->get_terminalData(); | |
| 255 | ✗ | m->get_state()->integrate(xnext_, fs_.back() * (steplength - 1), | |
| 256 | ✗ | xs_try_.back()); | |
| 257 | ✗ | m->calc(d, xs_try_.back()); | |
| 258 | ✗ | cost_try_ += d->cost; | |
| 259 | |||
| 260 | ✗ | if (raiseIfNaN(cost_try_)) { | |
| 261 | ✗ | STOP_PROFILER("SolverFDDP::forwardPass"); | |
| 262 | ✗ | throw_pretty("forward_error"); | |
| 263 | } | ||
| 264 | } | ||
| 265 | ✗ | STOP_PROFILER("SolverFDDP::forwardPass"); | |
| 266 | ✗ | } | |
| 267 | |||
| 268 | ✗ | double SolverFDDP::get_th_acceptnegstep() const { return th_acceptnegstep_; } | |
| 269 | |||
| 270 | ✗ | void SolverFDDP::set_th_acceptnegstep(const double th_acceptnegstep) { | |
| 271 | ✗ | if (0. > th_acceptnegstep) { | |
| 272 | ✗ | throw_pretty( | |
| 273 | "Invalid argument: " << "th_acceptnegstep value has to be positive."); | ||
| 274 | } | ||
| 275 | ✗ | th_acceptnegstep_ = th_acceptnegstep; | |
| 276 | ✗ | } | |
| 277 | |||
| 278 | } // namespace crocoddyl | ||
| 279 |