GCC Code Coverage Report


Directory: ./
File: include/crocoddyl/multibody/actions/impulse-fwddyn.hpp
Date: 2025-01-16 08:47:40
Exec Total Coverage
Lines: 21 21 100.0%
Branches: 17 32 53.1%

Line Branch Exec Source
1 ///////////////////////////////////////////////////////////////////////////////
2 // BSD 3-Clause License
3 //
4 // Copyright (C) 2019-2024, LAAS-CNRS, University of Edinburgh,
5 // University of Oxford, Heriot-Watt University
6 // Copyright note valid unless otherwise stated in individual files.
7 // All rights reserved.
8 ///////////////////////////////////////////////////////////////////////////////
9
10 #ifndef CROCODDYL_MULTIBODY_ACTIONS_IMPULSE_FWDDYN_HPP_
11 #define CROCODDYL_MULTIBODY_ACTIONS_IMPULSE_FWDDYN_HPP_
12
13 #include <pinocchio/algorithm/centroidal.hpp>
14 #include <pinocchio/algorithm/compute-all-terms.hpp>
15 #include <pinocchio/algorithm/contact-dynamics.hpp>
16 #include <pinocchio/algorithm/frames.hpp>
17 #include <pinocchio/algorithm/kinematics-derivatives.hpp>
18 #include <pinocchio/algorithm/rnea-derivatives.hpp>
19 #include <stdexcept>
20
21 #include "crocoddyl/core/action-base.hpp"
22 #include "crocoddyl/core/constraints/constraint-manager.hpp"
23 #include "crocoddyl/core/costs/cost-sum.hpp"
24 #include "crocoddyl/core/utils/exception.hpp"
25 #include "crocoddyl/multibody/actions/impulse-fwddyn.hpp"
26 #include "crocoddyl/multibody/actuations/floating-base.hpp"
27 #include "crocoddyl/multibody/data/impulses.hpp"
28 #include "crocoddyl/multibody/fwd.hpp"
29 #include "crocoddyl/multibody/impulses/multiple-impulses.hpp"
30 #include "crocoddyl/multibody/states/multibody.hpp"
31
32 namespace crocoddyl {
33
34 /**
35 * @brief Action model for impulse forward dynamics in multibody systems.
36 *
37 * This class implements impulse forward dynamics given a stack of
38 * rigid-impulses described in `ImpulseModelMultipleTpl`, i.e., \f[
39 * \left[\begin{matrix}\mathbf{v}^+ \\ -\boldsymbol{\Lambda}\end{matrix}\right]
40 * = \left[\begin{matrix}\mathbf{M} & \mathbf{J}^{\top}_c \\ {\mathbf{J}_{c}} &
41 * \mathbf{0} \end{matrix}\right]^{-1}
42 * \left[\begin{matrix}\mathbf{M}\mathbf{v}^- \\ -e\mathbf{J}_c\mathbf{v}^-
43 * \\\end{matrix}\right], \f] where \f$\mathbf{q}\in Q\f$,
44 * \f$\mathbf{v}\in\mathbb{R}^{nv}\f$ are the configuration point and
45 * generalized velocity (its tangent vector), respectively; \f$\mathbf{v}^+\f$,
46 * \f$\mathbf{v}^-\f$ are the discontinuous changes in the generalized velocity
47 * (i.e., velocity before and after impact, respectively);
48 * \f$\mathbf{J}_c\in\mathbb{R}^{nc\times nv}\f$ is the contact Jacobian
49 * expressed in the local frame; and
50 * \f$\boldsymbol{\Lambda}\in\mathbb{R}^{nc}\f$ is the impulse vector.
51 *
52 * The derivatives of the next state and contact impulses are computed
53 * efficiently based on the analytical derivatives of Recursive Newton Euler
54 * Algorithm (RNEA) as described in \cite mastalli-icra20. Note that the
55 * algorithm for computing the RNEA derivatives is described in \cite
56 * carpentier-rss18.
57 *
58 * The stack of cost and constraint functions are implemented in
59 * `CostModelSumTpl` and `ConstraintModelAbstractTpl`, respectively. The
60 * computation of the impulse dynamics and its derivatives are carrying out
61 * inside `calc()` and `calcDiff()` functions, respectively. It is also
62 * important to remark that `calcDiff()` computes the derivatives using the
63 * latest stored values by `calc()`. Thus, we need to run `calc()` first.
64 *
65 * \sa `ActionModelAbstractTpl`, `calc()`, `calcDiff()`, `createData()`
66 */
67 template <typename _Scalar>
68 class ActionModelImpulseFwdDynamicsTpl
69 : public ActionModelAbstractTpl<_Scalar> {
70 public:
71 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
72
73 typedef _Scalar Scalar;
74 typedef ActionModelAbstractTpl<Scalar> Base;
75 typedef ActionDataImpulseFwdDynamicsTpl<Scalar> Data;
76 typedef MathBaseTpl<Scalar> MathBase;
77 typedef CostModelSumTpl<Scalar> CostModelSum;
78 typedef ConstraintModelManagerTpl<Scalar> ConstraintModelManager;
79 typedef StateMultibodyTpl<Scalar> StateMultibody;
80 typedef ActionDataAbstractTpl<Scalar> ActionDataAbstract;
81 typedef ImpulseModelMultipleTpl<Scalar> ImpulseModelMultiple;
82 typedef typename MathBase::VectorXs VectorXs;
83 typedef typename MathBase::MatrixXs MatrixXs;
84
85 /**
86 * @brief Initialize the impulse forward-dynamics action model
87 *
88 * It describes the impulse dynamics of a multibody system under rigid-contact
89 * constraints defined by `ImpulseModelMultipleTpl`. It computes the cost
90 * described in `CostModelSumTpl`.
91 *
92 * @param[in] state State of the multibody system
93 * @param[in] actuation Actuation model
94 * @param[in] impulses Stack of rigid impulses
95 * @param[in] costs Stack of cost functions
96 * @param[in] r_coeff Restitution coefficient (default 0.)
97 * @param[in] JMinvJt_damping Damping term used in operational space inertia
98 * matrix (default 0.)
99 * @param[in] enable_force Enable the computation of the contact force
100 * derivatives (default false)
101 */
102 ActionModelImpulseFwdDynamicsTpl(
103 boost::shared_ptr<StateMultibody> state,
104 boost::shared_ptr<ImpulseModelMultiple> impulses,
105 boost::shared_ptr<CostModelSum> costs, const Scalar r_coeff = Scalar(0.),
106 const Scalar JMinvJt_damping = Scalar(0.),
107 const bool enable_force = false);
108
109 /**
110 * @brief Initialize the impulse forward-dynamics action model
111 *
112 * It describes the impulse dynamics of a multibody system under rigid-contact
113 * constraints defined by `ImpulseModelMultipleTpl`. It computes the cost
114 * described in `CostModelSumTpl`.
115 *
116 * @param[in] state State of the multibody system
117 * @param[in] actuation Actuation model
118 * @param[in] impulses Stack of rigid impulses
119 * @param[in] costs Stack of cost functions
120 * @param[in] constraints Stack of constraints
121 * @param[in] r_coeff Restitution coefficient (default 0.)
122 * @param[in] JMinvJt_damping Damping term used in operational space inertia
123 * matrix (default 0.)
124 * @param[in] enable_force Enable the computation of the contact force
125 * derivatives (default false)
126 */
127 ActionModelImpulseFwdDynamicsTpl(
128 boost::shared_ptr<StateMultibody> state,
129 boost::shared_ptr<ImpulseModelMultiple> impulses,
130 boost::shared_ptr<CostModelSum> costs,
131 boost::shared_ptr<ConstraintModelManager> constraints,
132 const Scalar r_coeff = Scalar(0.),
133 const Scalar JMinvJt_damping = Scalar(0.),
134 const bool enable_force = false);
135 virtual ~ActionModelImpulseFwdDynamicsTpl();
136
137 /**
138 * @brief Compute the system acceleration, and cost value
139 *
140 * It computes the system acceleration using the impulse dynamics.
141 *
142 * @param[in] data Impulse forward-dynamics data
143 * @param[in] x State point \f$\mathbf{x}\in\mathbb{R}^{ndx}\f$
144 * @param[in] u Control input \f$\mathbf{u}\in\mathbb{R}^{nu}\f$
145 */
146 virtual void calc(const boost::shared_ptr<ActionDataAbstract>& data,
147 const Eigen::Ref<const VectorXs>& x,
148 const Eigen::Ref<const VectorXs>& u);
149
150 /**
151 * @brief Compute the total cost value for nodes that depends only on the
152 * state
153 *
154 * It updates the total cost and the system acceleration is not updated as it
155 * is expected to be zero. Additionally, it does not update the contact
156 * forces. This function is used in the terminal nodes of an optimal control
157 * problem.
158 *
159 * @param[in] data Impulse forward-dynamics data
160 * @param[in] x State point \f$\mathbf{x}\in\mathbb{R}^{ndx}\f$
161 */
162 virtual void calc(const boost::shared_ptr<ActionDataAbstract>& data,
163 const Eigen::Ref<const VectorXs>& x);
164
165 /**
166 * @brief Compute the derivatives of the impulse dynamics, and cost function
167 *
168 * @param[in] data Impulse forward-dynamics data
169 * @param[in] x State point \f$\mathbf{x}\in\mathbb{R}^{ndx}\f$
170 * @param[in] u Control input \f$\mathbf{u}\in\mathbb{R}^{nu}\f$
171 */
172 virtual void calcDiff(const boost::shared_ptr<ActionDataAbstract>& data,
173 const Eigen::Ref<const VectorXs>& x,
174 const Eigen::Ref<const VectorXs>& u);
175
176 /**
177 * @brief Compute the derivatives of the cost functions with respect to the
178 * state only
179 *
180 * It updates the derivatives of the cost function with respect to the state
181 * only. Additionally, it does not update the contact forces derivatives. This
182 * function is used in the terminal nodes of an optimal control problem.
183 *
184 * @param[in] data Impulse forward-dynamics data
185 * @param[in] x State point \f$\mathbf{x}\in\mathbb{R}^{ndx}\f$
186 */
187 virtual void calcDiff(const boost::shared_ptr<ActionDataAbstract>& data,
188 const Eigen::Ref<const VectorXs>& x);
189
190 /**
191 * @brief Create the impulse forward-dynamics data
192 *
193 * @return impulse forward-dynamics data
194 */
195 virtual boost::shared_ptr<ActionDataAbstract> createData();
196
197 /**
198 * @brief Check that the given data belongs to the impulse forward-dynamics
199 * data
200 */
201 virtual bool checkData(const boost::shared_ptr<ActionDataAbstract>& data);
202
203 /**
204 * @brief @copydoc Base::quasiStatic()
205 */
206 virtual void quasiStatic(const boost::shared_ptr<ActionDataAbstract>& data,
207 Eigen::Ref<VectorXs> u,
208 const Eigen::Ref<const VectorXs>& x,
209 const std::size_t maxiter = 100,
210 const Scalar tol = Scalar(1e-9));
211
212 /**
213 * @brief Return the number of inequality constraints
214 */
215 virtual std::size_t get_ng() const;
216
217 /**
218 * @brief Return the number of equality constraints
219 */
220 virtual std::size_t get_nh() const;
221
222 /**
223 * @brief Return the number of equality terminal constraints
224 */
225 virtual std::size_t get_ng_T() const;
226
227 /**
228 * @brief Return the number of equality terminal constraints
229 */
230 virtual std::size_t get_nh_T() const;
231
232 /**
233 * @brief Return the lower bound of the inequality constraints
234 */
235 virtual const VectorXs& get_g_lb() const;
236
237 /**
238 * @brief Return the upper bound of the inequality constraints
239 */
240 virtual const VectorXs& get_g_ub() const;
241
242 /**
243 * @brief Return the impulse model
244 */
245 const boost::shared_ptr<ImpulseModelMultiple>& get_impulses() const;
246
247 /**
248 * @brief Return the cost model
249 */
250 const boost::shared_ptr<CostModelSum>& get_costs() const;
251
252 /**
253 * @brief Return the constraint model manager
254 */
255 const boost::shared_ptr<ConstraintModelManager>& get_constraints() const;
256
257 /**
258 * @brief Return the Pinocchio model
259 */
260 pinocchio::ModelTpl<Scalar>& get_pinocchio() const;
261
262 /**
263 * @brief Return the armature vector
264 */
265 const VectorXs& get_armature() const;
266
267 /**
268 * @brief Return the restituion coefficient
269 */
270 const Scalar get_restitution_coefficient() const;
271
272 /**
273 * @brief Return the damping factor used in the operational space inertia
274 * matrix
275 */
276 const Scalar get_damping_factor() const;
277
278 /**
279 * @brief Modify the armature vector
280 */
281 void set_armature(const VectorXs& armature);
282
283 /**
284 * @brief Modify the restituion coefficient
285 */
286 void set_restitution_coefficient(const Scalar r_coeff);
287
288 /**
289 * @brief Modify the damping factor used in the operational space inertia
290 * matrix
291 */
292 void set_damping_factor(const Scalar damping);
293
294 /**
295 * @brief Print relevant information of the impulse forward-dynamics model
296 *
297 * @param[out] os Output stream object
298 */
299 virtual void print(std::ostream& os) const;
300
301 protected:
302 using Base::g_lb_; //!< Lower bound of the inequality constraints
303 using Base::g_ub_; //!< Upper bound of the inequality constraints
304 using Base::state_; //!< Model of the state
305
306 private:
307 void init();
308 void initCalc(Data* data, const Eigen::Ref<const VectorXs>& x);
309 void initCalcDiff(Data* data, const Eigen::Ref<const VectorXs>& x);
310 boost::shared_ptr<ImpulseModelMultiple> impulses_; //!< Impulse model
311 boost::shared_ptr<CostModelSum> costs_; //!< Cost model
312 boost::shared_ptr<ConstraintModelManager> constraints_; //!< Constraint model
313 pinocchio::ModelTpl<Scalar>& pinocchio_; //!< Pinocchio model
314 bool with_armature_; //!< Indicate if we have defined an armature
315 VectorXs armature_; //!< Armature vector
316 Scalar r_coeff_; //!< Restitution coefficient
317 Scalar JMinvJt_damping_; //!< Damping factor used in operational space
318 //!< inertia matrix
319 bool enable_force_; //!< Indicate if we have enabled the computation of the
320 //!< contact-forces derivatives
321 pinocchio::MotionTpl<Scalar> gravity_; //! Gravity acceleration
322 };
323
324 template <typename _Scalar>
325 struct ActionDataImpulseFwdDynamicsTpl : public ActionDataAbstractTpl<_Scalar> {
326 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
327 typedef _Scalar Scalar;
328 typedef MathBaseTpl<Scalar> MathBase;
329 typedef ActionDataAbstractTpl<Scalar> Base;
330 typedef typename MathBase::VectorXs VectorXs;
331 typedef typename MathBase::MatrixXs MatrixXs;
332
333 template <template <typename Scalar> class Model>
334 4256 explicit ActionDataImpulseFwdDynamicsTpl(Model<Scalar>* const model)
335 : Base(model),
336
1/2
✓ Branch 1 taken 4256 times.
✗ Branch 2 not taken.
4256 pinocchio(pinocchio::DataTpl<Scalar>(model->get_pinocchio())),
337
2/4
✓ Branch 3 taken 4256 times.
✗ Branch 4 not taken.
✓ Branch 6 taken 4256 times.
✗ Branch 7 not taken.
4256 multibody(&pinocchio, model->get_impulses()->createData(&pinocchio)),
338
1/2
✓ Branch 3 taken 4256 times.
✗ Branch 4 not taken.
4256 costs(model->get_costs()->createData(&multibody)),
339
1/2
✓ Branch 4 taken 4256 times.
✗ Branch 5 not taken.
4256 vnone(model->get_state()->get_nv()),
340
1/2
✓ Branch 3 taken 4256 times.
✗ Branch 4 not taken.
8512 Kinv(model->get_state()->get_nv() +
341 4256 model->get_impulses()->get_nc_total(),
342 8512 model->get_state()->get_nv() +
343 4256 model->get_impulses()->get_nc_total()),
344
1/2
✓ Branch 3 taken 4256 times.
✗ Branch 4 not taken.
4256 df_dx(model->get_impulses()->get_nc_total(),
345 4256 model->get_state()->get_ndx()),
346
1/2
✓ Branch 10 taken 4256 times.
✗ Branch 11 not taken.
12768 dgrav_dq(model->get_state()->get_nv(), model->get_state()->get_nv()) {
347
1/2
✓ Branch 2 taken 4256 times.
✗ Branch 3 not taken.
4256 costs->shareMemory(this);
348
2/2
✓ Branch 2 taken 796 times.
✓ Branch 3 taken 3460 times.
4256 if (model->get_constraints() != nullptr) {
349
1/2
✓ Branch 3 taken 796 times.
✗ Branch 4 not taken.
796 constraints = model->get_constraints()->createData(&multibody);
350
1/2
✓ Branch 2 taken 796 times.
✗ Branch 3 not taken.
796 constraints->shareMemory(this);
351 }
352
1/2
✓ Branch 1 taken 4256 times.
✗ Branch 2 not taken.
4256 vnone.setZero();
353
1/2
✓ Branch 1 taken 4256 times.
✗ Branch 2 not taken.
4256 Kinv.setZero();
354
1/2
✓ Branch 1 taken 4256 times.
✗ Branch 2 not taken.
4256 df_dx.setZero();
355
1/2
✓ Branch 1 taken 4256 times.
✗ Branch 2 not taken.
4256 dgrav_dq.setZero();
356 4256 }
357
358 pinocchio::DataTpl<Scalar> pinocchio;
359 DataCollectorMultibodyInImpulseTpl<Scalar> multibody;
360 boost::shared_ptr<CostDataSumTpl<Scalar> > costs;
361 boost::shared_ptr<ConstraintDataManagerTpl<Scalar> > constraints;
362 VectorXs vnone;
363 MatrixXs Kinv;
364 MatrixXs df_dx;
365 MatrixXs dgrav_dq;
366 };
367
368 } // namespace crocoddyl
369
370 /* --- Details -------------------------------------------------------------- */
371 /* --- Details -------------------------------------------------------------- */
372 /* --- Details -------------------------------------------------------------- */
373 #include <crocoddyl/multibody/actions/impulse-fwddyn.hxx>
374
375 #endif // CROCODDYL_MULTIBODY_ACTIONS_IMPULSE_FWDDYN_HPP_
376