Line |
Branch |
Exec |
Source |
1 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
2 |
|
|
// BSD 3-Clause License |
3 |
|
|
// |
4 |
|
|
// Copyright (C) 2019-2025, LAAS-CNRS, University of Edinburgh, |
5 |
|
|
// University of Oxford, Heriot-Watt University |
6 |
|
|
// Copyright note valid unless otherwise stated in individual files. |
7 |
|
|
// All rights reserved. |
8 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
9 |
|
|
|
10 |
|
|
#ifndef CROCODDYL_MULTIBODY_ACTIONS_IMPULSE_FWDDYN_HPP_ |
11 |
|
|
#define CROCODDYL_MULTIBODY_ACTIONS_IMPULSE_FWDDYN_HPP_ |
12 |
|
|
|
13 |
|
|
#include "crocoddyl/core/action-base.hpp" |
14 |
|
|
#include "crocoddyl/core/constraints/constraint-manager.hpp" |
15 |
|
|
#include "crocoddyl/core/costs/cost-sum.hpp" |
16 |
|
|
#include "crocoddyl/multibody/actions/impulse-fwddyn.hpp" |
17 |
|
|
#include "crocoddyl/multibody/actuations/floating-base.hpp" |
18 |
|
|
#include "crocoddyl/multibody/data/impulses.hpp" |
19 |
|
|
#include "crocoddyl/multibody/fwd.hpp" |
20 |
|
|
#include "crocoddyl/multibody/impulses/multiple-impulses.hpp" |
21 |
|
|
#include "crocoddyl/multibody/states/multibody.hpp" |
22 |
|
|
|
23 |
|
|
namespace crocoddyl { |
24 |
|
|
|
25 |
|
|
/** |
26 |
|
|
* @brief Action model for impulse forward dynamics in multibody systems. |
27 |
|
|
* |
28 |
|
|
* This class implements impulse forward dynamics given a stack of |
29 |
|
|
* rigid-impulses described in `ImpulseModelMultipleTpl`, i.e., \f[ |
30 |
|
|
* \left[\begin{matrix}\mathbf{v}^+ \\ -\boldsymbol{\Lambda}\end{matrix}\right] |
31 |
|
|
* = \left[\begin{matrix}\mathbf{M} & \mathbf{J}^{\top}_c \\ {\mathbf{J}_{c}} & |
32 |
|
|
* \mathbf{0} \end{matrix}\right]^{-1} |
33 |
|
|
* \left[\begin{matrix}\mathbf{M}\mathbf{v}^- \\ -e\mathbf{J}_c\mathbf{v}^- |
34 |
|
|
* \\\end{matrix}\right], \f] where \f$\mathbf{q}\in Q\f$, |
35 |
|
|
* \f$\mathbf{v}\in\mathbb{R}^{nv}\f$ are the configuration point and |
36 |
|
|
* generalized velocity (its tangent vector), respectively; \f$\mathbf{v}^+\f$, |
37 |
|
|
* \f$\mathbf{v}^-\f$ are the discontinuous changes in the generalized velocity |
38 |
|
|
* (i.e., velocity before and after impact, respectively); |
39 |
|
|
* \f$\mathbf{J}_c\in\mathbb{R}^{nc\times nv}\f$ is the contact Jacobian |
40 |
|
|
* expressed in the local frame; and |
41 |
|
|
* \f$\boldsymbol{\Lambda}\in\mathbb{R}^{nc}\f$ is the impulse vector. |
42 |
|
|
* |
43 |
|
|
* The derivatives of the next state and contact impulses are computed |
44 |
|
|
* efficiently based on the analytical derivatives of Recursive Newton Euler |
45 |
|
|
* Algorithm (RNEA) as described in \cite mastalli-icra20. Note that the |
46 |
|
|
* algorithm for computing the RNEA derivatives is described in \cite |
47 |
|
|
* carpentier-rss18. |
48 |
|
|
* |
49 |
|
|
* The stack of cost and constraint functions are implemented in |
50 |
|
|
* `CostModelSumTpl` and `ConstraintModelAbstractTpl`, respectively. The |
51 |
|
|
* computation of the impulse dynamics and its derivatives are carrying out |
52 |
|
|
* inside `calc()` and `calcDiff()` functions, respectively. It is also |
53 |
|
|
* important to remark that `calcDiff()` computes the derivatives using the |
54 |
|
|
* latest stored values by `calc()`. Thus, we need to run `calc()` first. |
55 |
|
|
* |
56 |
|
|
* \sa `ActionModelAbstractTpl`, `calc()`, `calcDiff()`, `createData()` |
57 |
|
|
*/ |
58 |
|
|
template <typename _Scalar> |
59 |
|
|
class ActionModelImpulseFwdDynamicsTpl |
60 |
|
|
: public ActionModelAbstractTpl<_Scalar> { |
61 |
|
|
public: |
62 |
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW |
63 |
|
✗ |
CROCODDYL_DERIVED_CAST(ActionModelBase, ActionModelImpulseFwdDynamicsTpl) |
64 |
|
|
|
65 |
|
|
typedef _Scalar Scalar; |
66 |
|
|
typedef ActionModelAbstractTpl<Scalar> Base; |
67 |
|
|
typedef ActionDataImpulseFwdDynamicsTpl<Scalar> Data; |
68 |
|
|
typedef MathBaseTpl<Scalar> MathBase; |
69 |
|
|
typedef CostModelSumTpl<Scalar> CostModelSum; |
70 |
|
|
typedef ConstraintModelManagerTpl<Scalar> ConstraintModelManager; |
71 |
|
|
typedef StateMultibodyTpl<Scalar> StateMultibody; |
72 |
|
|
typedef ActionDataAbstractTpl<Scalar> ActionDataAbstract; |
73 |
|
|
typedef ImpulseModelMultipleTpl<Scalar> ImpulseModelMultiple; |
74 |
|
|
typedef typename MathBase::VectorXs VectorXs; |
75 |
|
|
typedef typename MathBase::MatrixXs MatrixXs; |
76 |
|
|
|
77 |
|
|
/** |
78 |
|
|
* @brief Initialize the impulse forward-dynamics action model |
79 |
|
|
* |
80 |
|
|
* It describes the impulse dynamics of a multibody system under rigid-contact |
81 |
|
|
* constraints defined by `ImpulseModelMultipleTpl`. It computes the cost |
82 |
|
|
* described in `CostModelSumTpl`. |
83 |
|
|
* |
84 |
|
|
* @param[in] state State of the multibody system |
85 |
|
|
* @param[in] actuation Actuation model |
86 |
|
|
* @param[in] impulses Stack of rigid impulses |
87 |
|
|
* @param[in] costs Stack of cost functions |
88 |
|
|
* @param[in] r_coeff Restitution coefficient (default 0.) |
89 |
|
|
* @param[in] JMinvJt_damping Damping term used in operational space inertia |
90 |
|
|
* matrix (default 0.) |
91 |
|
|
* @param[in] enable_force Enable the computation of the contact force |
92 |
|
|
* derivatives (default false) |
93 |
|
|
*/ |
94 |
|
|
ActionModelImpulseFwdDynamicsTpl( |
95 |
|
|
std::shared_ptr<StateMultibody> state, |
96 |
|
|
std::shared_ptr<ImpulseModelMultiple> impulses, |
97 |
|
|
std::shared_ptr<CostModelSum> costs, const Scalar r_coeff = Scalar(0.), |
98 |
|
|
const Scalar JMinvJt_damping = Scalar(0.), |
99 |
|
|
const bool enable_force = false); |
100 |
|
|
|
101 |
|
|
/** |
102 |
|
|
* @brief Initialize the impulse forward-dynamics action model |
103 |
|
|
* |
104 |
|
|
* It describes the impulse dynamics of a multibody system under rigid-contact |
105 |
|
|
* constraints defined by `ImpulseModelMultipleTpl`. It computes the cost |
106 |
|
|
* described in `CostModelSumTpl`. |
107 |
|
|
* |
108 |
|
|
* @param[in] state State of the multibody system |
109 |
|
|
* @param[in] actuation Actuation model |
110 |
|
|
* @param[in] impulses Stack of rigid impulses |
111 |
|
|
* @param[in] costs Stack of cost functions |
112 |
|
|
* @param[in] constraints Stack of constraints |
113 |
|
|
* @param[in] r_coeff Restitution coefficient (default 0.) |
114 |
|
|
* @param[in] JMinvJt_damping Damping term used in operational space inertia |
115 |
|
|
* matrix (default 0.) |
116 |
|
|
* @param[in] enable_force Enable the computation of the contact force |
117 |
|
|
* derivatives (default false) |
118 |
|
|
*/ |
119 |
|
|
ActionModelImpulseFwdDynamicsTpl( |
120 |
|
|
std::shared_ptr<StateMultibody> state, |
121 |
|
|
std::shared_ptr<ImpulseModelMultiple> impulses, |
122 |
|
|
std::shared_ptr<CostModelSum> costs, |
123 |
|
|
std::shared_ptr<ConstraintModelManager> constraints, |
124 |
|
|
const Scalar r_coeff = Scalar(0.), |
125 |
|
|
const Scalar JMinvJt_damping = Scalar(0.), |
126 |
|
|
const bool enable_force = false); |
127 |
|
✗ |
virtual ~ActionModelImpulseFwdDynamicsTpl() = default; |
128 |
|
|
|
129 |
|
|
/** |
130 |
|
|
* @brief Compute the system acceleration, and cost value |
131 |
|
|
* |
132 |
|
|
* It computes the system acceleration using the impulse dynamics. |
133 |
|
|
* |
134 |
|
|
* @param[in] data Impulse forward-dynamics data |
135 |
|
|
* @param[in] x State point \f$\mathbf{x}\in\mathbb{R}^{ndx}\f$ |
136 |
|
|
* @param[in] u Control input \f$\mathbf{u}\in\mathbb{R}^{nu}\f$ |
137 |
|
|
*/ |
138 |
|
|
virtual void calc(const std::shared_ptr<ActionDataAbstract>& data, |
139 |
|
|
const Eigen::Ref<const VectorXs>& x, |
140 |
|
|
const Eigen::Ref<const VectorXs>& u) override; |
141 |
|
|
|
142 |
|
|
/** |
143 |
|
|
* @brief Compute the total cost value for nodes that depends only on the |
144 |
|
|
* state |
145 |
|
|
* |
146 |
|
|
* It updates the total cost and the system acceleration is not updated as it |
147 |
|
|
* is expected to be zero. Additionally, it does not update the contact |
148 |
|
|
* forces. This function is used in the terminal nodes of an optimal control |
149 |
|
|
* problem. |
150 |
|
|
* |
151 |
|
|
* @param[in] data Impulse forward-dynamics data |
152 |
|
|
* @param[in] x State point \f$\mathbf{x}\in\mathbb{R}^{ndx}\f$ |
153 |
|
|
*/ |
154 |
|
|
virtual void calc(const std::shared_ptr<ActionDataAbstract>& data, |
155 |
|
|
const Eigen::Ref<const VectorXs>& x) override; |
156 |
|
|
|
157 |
|
|
/** |
158 |
|
|
* @brief Compute the derivatives of the impulse dynamics, and cost function |
159 |
|
|
* |
160 |
|
|
* @param[in] data Impulse forward-dynamics data |
161 |
|
|
* @param[in] x State point \f$\mathbf{x}\in\mathbb{R}^{ndx}\f$ |
162 |
|
|
* @param[in] u Control input \f$\mathbf{u}\in\mathbb{R}^{nu}\f$ |
163 |
|
|
*/ |
164 |
|
|
virtual void calcDiff(const std::shared_ptr<ActionDataAbstract>& data, |
165 |
|
|
const Eigen::Ref<const VectorXs>& x, |
166 |
|
|
const Eigen::Ref<const VectorXs>& u) override; |
167 |
|
|
|
168 |
|
|
/** |
169 |
|
|
* @brief Compute the derivatives of the cost functions with respect to the |
170 |
|
|
* state only |
171 |
|
|
* |
172 |
|
|
* It updates the derivatives of the cost function with respect to the state |
173 |
|
|
* only. Additionally, it does not update the contact forces derivatives. This |
174 |
|
|
* function is used in the terminal nodes of an optimal control problem. |
175 |
|
|
* |
176 |
|
|
* @param[in] data Impulse forward-dynamics data |
177 |
|
|
* @param[in] x State point \f$\mathbf{x}\in\mathbb{R}^{ndx}\f$ |
178 |
|
|
*/ |
179 |
|
|
virtual void calcDiff(const std::shared_ptr<ActionDataAbstract>& data, |
180 |
|
|
const Eigen::Ref<const VectorXs>& x) override; |
181 |
|
|
|
182 |
|
|
/** |
183 |
|
|
* @brief Create the impulse forward-dynamics data |
184 |
|
|
* |
185 |
|
|
* @return impulse forward-dynamics data |
186 |
|
|
*/ |
187 |
|
|
virtual std::shared_ptr<ActionDataAbstract> createData() override; |
188 |
|
|
|
189 |
|
|
/** |
190 |
|
|
* @brief Cast the impulse-fwddyn model to a different scalar type. |
191 |
|
|
* |
192 |
|
|
* It is useful for operations requiring different precision or scalar types. |
193 |
|
|
* |
194 |
|
|
* @tparam NewScalar The new scalar type to cast to. |
195 |
|
|
* @return ActionModelImpulseFwdDynamicsTpl<NewScalar> An action model with |
196 |
|
|
* the new scalar type. |
197 |
|
|
*/ |
198 |
|
|
template <typename NewScalar> |
199 |
|
|
ActionModelImpulseFwdDynamicsTpl<NewScalar> cast() const; |
200 |
|
|
|
201 |
|
|
/** |
202 |
|
|
* @brief Check that the given data belongs to the impulse forward-dynamics |
203 |
|
|
* data |
204 |
|
|
*/ |
205 |
|
|
virtual bool checkData( |
206 |
|
|
const std::shared_ptr<ActionDataAbstract>& data) override; |
207 |
|
|
|
208 |
|
|
/** |
209 |
|
|
* @brief @copydoc Base::quasiStatic() |
210 |
|
|
*/ |
211 |
|
|
virtual void quasiStatic(const std::shared_ptr<ActionDataAbstract>& data, |
212 |
|
|
Eigen::Ref<VectorXs> u, |
213 |
|
|
const Eigen::Ref<const VectorXs>& x, |
214 |
|
|
const std::size_t maxiter = 100, |
215 |
|
|
const Scalar tol = Scalar(1e-9)) override; |
216 |
|
|
|
217 |
|
|
/** |
218 |
|
|
* @brief Return the number of inequality constraints |
219 |
|
|
*/ |
220 |
|
|
virtual std::size_t get_ng() const override; |
221 |
|
|
|
222 |
|
|
/** |
223 |
|
|
* @brief Return the number of equality constraints |
224 |
|
|
*/ |
225 |
|
|
virtual std::size_t get_nh() const override; |
226 |
|
|
|
227 |
|
|
/** |
228 |
|
|
* @brief Return the number of equality terminal constraints |
229 |
|
|
*/ |
230 |
|
|
virtual std::size_t get_ng_T() const override; |
231 |
|
|
|
232 |
|
|
/** |
233 |
|
|
* @brief Return the number of equality terminal constraints |
234 |
|
|
*/ |
235 |
|
|
virtual std::size_t get_nh_T() const override; |
236 |
|
|
|
237 |
|
|
/** |
238 |
|
|
* @brief Return the lower bound of the inequality constraints |
239 |
|
|
*/ |
240 |
|
|
virtual const VectorXs& get_g_lb() const override; |
241 |
|
|
|
242 |
|
|
/** |
243 |
|
|
* @brief Return the upper bound of the inequality constraints |
244 |
|
|
*/ |
245 |
|
|
virtual const VectorXs& get_g_ub() const override; |
246 |
|
|
|
247 |
|
|
/** |
248 |
|
|
* @brief Return the impulse model |
249 |
|
|
*/ |
250 |
|
|
const std::shared_ptr<ImpulseModelMultiple>& get_impulses() const; |
251 |
|
|
|
252 |
|
|
/** |
253 |
|
|
* @brief Return the cost model |
254 |
|
|
*/ |
255 |
|
|
const std::shared_ptr<CostModelSum>& get_costs() const; |
256 |
|
|
|
257 |
|
|
/** |
258 |
|
|
* @brief Return the constraint model manager |
259 |
|
|
*/ |
260 |
|
|
const std::shared_ptr<ConstraintModelManager>& get_constraints() const; |
261 |
|
|
|
262 |
|
|
/** |
263 |
|
|
* @brief Return the Pinocchio model |
264 |
|
|
*/ |
265 |
|
|
pinocchio::ModelTpl<Scalar>& get_pinocchio() const; |
266 |
|
|
|
267 |
|
|
/** |
268 |
|
|
* @brief Return the armature vector |
269 |
|
|
*/ |
270 |
|
|
const VectorXs& get_armature() const; |
271 |
|
|
|
272 |
|
|
/** |
273 |
|
|
* @brief Return the restituion coefficient |
274 |
|
|
*/ |
275 |
|
|
const Scalar get_restitution_coefficient() const; |
276 |
|
|
|
277 |
|
|
/** |
278 |
|
|
* @brief Return the damping factor used in the operational space inertia |
279 |
|
|
* matrix |
280 |
|
|
*/ |
281 |
|
|
const Scalar get_damping_factor() const; |
282 |
|
|
|
283 |
|
|
/** |
284 |
|
|
* @brief Modify the armature vector |
285 |
|
|
*/ |
286 |
|
|
void set_armature(const VectorXs& armature); |
287 |
|
|
|
288 |
|
|
/** |
289 |
|
|
* @brief Modify the restituion coefficient |
290 |
|
|
*/ |
291 |
|
|
void set_restitution_coefficient(const Scalar r_coeff); |
292 |
|
|
|
293 |
|
|
/** |
294 |
|
|
* @brief Modify the damping factor used in the operational space inertia |
295 |
|
|
* matrix |
296 |
|
|
*/ |
297 |
|
|
void set_damping_factor(const Scalar damping); |
298 |
|
|
|
299 |
|
|
/** |
300 |
|
|
* @brief Print relevant information of the impulse forward-dynamics model |
301 |
|
|
* |
302 |
|
|
* @param[out] os Output stream object |
303 |
|
|
*/ |
304 |
|
|
virtual void print(std::ostream& os) const override; |
305 |
|
|
|
306 |
|
|
protected: |
307 |
|
|
using Base::g_lb_; //!< Lower bound of the inequality constraints |
308 |
|
|
using Base::g_ub_; //!< Upper bound of the inequality constraints |
309 |
|
|
using Base::state_; //!< Model of the state |
310 |
|
|
|
311 |
|
|
private: |
312 |
|
|
void init(); |
313 |
|
|
void initCalc(Data* data, const Eigen::Ref<const VectorXs>& x); |
314 |
|
|
void initCalcDiff(Data* data, const Eigen::Ref<const VectorXs>& x); |
315 |
|
|
std::shared_ptr<ImpulseModelMultiple> impulses_; //!< Impulse model |
316 |
|
|
std::shared_ptr<CostModelSum> costs_; //!< Cost model |
317 |
|
|
std::shared_ptr<ConstraintModelManager> constraints_; //!< Constraint model |
318 |
|
|
pinocchio::ModelTpl<Scalar>* pinocchio_; //!< Pinocchio model |
319 |
|
|
bool with_armature_; //!< Indicate if we have defined an armature |
320 |
|
|
VectorXs armature_; //!< Armature vector |
321 |
|
|
Scalar r_coeff_; //!< Restitution coefficient |
322 |
|
|
Scalar JMinvJt_damping_; //!< Damping factor used in operational space |
323 |
|
|
//!< inertia matrix |
324 |
|
|
bool enable_force_; //!< Indicate if we have enabled the computation of the |
325 |
|
|
//!< contact-forces derivatives |
326 |
|
|
pinocchio::MotionTpl<Scalar> gravity_; //! Gravity acceleration |
327 |
|
|
}; |
328 |
|
|
|
329 |
|
|
template <typename _Scalar> |
330 |
|
|
struct ActionDataImpulseFwdDynamicsTpl : public ActionDataAbstractTpl<_Scalar> { |
331 |
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW |
332 |
|
|
typedef _Scalar Scalar; |
333 |
|
|
typedef MathBaseTpl<Scalar> MathBase; |
334 |
|
|
typedef ActionDataAbstractTpl<Scalar> Base; |
335 |
|
|
typedef typename MathBase::VectorXs VectorXs; |
336 |
|
|
typedef typename MathBase::MatrixXs MatrixXs; |
337 |
|
|
|
338 |
|
|
template <template <typename Scalar> class Model> |
339 |
|
✗ |
explicit ActionDataImpulseFwdDynamicsTpl(Model<Scalar>* const model) |
340 |
|
|
: Base(model), |
341 |
|
✗ |
pinocchio(pinocchio::DataTpl<Scalar>(model->get_pinocchio())), |
342 |
|
✗ |
multibody(&pinocchio, model->get_impulses()->createData(&pinocchio)), |
343 |
|
✗ |
costs(model->get_costs()->createData(&multibody)), |
344 |
|
✗ |
vnone(model->get_state()->get_nv()), |
345 |
|
✗ |
Kinv(model->get_state()->get_nv() + |
346 |
|
✗ |
model->get_impulses()->get_nc_total(), |
347 |
|
✗ |
model->get_state()->get_nv() + |
348 |
|
✗ |
model->get_impulses()->get_nc_total()), |
349 |
|
✗ |
df_dx(model->get_impulses()->get_nc_total(), |
350 |
|
✗ |
model->get_state()->get_ndx()), |
351 |
|
✗ |
dgrav_dq(model->get_state()->get_nv(), model->get_state()->get_nv()) { |
352 |
|
✗ |
costs->shareMemory(this); |
353 |
|
✗ |
if (model->get_constraints() != nullptr) { |
354 |
|
✗ |
constraints = model->get_constraints()->createData(&multibody); |
355 |
|
✗ |
constraints->shareMemory(this); |
356 |
|
|
} |
357 |
|
✗ |
vnone.setZero(); |
358 |
|
✗ |
Kinv.setZero(); |
359 |
|
✗ |
df_dx.setZero(); |
360 |
|
✗ |
dgrav_dq.setZero(); |
361 |
|
|
} |
362 |
|
✗ |
virtual ~ActionDataImpulseFwdDynamicsTpl() = default; |
363 |
|
|
|
364 |
|
|
pinocchio::DataTpl<Scalar> pinocchio; |
365 |
|
|
DataCollectorMultibodyInImpulseTpl<Scalar> multibody; |
366 |
|
|
std::shared_ptr<CostDataSumTpl<Scalar> > costs; |
367 |
|
|
std::shared_ptr<ConstraintDataManagerTpl<Scalar> > constraints; |
368 |
|
|
VectorXs vnone; |
369 |
|
|
MatrixXs Kinv; |
370 |
|
|
MatrixXs df_dx; |
371 |
|
|
MatrixXs dgrav_dq; |
372 |
|
|
}; |
373 |
|
|
|
374 |
|
|
} // namespace crocoddyl |
375 |
|
|
|
376 |
|
|
/* --- Details -------------------------------------------------------------- */ |
377 |
|
|
/* --- Details -------------------------------------------------------------- */ |
378 |
|
|
/* --- Details -------------------------------------------------------------- */ |
379 |
|
|
#include <crocoddyl/multibody/actions/impulse-fwddyn.hxx> |
380 |
|
|
|
381 |
|
|
CROCODDYL_DECLARE_EXTERN_TEMPLATE_CLASS( |
382 |
|
|
crocoddyl::ActionModelImpulseFwdDynamicsTpl) |
383 |
|
|
CROCODDYL_DECLARE_EXTERN_TEMPLATE_STRUCT( |
384 |
|
|
crocoddyl::ActionDataImpulseFwdDynamicsTpl) |
385 |
|
|
|
386 |
|
|
#endif // CROCODDYL_MULTIBODY_ACTIONS_IMPULSE_FWDDYN_HPP_ |
387 |
|
|
|