Line |
Branch |
Exec |
Source |
1 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
2 |
|
|
// BSD 3-Clause License |
3 |
|
|
// |
4 |
|
|
// Copyright (C) 2021-2023, Heriot-Watt University, University of Edinburgh |
5 |
|
|
// Copyright note valid unless otherwise stated in individual files. |
6 |
|
|
// All rights reserved. |
7 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
8 |
|
|
|
9 |
|
|
#include "crocoddyl/core/solvers/intro.hpp" |
10 |
|
|
|
11 |
|
|
#include "crocoddyl/core/utils/stop-watch.hpp" |
12 |
|
|
|
13 |
|
|
namespace crocoddyl { |
14 |
|
|
|
15 |
|
✗ |
SolverIntro::SolverIntro(std::shared_ptr<ShootingProblem> problem) |
16 |
|
|
: SolverFDDP(problem), |
17 |
|
✗ |
eq_solver_(LuNull), |
18 |
|
✗ |
th_feas_(1e-4), |
19 |
|
✗ |
rho_(0.3), |
20 |
|
✗ |
upsilon_(0.), |
21 |
|
✗ |
zero_upsilon_(false) { |
22 |
|
✗ |
const std::size_t T = problem_->get_T(); |
23 |
|
✗ |
Hu_rank_.resize(T); |
24 |
|
✗ |
KQuu_tmp_.resize(T); |
25 |
|
✗ |
YZ_.resize(T); |
26 |
|
✗ |
Hy_.resize(T); |
27 |
|
✗ |
Qz_.resize(T); |
28 |
|
✗ |
Qzz_.resize(T); |
29 |
|
✗ |
Qxz_.resize(T); |
30 |
|
✗ |
Quz_.resize(T); |
31 |
|
✗ |
kz_.resize(T); |
32 |
|
✗ |
Kz_.resize(T); |
33 |
|
✗ |
ks_.resize(T); |
34 |
|
✗ |
Ks_.resize(T); |
35 |
|
✗ |
QuuinvHuT_.resize(T); |
36 |
|
✗ |
Qzz_llt_.resize(T); |
37 |
|
✗ |
Hu_lu_.resize(T); |
38 |
|
✗ |
Hu_qr_.resize(T); |
39 |
|
✗ |
Hy_lu_.resize(T); |
40 |
|
|
|
41 |
|
✗ |
const std::size_t ndx = problem_->get_ndx(); |
42 |
|
|
const std::vector<std::shared_ptr<ActionModelAbstract> >& models = |
43 |
|
✗ |
problem_->get_runningModels(); |
44 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
45 |
|
✗ |
const std::shared_ptr<ActionModelAbstract>& model = models[t]; |
46 |
|
✗ |
const std::size_t nu = model->get_nu(); |
47 |
|
✗ |
const std::size_t nh = model->get_nh(); |
48 |
|
✗ |
Hu_rank_[t] = nh; |
49 |
|
✗ |
KQuu_tmp_[t] = Eigen::MatrixXd::Zero(ndx, nu); |
50 |
|
✗ |
YZ_[t] = Eigen::MatrixXd::Zero(nu, nu); |
51 |
|
✗ |
Hy_[t] = Eigen::MatrixXd::Zero(nh, nh); |
52 |
|
✗ |
Qz_[t] = Eigen::VectorXd::Zero(nh); |
53 |
|
✗ |
Qzz_[t] = Eigen::MatrixXd::Zero(nh, nh); |
54 |
|
✗ |
Qxz_[t] = Eigen::MatrixXd::Zero(ndx, nh); |
55 |
|
✗ |
Quz_[t] = Eigen::MatrixXd::Zero(nu, nh); |
56 |
|
✗ |
kz_[t] = Eigen::VectorXd::Zero(nu); |
57 |
|
✗ |
Kz_[t] = Eigen::MatrixXd::Zero(nu, ndx); |
58 |
|
✗ |
ks_[t] = Eigen::VectorXd::Zero(nh); |
59 |
|
✗ |
Ks_[t] = Eigen::MatrixXd::Zero(nh, ndx); |
60 |
|
✗ |
QuuinvHuT_[t] = Eigen::MatrixXd::Zero(nu, nh); |
61 |
|
✗ |
Qzz_llt_[t] = Eigen::LLT<Eigen::MatrixXd>(nh); |
62 |
|
✗ |
Hu_lu_[t] = Eigen::FullPivLU<Eigen::MatrixXd>(nh, nu); |
63 |
|
✗ |
Hu_qr_[t] = Eigen::ColPivHouseholderQR<Eigen::MatrixXd>(nu, nh); |
64 |
|
✗ |
Hy_lu_[t] = Eigen::PartialPivLU<Eigen::MatrixXd>(nh); |
65 |
|
|
} |
66 |
|
|
} |
67 |
|
|
|
68 |
|
✗ |
SolverIntro::~SolverIntro() {} |
69 |
|
|
|
70 |
|
✗ |
bool SolverIntro::solve(const std::vector<Eigen::VectorXd>& init_xs, |
71 |
|
|
const std::vector<Eigen::VectorXd>& init_us, |
72 |
|
|
const std::size_t maxiter, const bool is_feasible, |
73 |
|
|
const double init_reg) { |
74 |
|
✗ |
START_PROFILER("SolverIntro::solve"); |
75 |
|
✗ |
if (problem_->is_updated()) { |
76 |
|
✗ |
resizeData(); |
77 |
|
|
} |
78 |
|
✗ |
xs_try_[0] = |
79 |
|
✗ |
problem_->get_x0(); // it is needed in case that init_xs[0] is infeasible |
80 |
|
✗ |
setCandidate(init_xs, init_us, is_feasible); |
81 |
|
|
|
82 |
|
✗ |
if (std::isnan(init_reg)) { |
83 |
|
✗ |
preg_ = reg_min_; |
84 |
|
✗ |
dreg_ = reg_min_; |
85 |
|
|
} else { |
86 |
|
✗ |
preg_ = init_reg; |
87 |
|
✗ |
dreg_ = init_reg; |
88 |
|
|
} |
89 |
|
✗ |
was_feasible_ = false; |
90 |
|
✗ |
if (zero_upsilon_) { |
91 |
|
✗ |
upsilon_ = 0.; |
92 |
|
|
} |
93 |
|
|
|
94 |
|
✗ |
bool recalcDiff = true; |
95 |
|
✗ |
for (iter_ = 0; iter_ < maxiter; ++iter_) { |
96 |
|
|
while (true) { |
97 |
|
|
try { |
98 |
|
✗ |
computeDirection(recalcDiff); |
99 |
|
✗ |
} catch (std::exception& e) { |
100 |
|
✗ |
recalcDiff = false; |
101 |
|
✗ |
increaseRegularization(); |
102 |
|
✗ |
if (preg_ == reg_max_) { |
103 |
|
✗ |
return false; |
104 |
|
|
} else { |
105 |
|
✗ |
continue; |
106 |
|
|
} |
107 |
|
|
} |
108 |
|
✗ |
break; |
109 |
|
|
} |
110 |
|
✗ |
updateExpectedImprovement(); |
111 |
|
✗ |
expectedImprovement(); |
112 |
|
|
|
113 |
|
|
// Update the penalty parameter for computing the merit function and its |
114 |
|
|
// directional derivative For more details see Section 3 of "An Interior |
115 |
|
|
// Point Algorithm for Large Scale Nonlinear Programming" |
116 |
|
✗ |
if (hfeas_ != 0 && iter_ != 0) { |
117 |
|
✗ |
upsilon_ = |
118 |
|
✗ |
std::max(upsilon_, (d_[0] + .5 * d_[1]) / ((1 - rho_) * hfeas_)); |
119 |
|
|
} |
120 |
|
|
|
121 |
|
|
// We need to recalculate the derivatives when the step length passes |
122 |
|
✗ |
recalcDiff = false; |
123 |
|
✗ |
for (std::vector<double>::const_iterator it = alphas_.begin(); |
124 |
|
✗ |
it != alphas_.end(); ++it) { |
125 |
|
✗ |
steplength_ = *it; |
126 |
|
|
try { |
127 |
|
✗ |
dV_ = tryStep(steplength_); |
128 |
|
✗ |
dfeas_ = hfeas_ - hfeas_try_; |
129 |
|
✗ |
dPhi_ = dV_ + upsilon_ * dfeas_; |
130 |
|
✗ |
} catch (std::exception& e) { |
131 |
|
✗ |
continue; |
132 |
|
|
} |
133 |
|
✗ |
expectedImprovement(); |
134 |
|
✗ |
dVexp_ = steplength_ * (d_[0] + 0.5 * steplength_ * d_[1]); |
135 |
|
✗ |
dPhiexp_ = dVexp_ + steplength_ * upsilon_ * dfeas_; |
136 |
|
✗ |
if (dPhiexp_ >= 0) { // descend direction |
137 |
|
✗ |
if (std::abs(d_[0]) < th_grad_ || dPhi_ > th_acceptstep_ * dPhiexp_) { |
138 |
|
✗ |
was_feasible_ = is_feasible_; |
139 |
|
✗ |
setCandidate(xs_try_, us_try_, (was_feasible_) || (steplength_ == 1)); |
140 |
|
✗ |
cost_ = cost_try_; |
141 |
|
✗ |
hfeas_ = hfeas_try_; |
142 |
|
✗ |
merit_ = cost_ + upsilon_ * hfeas_; |
143 |
|
✗ |
recalcDiff = true; |
144 |
|
✗ |
break; |
145 |
|
|
} |
146 |
|
|
} else { // reducing the gaps by allowing a small increment in the cost |
147 |
|
|
// value |
148 |
|
✗ |
if (dV_ > th_acceptnegstep_ * dVexp_) { |
149 |
|
✗ |
was_feasible_ = is_feasible_; |
150 |
|
✗ |
setCandidate(xs_try_, us_try_, (was_feasible_) || (steplength_ == 1)); |
151 |
|
✗ |
cost_ = cost_try_; |
152 |
|
✗ |
hfeas_ = hfeas_try_; |
153 |
|
✗ |
merit_ = cost_ + upsilon_ * hfeas_; |
154 |
|
✗ |
recalcDiff = true; |
155 |
|
✗ |
break; |
156 |
|
|
} |
157 |
|
|
} |
158 |
|
|
} |
159 |
|
|
|
160 |
|
✗ |
stoppingCriteria(); |
161 |
|
✗ |
const std::size_t n_callbacks = callbacks_.size(); |
162 |
|
✗ |
for (std::size_t c = 0; c < n_callbacks; ++c) { |
163 |
|
✗ |
CallbackAbstract& callback = *callbacks_[c]; |
164 |
|
✗ |
callback(*this); |
165 |
|
|
} |
166 |
|
|
|
167 |
|
✗ |
if (steplength_ > th_stepdec_ && dV_ >= 0.) { |
168 |
|
✗ |
decreaseRegularization(); |
169 |
|
|
} |
170 |
|
✗ |
if (steplength_ <= th_stepinc_ || std::abs(d_[1]) <= th_feas_) { |
171 |
|
✗ |
if (preg_ == reg_max_) { |
172 |
|
✗ |
STOP_PROFILER("SolverIntro::solve"); |
173 |
|
✗ |
return false; |
174 |
|
|
} |
175 |
|
✗ |
increaseRegularization(); |
176 |
|
|
} |
177 |
|
|
|
178 |
|
✗ |
if (is_feasible_ && stop_ < th_stop_) { |
179 |
|
✗ |
STOP_PROFILER("SolverIntro::solve"); |
180 |
|
✗ |
return true; |
181 |
|
|
} |
182 |
|
|
} |
183 |
|
✗ |
STOP_PROFILER("SolverIntro::solve"); |
184 |
|
✗ |
return false; |
185 |
|
|
} |
186 |
|
|
|
187 |
|
✗ |
double SolverIntro::tryStep(const double steplength) { |
188 |
|
✗ |
forwardPass(steplength); |
189 |
|
✗ |
hfeas_try_ = computeEqualityFeasibility(); |
190 |
|
✗ |
return cost_ - cost_try_; |
191 |
|
|
} |
192 |
|
|
|
193 |
|
✗ |
double SolverIntro::stoppingCriteria() { |
194 |
|
✗ |
stop_ = std::max(hfeas_, std::abs(d_[0] + 0.5 * d_[1])); |
195 |
|
✗ |
return stop_; |
196 |
|
|
} |
197 |
|
|
|
198 |
|
✗ |
void SolverIntro::resizeData() { |
199 |
|
✗ |
START_PROFILER("SolverIntro::resizeData"); |
200 |
|
✗ |
SolverFDDP::resizeData(); |
201 |
|
|
|
202 |
|
✗ |
const std::size_t T = problem_->get_T(); |
203 |
|
✗ |
const std::size_t ndx = problem_->get_ndx(); |
204 |
|
|
const std::vector<std::shared_ptr<ActionModelAbstract> >& models = |
205 |
|
✗ |
problem_->get_runningModels(); |
206 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
207 |
|
✗ |
const std::shared_ptr<ActionModelAbstract>& model = models[t]; |
208 |
|
✗ |
const std::size_t nu = model->get_nu(); |
209 |
|
✗ |
const std::size_t nh = model->get_nh(); |
210 |
|
✗ |
KQuu_tmp_[t].conservativeResize(ndx, nu); |
211 |
|
✗ |
YZ_[t].conservativeResize(nu, nu); |
212 |
|
✗ |
Hy_[t].conservativeResize(nh, nh); |
213 |
|
✗ |
Qz_[t].conservativeResize(nh); |
214 |
|
✗ |
Qzz_[t].conservativeResize(nh, nh); |
215 |
|
✗ |
Qxz_[t].conservativeResize(ndx, nh); |
216 |
|
✗ |
Quz_[t].conservativeResize(nu, nh); |
217 |
|
✗ |
kz_[t].conservativeResize(nu); |
218 |
|
✗ |
Kz_[t].conservativeResize(nu, ndx); |
219 |
|
✗ |
ks_[t].conservativeResize(nh); |
220 |
|
✗ |
Ks_[t].conservativeResize(nh, ndx); |
221 |
|
✗ |
QuuinvHuT_[t].conservativeResize(nu, nh); |
222 |
|
|
} |
223 |
|
✗ |
STOP_PROFILER("SolverIntro::resizeData"); |
224 |
|
|
} |
225 |
|
|
|
226 |
|
✗ |
double SolverIntro::calcDiff() { |
227 |
|
✗ |
START_PROFILER("SolverIntro::calcDiff"); |
228 |
|
✗ |
SolverFDDP::calcDiff(); |
229 |
|
✗ |
const std::size_t T = problem_->get_T(); |
230 |
|
|
const std::vector<std::shared_ptr<ActionModelAbstract> >& models = |
231 |
|
✗ |
problem_->get_runningModels(); |
232 |
|
|
const std::vector<std::shared_ptr<ActionDataAbstract> >& datas = |
233 |
|
✗ |
problem_->get_runningDatas(); |
234 |
|
✗ |
switch (eq_solver_) { |
235 |
|
✗ |
case LuNull: |
236 |
|
|
#ifdef CROCODDYL_WITH_MULTITHREADING |
237 |
|
|
#pragma omp parallel for num_threads(problem_->get_nthreads()) |
238 |
|
|
#endif |
239 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
240 |
|
|
const std::shared_ptr<crocoddyl::ActionModelAbstract>& model = |
241 |
|
✗ |
models[t]; |
242 |
|
✗ |
const std::shared_ptr<crocoddyl::ActionDataAbstract>& data = datas[t]; |
243 |
|
✗ |
if (model->get_nu() > 0 && model->get_nh() > 0) { |
244 |
|
✗ |
Hu_lu_[t].compute(data->Hu); |
245 |
|
✗ |
Hu_rank_[t] = Hu_lu_[t].rank(); |
246 |
|
✗ |
YZ_[t].leftCols(Hu_rank_[t]).noalias() = |
247 |
|
✗ |
(Hu_lu_[t].permutationP() * data->Hu).transpose(); |
248 |
|
✗ |
YZ_[t].rightCols(model->get_nu() - Hu_rank_[t]) = Hu_lu_[t].kernel(); |
249 |
|
|
const Eigen::Block<Eigen::MatrixXd, Eigen::Dynamic, Eigen::Dynamic, |
250 |
|
|
Eigen::RowMajor> |
251 |
|
✗ |
Y = YZ_[t].leftCols(Hu_lu_[t].rank()); |
252 |
|
✗ |
Hy_[t].noalias() = data->Hu * Y; |
253 |
|
✗ |
Hy_lu_[t].compute(Hy_[t]); |
254 |
|
|
const Eigen::Inverse<Eigen::PartialPivLU<Eigen::MatrixXd> > Hy_inv = |
255 |
|
✗ |
Hy_lu_[t].inverse(); |
256 |
|
✗ |
ks_[t].noalias() = Hy_inv * data->h; |
257 |
|
✗ |
Ks_[t].noalias() = Hy_inv * data->Hx; |
258 |
|
✗ |
kz_[t].noalias() = Y * ks_[t]; |
259 |
|
✗ |
Kz_[t].noalias() = Y * Ks_[t]; |
260 |
|
|
} |
261 |
|
|
} |
262 |
|
✗ |
break; |
263 |
|
✗ |
case QrNull: |
264 |
|
|
#ifdef CROCODDYL_WITH_MULTITHREADING |
265 |
|
|
#pragma omp parallel for num_threads(problem_->get_nthreads()) |
266 |
|
|
#endif |
267 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
268 |
|
|
const std::shared_ptr<crocoddyl::ActionModelAbstract>& model = |
269 |
|
✗ |
models[t]; |
270 |
|
✗ |
const std::shared_ptr<crocoddyl::ActionDataAbstract>& data = datas[t]; |
271 |
|
✗ |
if (model->get_nu() > 0 && model->get_nh() > 0) { |
272 |
|
✗ |
Hu_qr_[t].compute(data->Hu.transpose()); |
273 |
|
✗ |
YZ_[t] = Hu_qr_[t].householderQ(); |
274 |
|
✗ |
Hu_rank_[t] = Hu_qr_[t].rank(); |
275 |
|
|
const Eigen::Block<Eigen::MatrixXd, Eigen::Dynamic, Eigen::Dynamic, |
276 |
|
|
Eigen::RowMajor> |
277 |
|
✗ |
Y = YZ_[t].leftCols(Hu_qr_[t].rank()); |
278 |
|
✗ |
Hy_[t].noalias() = data->Hu * Y; |
279 |
|
✗ |
Hy_lu_[t].compute(Hy_[t]); |
280 |
|
|
const Eigen::Inverse<Eigen::PartialPivLU<Eigen::MatrixXd> > Hy_inv = |
281 |
|
✗ |
Hy_lu_[t].inverse(); |
282 |
|
✗ |
ks_[t].noalias() = Hy_inv * data->h; |
283 |
|
✗ |
Ks_[t].noalias() = Hy_inv * data->Hx; |
284 |
|
✗ |
kz_[t].noalias() = Y * ks_[t]; |
285 |
|
✗ |
Kz_[t].noalias() = Y * Ks_[t]; |
286 |
|
|
} |
287 |
|
|
} |
288 |
|
✗ |
break; |
289 |
|
✗ |
case Schur: |
290 |
|
✗ |
break; |
291 |
|
|
} |
292 |
|
|
|
293 |
|
✗ |
STOP_PROFILER("SolverIntro::calcDiff"); |
294 |
|
✗ |
return cost_; |
295 |
|
|
} |
296 |
|
|
|
297 |
|
✗ |
void SolverIntro::computeValueFunction( |
298 |
|
|
const std::size_t t, const std::shared_ptr<ActionModelAbstract>& model) { |
299 |
|
✗ |
const std::size_t nu = model->get_nu(); |
300 |
|
✗ |
Vx_[t] = Qx_[t]; |
301 |
|
✗ |
Vxx_[t] = Qxx_[t]; |
302 |
|
✗ |
if (nu != 0) { |
303 |
|
✗ |
START_PROFILER("SolverIntro::Vx"); |
304 |
|
✗ |
Quuk_[t].noalias() = Quu_[t] * k_[t]; |
305 |
|
✗ |
Vx_[t].noalias() -= Qxu_[t] * k_[t]; |
306 |
|
✗ |
Qu_[t] -= Quuk_[t]; |
307 |
|
✗ |
Vx_[t].noalias() -= K_[t].transpose() * Qu_[t]; |
308 |
|
✗ |
Qu_[t] += Quuk_[t]; |
309 |
|
✗ |
STOP_PROFILER("SolverIntro::Vx"); |
310 |
|
✗ |
START_PROFILER("SolverIntro::Vxx"); |
311 |
|
✗ |
KQuu_tmp_[t].noalias() = K_[t].transpose() * Quu_[t]; |
312 |
|
✗ |
KQuu_tmp_[t].noalias() -= 2 * Qxu_[t]; |
313 |
|
✗ |
Vxx_[t].noalias() += KQuu_tmp_[t] * K_[t]; |
314 |
|
✗ |
STOP_PROFILER("SolverIntro::Vxx"); |
315 |
|
|
} |
316 |
|
✗ |
Vxx_tmp_ = 0.5 * (Vxx_[t] + Vxx_[t].transpose()); |
317 |
|
✗ |
Vxx_[t] = Vxx_tmp_; |
318 |
|
|
|
319 |
|
✗ |
if (!std::isnan(preg_)) { |
320 |
|
✗ |
Vxx_[t].diagonal().array() += preg_; |
321 |
|
|
} |
322 |
|
|
|
323 |
|
|
// Compute and store the Vx gradient at end of the interval (rollout state) |
324 |
|
✗ |
if (!is_feasible_) { |
325 |
|
✗ |
Vx_[t].noalias() += Vxx_[t] * fs_[t]; |
326 |
|
|
} |
327 |
|
|
} |
328 |
|
|
|
329 |
|
✗ |
void SolverIntro::computeGains(const std::size_t t) { |
330 |
|
✗ |
START_PROFILER("SolverIntro::computeGains"); |
331 |
|
|
const std::shared_ptr<crocoddyl::ActionModelAbstract>& model = |
332 |
|
✗ |
problem_->get_runningModels()[t]; |
333 |
|
|
const std::shared_ptr<crocoddyl::ActionDataAbstract>& data = |
334 |
|
✗ |
problem_->get_runningDatas()[t]; |
335 |
|
|
|
336 |
|
✗ |
const std::size_t nu = model->get_nu(); |
337 |
|
✗ |
const std::size_t nh = model->get_nh(); |
338 |
|
✗ |
switch (eq_solver_) { |
339 |
|
✗ |
case LuNull: |
340 |
|
|
case QrNull: |
341 |
|
✗ |
if (nu > 0 && nh > 0) { |
342 |
|
✗ |
START_PROFILER("SolverIntro::Qzz_inv"); |
343 |
|
✗ |
const std::size_t rank = Hu_rank_[t]; |
344 |
|
✗ |
const std::size_t nullity = data->Hu.cols() - rank; |
345 |
|
|
const Eigen::Block<Eigen::MatrixXd, Eigen::Dynamic, Eigen::Dynamic, |
346 |
|
|
Eigen::RowMajor> |
347 |
|
✗ |
Z = YZ_[t].rightCols(nullity); |
348 |
|
✗ |
Quz_[t].noalias() = Quu_[t] * Z; |
349 |
|
✗ |
Qzz_[t].noalias() = Z.transpose() * Quz_[t]; |
350 |
|
✗ |
Qzz_llt_[t].compute(Qzz_[t]); |
351 |
|
✗ |
STOP_PROFILER("SolverIntro::Qzz_inv"); |
352 |
|
✗ |
const Eigen::ComputationInfo& info = Qzz_llt_[t].info(); |
353 |
|
✗ |
if (info != Eigen::Success) { |
354 |
|
✗ |
throw_pretty("backward error"); |
355 |
|
|
} |
356 |
|
|
|
357 |
|
✗ |
k_[t] = kz_[t]; |
358 |
|
✗ |
K_[t] = Kz_[t]; |
359 |
|
✗ |
Eigen::Transpose<Eigen::MatrixXd> QzzinvQzu = Quz_[t].transpose(); |
360 |
|
✗ |
Qzz_llt_[t].solveInPlace(QzzinvQzu); |
361 |
|
✗ |
Qz_[t].noalias() = Z.transpose() * Qu_[t]; |
362 |
|
✗ |
Qzz_llt_[t].solveInPlace(Qz_[t]); |
363 |
|
✗ |
Qxz_[t].noalias() = Qxu_[t] * Z; |
364 |
|
✗ |
Eigen::Transpose<Eigen::MatrixXd> Qzx = Qxz_[t].transpose(); |
365 |
|
✗ |
Qzz_llt_[t].solveInPlace(Qzx); |
366 |
|
✗ |
Qz_[t].noalias() -= QzzinvQzu * kz_[t]; |
367 |
|
✗ |
Qzx.noalias() -= QzzinvQzu * Kz_[t]; |
368 |
|
✗ |
k_[t].noalias() += Z * Qz_[t]; |
369 |
|
✗ |
K_[t].noalias() += Z * Qzx; |
370 |
|
✗ |
} else { |
371 |
|
✗ |
SolverFDDP::computeGains(t); |
372 |
|
|
} |
373 |
|
✗ |
break; |
374 |
|
✗ |
case Schur: |
375 |
|
✗ |
SolverFDDP::computeGains(t); |
376 |
|
✗ |
if (nu > 0 && nh > 0) { |
377 |
|
✗ |
START_PROFILER("SolverIntro::Qzz_inv"); |
378 |
|
✗ |
QuuinvHuT_[t] = data->Hu.transpose(); |
379 |
|
✗ |
Quu_llt_[t].solveInPlace(QuuinvHuT_[t]); |
380 |
|
✗ |
Qzz_[t].noalias() = data->Hu * QuuinvHuT_[t]; |
381 |
|
✗ |
Qzz_llt_[t].compute(Qzz_[t]); |
382 |
|
✗ |
STOP_PROFILER("SolverIntro::Qzz_inv"); |
383 |
|
✗ |
const Eigen::ComputationInfo& info = Qzz_llt_[t].info(); |
384 |
|
✗ |
if (info != Eigen::Success) { |
385 |
|
✗ |
throw_pretty("backward error"); |
386 |
|
|
} |
387 |
|
✗ |
Eigen::Transpose<Eigen::MatrixXd> HuQuuinv = QuuinvHuT_[t].transpose(); |
388 |
|
✗ |
Qzz_llt_[t].solveInPlace(HuQuuinv); |
389 |
|
✗ |
ks_[t] = data->h; |
390 |
|
✗ |
ks_[t].noalias() -= data->Hu * k_[t]; |
391 |
|
✗ |
Ks_[t] = data->Hx; |
392 |
|
✗ |
Ks_[t].noalias() -= data->Hu * K_[t]; |
393 |
|
✗ |
k_[t].noalias() += QuuinvHuT_[t] * ks_[t]; |
394 |
|
✗ |
K_[t] += QuuinvHuT_[t] * Ks_[t]; |
395 |
|
|
} |
396 |
|
✗ |
break; |
397 |
|
|
} |
398 |
|
✗ |
STOP_PROFILER("SolverIntro::computeGains"); |
399 |
|
|
} |
400 |
|
|
|
401 |
|
✗ |
EqualitySolverType SolverIntro::get_equality_solver() const { |
402 |
|
✗ |
return eq_solver_; |
403 |
|
|
} |
404 |
|
|
|
405 |
|
✗ |
double SolverIntro::get_th_feas() const { return th_feas_; } |
406 |
|
|
|
407 |
|
✗ |
double SolverIntro::get_rho() const { return rho_; } |
408 |
|
|
|
409 |
|
✗ |
double SolverIntro::get_upsilon() const { return upsilon_; } |
410 |
|
|
|
411 |
|
✗ |
bool SolverIntro::get_zero_upsilon() const { return zero_upsilon_; } |
412 |
|
|
|
413 |
|
✗ |
const std::vector<std::size_t>& SolverIntro::get_Hu_rank() const { |
414 |
|
✗ |
return Hu_rank_; |
415 |
|
|
} |
416 |
|
|
|
417 |
|
✗ |
const std::vector<Eigen::MatrixXd>& SolverIntro::get_YZ() const { return YZ_; } |
418 |
|
|
|
419 |
|
✗ |
const std::vector<Eigen::MatrixXd>& SolverIntro::get_Qzz() const { |
420 |
|
✗ |
return Qzz_; |
421 |
|
|
} |
422 |
|
|
|
423 |
|
✗ |
const std::vector<Eigen::MatrixXd>& SolverIntro::get_Qxz() const { |
424 |
|
✗ |
return Qxz_; |
425 |
|
|
} |
426 |
|
|
|
427 |
|
✗ |
const std::vector<Eigen::MatrixXd>& SolverIntro::get_Quz() const { |
428 |
|
✗ |
return Quz_; |
429 |
|
|
} |
430 |
|
|
|
431 |
|
✗ |
const std::vector<Eigen::VectorXd>& SolverIntro::get_Qz() const { return Qz_; } |
432 |
|
|
|
433 |
|
✗ |
const std::vector<Eigen::MatrixXd>& SolverIntro::get_Hy() const { return Hy_; } |
434 |
|
|
|
435 |
|
✗ |
const std::vector<Eigen::VectorXd>& SolverIntro::get_kz() const { return kz_; } |
436 |
|
|
|
437 |
|
✗ |
const std::vector<Eigen::MatrixXd>& SolverIntro::get_Kz() const { return Kz_; } |
438 |
|
|
|
439 |
|
✗ |
const std::vector<Eigen::VectorXd>& SolverIntro::get_ks() const { return ks_; } |
440 |
|
|
|
441 |
|
✗ |
const std::vector<Eigen::MatrixXd>& SolverIntro::get_Ks() const { return Ks_; } |
442 |
|
|
|
443 |
|
✗ |
void SolverIntro::set_equality_solver(const EqualitySolverType type) { |
444 |
|
✗ |
eq_solver_ = type; |
445 |
|
|
} |
446 |
|
|
|
447 |
|
✗ |
void SolverIntro::set_th_feas(const double th_feas) { th_feas_ = th_feas; } |
448 |
|
|
|
449 |
|
✗ |
void SolverIntro::set_rho(const double rho) { |
450 |
|
✗ |
if (0. >= rho || rho > 1.) { |
451 |
|
✗ |
throw_pretty("Invalid argument: " << "rho value should between 0 and 1."); |
452 |
|
|
} |
453 |
|
✗ |
rho_ = rho; |
454 |
|
|
} |
455 |
|
|
|
456 |
|
✗ |
void SolverIntro::set_zero_upsilon(const bool zero_upsilon) { |
457 |
|
✗ |
zero_upsilon_ = zero_upsilon; |
458 |
|
|
} |
459 |
|
|
|
460 |
|
|
} // namespace crocoddyl |
461 |
|
|
|