| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | /////////////////////////////////////////////////////////////////////////////// | ||
| 2 | // BSD 3-Clause License | ||
| 3 | // | ||
| 4 | // Copyright (C) 2021-2023, Heriot-Watt University, University of Edinburgh | ||
| 5 | // Copyright note valid unless otherwise stated in individual files. | ||
| 6 | // All rights reserved. | ||
| 7 | /////////////////////////////////////////////////////////////////////////////// | ||
| 8 | |||
| 9 | #include "crocoddyl/core/solvers/intro.hpp" | ||
| 10 | |||
| 11 | #include "crocoddyl/core/utils/stop-watch.hpp" | ||
| 12 | |||
| 13 | namespace crocoddyl { | ||
| 14 | |||
| 15 | ✗ | SolverIntro::SolverIntro(std::shared_ptr<ShootingProblem> problem) | |
| 16 | : SolverFDDP(problem), | ||
| 17 | ✗ | eq_solver_(LuNull), | |
| 18 | ✗ | th_feas_(1e-4), | |
| 19 | ✗ | rho_(0.3), | |
| 20 | ✗ | upsilon_(0.), | |
| 21 | ✗ | zero_upsilon_(false) { | |
| 22 | ✗ | const std::size_t T = problem_->get_T(); | |
| 23 | ✗ | Hu_rank_.resize(T); | |
| 24 | ✗ | KQuu_tmp_.resize(T); | |
| 25 | ✗ | YZ_.resize(T); | |
| 26 | ✗ | Hy_.resize(T); | |
| 27 | ✗ | Qz_.resize(T); | |
| 28 | ✗ | Qzz_.resize(T); | |
| 29 | ✗ | Qxz_.resize(T); | |
| 30 | ✗ | Quz_.resize(T); | |
| 31 | ✗ | kz_.resize(T); | |
| 32 | ✗ | Kz_.resize(T); | |
| 33 | ✗ | ks_.resize(T); | |
| 34 | ✗ | Ks_.resize(T); | |
| 35 | ✗ | QuuinvHuT_.resize(T); | |
| 36 | ✗ | Qzz_llt_.resize(T); | |
| 37 | ✗ | Hu_lu_.resize(T); | |
| 38 | ✗ | Hu_qr_.resize(T); | |
| 39 | ✗ | Hy_lu_.resize(T); | |
| 40 | |||
| 41 | ✗ | const std::size_t ndx = problem_->get_ndx(); | |
| 42 | const std::vector<std::shared_ptr<ActionModelAbstract> >& models = | ||
| 43 | ✗ | problem_->get_runningModels(); | |
| 44 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
| 45 | ✗ | const std::shared_ptr<ActionModelAbstract>& model = models[t]; | |
| 46 | ✗ | const std::size_t nu = model->get_nu(); | |
| 47 | ✗ | const std::size_t nh = model->get_nh(); | |
| 48 | ✗ | Hu_rank_[t] = nh; | |
| 49 | ✗ | KQuu_tmp_[t] = Eigen::MatrixXd::Zero(ndx, nu); | |
| 50 | ✗ | YZ_[t] = Eigen::MatrixXd::Zero(nu, nu); | |
| 51 | ✗ | Hy_[t] = Eigen::MatrixXd::Zero(nh, nh); | |
| 52 | ✗ | Qz_[t] = Eigen::VectorXd::Zero(nh); | |
| 53 | ✗ | Qzz_[t] = Eigen::MatrixXd::Zero(nh, nh); | |
| 54 | ✗ | Qxz_[t] = Eigen::MatrixXd::Zero(ndx, nh); | |
| 55 | ✗ | Quz_[t] = Eigen::MatrixXd::Zero(nu, nh); | |
| 56 | ✗ | kz_[t] = Eigen::VectorXd::Zero(nu); | |
| 57 | ✗ | Kz_[t] = Eigen::MatrixXd::Zero(nu, ndx); | |
| 58 | ✗ | ks_[t] = Eigen::VectorXd::Zero(nh); | |
| 59 | ✗ | Ks_[t] = Eigen::MatrixXd::Zero(nh, ndx); | |
| 60 | ✗ | QuuinvHuT_[t] = Eigen::MatrixXd::Zero(nu, nh); | |
| 61 | ✗ | Qzz_llt_[t] = Eigen::LLT<Eigen::MatrixXd>(nh); | |
| 62 | ✗ | Hu_lu_[t] = Eigen::FullPivLU<Eigen::MatrixXd>(nh, nu); | |
| 63 | ✗ | Hu_qr_[t] = Eigen::ColPivHouseholderQR<Eigen::MatrixXd>(nu, nh); | |
| 64 | ✗ | Hy_lu_[t] = Eigen::PartialPivLU<Eigen::MatrixXd>(nh); | |
| 65 | } | ||
| 66 | ✗ | } | |
| 67 | |||
| 68 | ✗ | SolverIntro::~SolverIntro() {} | |
| 69 | |||
| 70 | ✗ | bool SolverIntro::solve(const std::vector<Eigen::VectorXd>& init_xs, | |
| 71 | const std::vector<Eigen::VectorXd>& init_us, | ||
| 72 | const std::size_t maxiter, const bool is_feasible, | ||
| 73 | const double init_reg) { | ||
| 74 | ✗ | START_PROFILER("SolverIntro::solve"); | |
| 75 | ✗ | if (problem_->is_updated()) { | |
| 76 | ✗ | resizeData(); | |
| 77 | } | ||
| 78 | ✗ | xs_try_[0] = | |
| 79 | ✗ | problem_->get_x0(); // it is needed in case that init_xs[0] is infeasible | |
| 80 | ✗ | setCandidate(init_xs, init_us, is_feasible); | |
| 81 | |||
| 82 | ✗ | if (std::isnan(init_reg)) { | |
| 83 | ✗ | preg_ = reg_min_; | |
| 84 | ✗ | dreg_ = reg_min_; | |
| 85 | } else { | ||
| 86 | ✗ | preg_ = init_reg; | |
| 87 | ✗ | dreg_ = init_reg; | |
| 88 | } | ||
| 89 | ✗ | was_feasible_ = false; | |
| 90 | ✗ | if (zero_upsilon_) { | |
| 91 | ✗ | upsilon_ = 0.; | |
| 92 | } | ||
| 93 | |||
| 94 | ✗ | bool recalcDiff = true; | |
| 95 | ✗ | for (iter_ = 0; iter_ < maxiter; ++iter_) { | |
| 96 | while (true) { | ||
| 97 | try { | ||
| 98 | ✗ | computeDirection(recalcDiff); | |
| 99 | ✗ | } catch (std::exception& e) { | |
| 100 | ✗ | recalcDiff = false; | |
| 101 | ✗ | increaseRegularization(); | |
| 102 | ✗ | if (preg_ == reg_max_) { | |
| 103 | ✗ | return false; | |
| 104 | } else { | ||
| 105 | ✗ | continue; | |
| 106 | } | ||
| 107 | ✗ | } | |
| 108 | ✗ | break; | |
| 109 | ✗ | } | |
| 110 | ✗ | updateExpectedImprovement(); | |
| 111 | ✗ | expectedImprovement(); | |
| 112 | |||
| 113 | // Update the penalty parameter for computing the merit function and its | ||
| 114 | // directional derivative For more details see Section 3 of "An Interior | ||
| 115 | // Point Algorithm for Large Scale Nonlinear Programming" | ||
| 116 | ✗ | if (hfeas_ != 0 && iter_ != 0) { | |
| 117 | ✗ | upsilon_ = | |
| 118 | ✗ | std::max(upsilon_, (d_[0] + .5 * d_[1]) / ((1 - rho_) * hfeas_)); | |
| 119 | } | ||
| 120 | |||
| 121 | // We need to recalculate the derivatives when the step length passes | ||
| 122 | ✗ | recalcDiff = false; | |
| 123 | ✗ | for (std::vector<double>::const_iterator it = alphas_.begin(); | |
| 124 | ✗ | it != alphas_.end(); ++it) { | |
| 125 | ✗ | steplength_ = *it; | |
| 126 | try { | ||
| 127 | ✗ | dV_ = tryStep(steplength_); | |
| 128 | ✗ | dfeas_ = hfeas_ - hfeas_try_; | |
| 129 | ✗ | dPhi_ = dV_ + upsilon_ * dfeas_; | |
| 130 | ✗ | } catch (std::exception& e) { | |
| 131 | ✗ | continue; | |
| 132 | ✗ | } | |
| 133 | ✗ | expectedImprovement(); | |
| 134 | ✗ | dVexp_ = steplength_ * (d_[0] + 0.5 * steplength_ * d_[1]); | |
| 135 | ✗ | dPhiexp_ = dVexp_ + steplength_ * upsilon_ * dfeas_; | |
| 136 | ✗ | if (dPhiexp_ >= 0) { // descend direction | |
| 137 | ✗ | if (std::abs(d_[0]) < th_grad_ || dPhi_ > th_acceptstep_ * dPhiexp_) { | |
| 138 | ✗ | was_feasible_ = is_feasible_; | |
| 139 | ✗ | setCandidate(xs_try_, us_try_, (was_feasible_) || (steplength_ == 1)); | |
| 140 | ✗ | cost_ = cost_try_; | |
| 141 | ✗ | hfeas_ = hfeas_try_; | |
| 142 | ✗ | merit_ = cost_ + upsilon_ * hfeas_; | |
| 143 | ✗ | recalcDiff = true; | |
| 144 | ✗ | break; | |
| 145 | } | ||
| 146 | } else { // reducing the gaps by allowing a small increment in the cost | ||
| 147 | // value | ||
| 148 | ✗ | if (dV_ > th_acceptnegstep_ * dVexp_) { | |
| 149 | ✗ | was_feasible_ = is_feasible_; | |
| 150 | ✗ | setCandidate(xs_try_, us_try_, (was_feasible_) || (steplength_ == 1)); | |
| 151 | ✗ | cost_ = cost_try_; | |
| 152 | ✗ | hfeas_ = hfeas_try_; | |
| 153 | ✗ | merit_ = cost_ + upsilon_ * hfeas_; | |
| 154 | ✗ | recalcDiff = true; | |
| 155 | ✗ | break; | |
| 156 | } | ||
| 157 | } | ||
| 158 | } | ||
| 159 | |||
| 160 | ✗ | stoppingCriteria(); | |
| 161 | ✗ | const std::size_t n_callbacks = callbacks_.size(); | |
| 162 | ✗ | for (std::size_t c = 0; c < n_callbacks; ++c) { | |
| 163 | ✗ | CallbackAbstract& callback = *callbacks_[c]; | |
| 164 | ✗ | callback(*this); | |
| 165 | } | ||
| 166 | |||
| 167 | ✗ | if (steplength_ > th_stepdec_ && dV_ >= 0.) { | |
| 168 | ✗ | decreaseRegularization(); | |
| 169 | } | ||
| 170 | ✗ | if (steplength_ <= th_stepinc_ || std::abs(d_[1]) <= th_feas_) { | |
| 171 | ✗ | if (preg_ == reg_max_) { | |
| 172 | ✗ | STOP_PROFILER("SolverIntro::solve"); | |
| 173 | ✗ | return false; | |
| 174 | } | ||
| 175 | ✗ | increaseRegularization(); | |
| 176 | } | ||
| 177 | |||
| 178 | ✗ | if (is_feasible_ && stop_ < th_stop_) { | |
| 179 | ✗ | STOP_PROFILER("SolverIntro::solve"); | |
| 180 | ✗ | return true; | |
| 181 | } | ||
| 182 | } | ||
| 183 | ✗ | STOP_PROFILER("SolverIntro::solve"); | |
| 184 | ✗ | return false; | |
| 185 | } | ||
| 186 | |||
| 187 | ✗ | double SolverIntro::tryStep(const double steplength) { | |
| 188 | ✗ | forwardPass(steplength); | |
| 189 | ✗ | hfeas_try_ = computeEqualityFeasibility(); | |
| 190 | ✗ | return cost_ - cost_try_; | |
| 191 | } | ||
| 192 | |||
| 193 | ✗ | double SolverIntro::stoppingCriteria() { | |
| 194 | ✗ | stop_ = std::max(hfeas_, std::abs(d_[0] + 0.5 * d_[1])); | |
| 195 | ✗ | return stop_; | |
| 196 | } | ||
| 197 | |||
| 198 | ✗ | void SolverIntro::resizeData() { | |
| 199 | ✗ | START_PROFILER("SolverIntro::resizeData"); | |
| 200 | ✗ | SolverFDDP::resizeData(); | |
| 201 | |||
| 202 | ✗ | const std::size_t T = problem_->get_T(); | |
| 203 | ✗ | const std::size_t ndx = problem_->get_ndx(); | |
| 204 | const std::vector<std::shared_ptr<ActionModelAbstract> >& models = | ||
| 205 | ✗ | problem_->get_runningModels(); | |
| 206 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
| 207 | ✗ | const std::shared_ptr<ActionModelAbstract>& model = models[t]; | |
| 208 | ✗ | const std::size_t nu = model->get_nu(); | |
| 209 | ✗ | const std::size_t nh = model->get_nh(); | |
| 210 | ✗ | KQuu_tmp_[t].conservativeResize(ndx, nu); | |
| 211 | ✗ | YZ_[t].conservativeResize(nu, nu); | |
| 212 | ✗ | Hy_[t].conservativeResize(nh, nh); | |
| 213 | ✗ | Qz_[t].conservativeResize(nh); | |
| 214 | ✗ | Qzz_[t].conservativeResize(nh, nh); | |
| 215 | ✗ | Qxz_[t].conservativeResize(ndx, nh); | |
| 216 | ✗ | Quz_[t].conservativeResize(nu, nh); | |
| 217 | ✗ | kz_[t].conservativeResize(nu); | |
| 218 | ✗ | Kz_[t].conservativeResize(nu, ndx); | |
| 219 | ✗ | ks_[t].conservativeResize(nh); | |
| 220 | ✗ | Ks_[t].conservativeResize(nh, ndx); | |
| 221 | ✗ | QuuinvHuT_[t].conservativeResize(nu, nh); | |
| 222 | } | ||
| 223 | ✗ | STOP_PROFILER("SolverIntro::resizeData"); | |
| 224 | ✗ | } | |
| 225 | |||
| 226 | ✗ | double SolverIntro::calcDiff() { | |
| 227 | ✗ | START_PROFILER("SolverIntro::calcDiff"); | |
| 228 | ✗ | SolverFDDP::calcDiff(); | |
| 229 | ✗ | const std::size_t T = problem_->get_T(); | |
| 230 | const std::vector<std::shared_ptr<ActionModelAbstract> >& models = | ||
| 231 | ✗ | problem_->get_runningModels(); | |
| 232 | const std::vector<std::shared_ptr<ActionDataAbstract> >& datas = | ||
| 233 | ✗ | problem_->get_runningDatas(); | |
| 234 | ✗ | switch (eq_solver_) { | |
| 235 | ✗ | case LuNull: | |
| 236 | #ifdef CROCODDYL_WITH_MULTITHREADING | ||
| 237 | #pragma omp parallel for num_threads(problem_->get_nthreads()) | ||
| 238 | #endif | ||
| 239 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
| 240 | const std::shared_ptr<crocoddyl::ActionModelAbstract>& model = | ||
| 241 | ✗ | models[t]; | |
| 242 | ✗ | const std::shared_ptr<crocoddyl::ActionDataAbstract>& data = datas[t]; | |
| 243 | ✗ | if (model->get_nu() > 0 && model->get_nh() > 0) { | |
| 244 | ✗ | Hu_lu_[t].compute(data->Hu); | |
| 245 | ✗ | Hu_rank_[t] = Hu_lu_[t].rank(); | |
| 246 | ✗ | YZ_[t].leftCols(Hu_rank_[t]).noalias() = | |
| 247 | ✗ | (Hu_lu_[t].permutationP() * data->Hu).transpose(); | |
| 248 | ✗ | YZ_[t].rightCols(model->get_nu() - Hu_rank_[t]) = Hu_lu_[t].kernel(); | |
| 249 | const Eigen::Block<Eigen::MatrixXd, Eigen::Dynamic, Eigen::Dynamic, | ||
| 250 | Eigen::RowMajor> | ||
| 251 | ✗ | Y = YZ_[t].leftCols(Hu_lu_[t].rank()); | |
| 252 | ✗ | Hy_[t].noalias() = data->Hu * Y; | |
| 253 | ✗ | Hy_lu_[t].compute(Hy_[t]); | |
| 254 | const Eigen::Inverse<Eigen::PartialPivLU<Eigen::MatrixXd> > Hy_inv = | ||
| 255 | ✗ | Hy_lu_[t].inverse(); | |
| 256 | ✗ | ks_[t].noalias() = Hy_inv * data->h; | |
| 257 | ✗ | Ks_[t].noalias() = Hy_inv * data->Hx; | |
| 258 | ✗ | kz_[t].noalias() = Y * ks_[t]; | |
| 259 | ✗ | Kz_[t].noalias() = Y * Ks_[t]; | |
| 260 | ✗ | } | |
| 261 | } | ||
| 262 | ✗ | break; | |
| 263 | ✗ | case QrNull: | |
| 264 | #ifdef CROCODDYL_WITH_MULTITHREADING | ||
| 265 | #pragma omp parallel for num_threads(problem_->get_nthreads()) | ||
| 266 | #endif | ||
| 267 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
| 268 | const std::shared_ptr<crocoddyl::ActionModelAbstract>& model = | ||
| 269 | ✗ | models[t]; | |
| 270 | ✗ | const std::shared_ptr<crocoddyl::ActionDataAbstract>& data = datas[t]; | |
| 271 | ✗ | if (model->get_nu() > 0 && model->get_nh() > 0) { | |
| 272 | ✗ | Hu_qr_[t].compute(data->Hu.transpose()); | |
| 273 | ✗ | YZ_[t] = Hu_qr_[t].householderQ(); | |
| 274 | ✗ | Hu_rank_[t] = Hu_qr_[t].rank(); | |
| 275 | const Eigen::Block<Eigen::MatrixXd, Eigen::Dynamic, Eigen::Dynamic, | ||
| 276 | Eigen::RowMajor> | ||
| 277 | ✗ | Y = YZ_[t].leftCols(Hu_qr_[t].rank()); | |
| 278 | ✗ | Hy_[t].noalias() = data->Hu * Y; | |
| 279 | ✗ | Hy_lu_[t].compute(Hy_[t]); | |
| 280 | const Eigen::Inverse<Eigen::PartialPivLU<Eigen::MatrixXd> > Hy_inv = | ||
| 281 | ✗ | Hy_lu_[t].inverse(); | |
| 282 | ✗ | ks_[t].noalias() = Hy_inv * data->h; | |
| 283 | ✗ | Ks_[t].noalias() = Hy_inv * data->Hx; | |
| 284 | ✗ | kz_[t].noalias() = Y * ks_[t]; | |
| 285 | ✗ | Kz_[t].noalias() = Y * Ks_[t]; | |
| 286 | ✗ | } | |
| 287 | } | ||
| 288 | ✗ | break; | |
| 289 | ✗ | case Schur: | |
| 290 | ✗ | break; | |
| 291 | } | ||
| 292 | |||
| 293 | ✗ | STOP_PROFILER("SolverIntro::calcDiff"); | |
| 294 | ✗ | return cost_; | |
| 295 | } | ||
| 296 | |||
| 297 | ✗ | void SolverIntro::computeValueFunction( | |
| 298 | const std::size_t t, const std::shared_ptr<ActionModelAbstract>& model) { | ||
| 299 | ✗ | const std::size_t nu = model->get_nu(); | |
| 300 | ✗ | Vx_[t] = Qx_[t]; | |
| 301 | ✗ | Vxx_[t] = Qxx_[t]; | |
| 302 | ✗ | if (nu != 0) { | |
| 303 | ✗ | START_PROFILER("SolverIntro::Vx"); | |
| 304 | ✗ | Quuk_[t].noalias() = Quu_[t] * k_[t]; | |
| 305 | ✗ | Vx_[t].noalias() -= Qxu_[t] * k_[t]; | |
| 306 | ✗ | Qu_[t] -= Quuk_[t]; | |
| 307 | ✗ | Vx_[t].noalias() -= K_[t].transpose() * Qu_[t]; | |
| 308 | ✗ | Qu_[t] += Quuk_[t]; | |
| 309 | ✗ | STOP_PROFILER("SolverIntro::Vx"); | |
| 310 | ✗ | START_PROFILER("SolverIntro::Vxx"); | |
| 311 | ✗ | KQuu_tmp_[t].noalias() = K_[t].transpose() * Quu_[t]; | |
| 312 | ✗ | KQuu_tmp_[t].noalias() -= 2 * Qxu_[t]; | |
| 313 | ✗ | Vxx_[t].noalias() += KQuu_tmp_[t] * K_[t]; | |
| 314 | ✗ | STOP_PROFILER("SolverIntro::Vxx"); | |
| 315 | } | ||
| 316 | ✗ | Vxx_tmp_ = 0.5 * (Vxx_[t] + Vxx_[t].transpose()); | |
| 317 | ✗ | Vxx_[t] = Vxx_tmp_; | |
| 318 | |||
| 319 | ✗ | if (!std::isnan(preg_)) { | |
| 320 | ✗ | Vxx_[t].diagonal().array() += preg_; | |
| 321 | } | ||
| 322 | |||
| 323 | // Compute and store the Vx gradient at end of the interval (rollout state) | ||
| 324 | ✗ | if (!is_feasible_) { | |
| 325 | ✗ | Vx_[t].noalias() += Vxx_[t] * fs_[t]; | |
| 326 | } | ||
| 327 | ✗ | } | |
| 328 | |||
| 329 | ✗ | void SolverIntro::computeGains(const std::size_t t) { | |
| 330 | ✗ | START_PROFILER("SolverIntro::computeGains"); | |
| 331 | const std::shared_ptr<crocoddyl::ActionModelAbstract>& model = | ||
| 332 | ✗ | problem_->get_runningModels()[t]; | |
| 333 | const std::shared_ptr<crocoddyl::ActionDataAbstract>& data = | ||
| 334 | ✗ | problem_->get_runningDatas()[t]; | |
| 335 | |||
| 336 | ✗ | const std::size_t nu = model->get_nu(); | |
| 337 | ✗ | const std::size_t nh = model->get_nh(); | |
| 338 | ✗ | switch (eq_solver_) { | |
| 339 | ✗ | case LuNull: | |
| 340 | case QrNull: | ||
| 341 | ✗ | if (nu > 0 && nh > 0) { | |
| 342 | ✗ | START_PROFILER("SolverIntro::Qzz_inv"); | |
| 343 | ✗ | const std::size_t rank = Hu_rank_[t]; | |
| 344 | ✗ | const std::size_t nullity = data->Hu.cols() - rank; | |
| 345 | const Eigen::Block<Eigen::MatrixXd, Eigen::Dynamic, Eigen::Dynamic, | ||
| 346 | Eigen::RowMajor> | ||
| 347 | ✗ | Z = YZ_[t].rightCols(nullity); | |
| 348 | ✗ | Quz_[t].noalias() = Quu_[t] * Z; | |
| 349 | ✗ | Qzz_[t].noalias() = Z.transpose() * Quz_[t]; | |
| 350 | ✗ | Qzz_llt_[t].compute(Qzz_[t]); | |
| 351 | ✗ | STOP_PROFILER("SolverIntro::Qzz_inv"); | |
| 352 | ✗ | const Eigen::ComputationInfo& info = Qzz_llt_[t].info(); | |
| 353 | ✗ | if (info != Eigen::Success) { | |
| 354 | ✗ | throw_pretty("backward error"); | |
| 355 | } | ||
| 356 | |||
| 357 | ✗ | k_[t] = kz_[t]; | |
| 358 | ✗ | K_[t] = Kz_[t]; | |
| 359 | ✗ | Eigen::Transpose<Eigen::MatrixXd> QzzinvQzu = Quz_[t].transpose(); | |
| 360 | ✗ | Qzz_llt_[t].solveInPlace(QzzinvQzu); | |
| 361 | ✗ | Qz_[t].noalias() = Z.transpose() * Qu_[t]; | |
| 362 | ✗ | Qzz_llt_[t].solveInPlace(Qz_[t]); | |
| 363 | ✗ | Qxz_[t].noalias() = Qxu_[t] * Z; | |
| 364 | ✗ | Eigen::Transpose<Eigen::MatrixXd> Qzx = Qxz_[t].transpose(); | |
| 365 | ✗ | Qzz_llt_[t].solveInPlace(Qzx); | |
| 366 | ✗ | Qz_[t].noalias() -= QzzinvQzu * kz_[t]; | |
| 367 | ✗ | Qzx.noalias() -= QzzinvQzu * Kz_[t]; | |
| 368 | ✗ | k_[t].noalias() += Z * Qz_[t]; | |
| 369 | ✗ | K_[t].noalias() += Z * Qzx; | |
| 370 | ✗ | } else { | |
| 371 | ✗ | SolverFDDP::computeGains(t); | |
| 372 | } | ||
| 373 | ✗ | break; | |
| 374 | ✗ | case Schur: | |
| 375 | ✗ | SolverFDDP::computeGains(t); | |
| 376 | ✗ | if (nu > 0 && nh > 0) { | |
| 377 | ✗ | START_PROFILER("SolverIntro::Qzz_inv"); | |
| 378 | ✗ | QuuinvHuT_[t] = data->Hu.transpose(); | |
| 379 | ✗ | Quu_llt_[t].solveInPlace(QuuinvHuT_[t]); | |
| 380 | ✗ | Qzz_[t].noalias() = data->Hu * QuuinvHuT_[t]; | |
| 381 | ✗ | Qzz_llt_[t].compute(Qzz_[t]); | |
| 382 | ✗ | STOP_PROFILER("SolverIntro::Qzz_inv"); | |
| 383 | ✗ | const Eigen::ComputationInfo& info = Qzz_llt_[t].info(); | |
| 384 | ✗ | if (info != Eigen::Success) { | |
| 385 | ✗ | throw_pretty("backward error"); | |
| 386 | } | ||
| 387 | ✗ | Eigen::Transpose<Eigen::MatrixXd> HuQuuinv = QuuinvHuT_[t].transpose(); | |
| 388 | ✗ | Qzz_llt_[t].solveInPlace(HuQuuinv); | |
| 389 | ✗ | ks_[t] = data->h; | |
| 390 | ✗ | ks_[t].noalias() -= data->Hu * k_[t]; | |
| 391 | ✗ | Ks_[t] = data->Hx; | |
| 392 | ✗ | Ks_[t].noalias() -= data->Hu * K_[t]; | |
| 393 | ✗ | k_[t].noalias() += QuuinvHuT_[t] * ks_[t]; | |
| 394 | ✗ | K_[t] += QuuinvHuT_[t] * Ks_[t]; | |
| 395 | } | ||
| 396 | ✗ | break; | |
| 397 | } | ||
| 398 | ✗ | STOP_PROFILER("SolverIntro::computeGains"); | |
| 399 | ✗ | } | |
| 400 | |||
| 401 | ✗ | EqualitySolverType SolverIntro::get_equality_solver() const { | |
| 402 | ✗ | return eq_solver_; | |
| 403 | } | ||
| 404 | |||
| 405 | ✗ | double SolverIntro::get_th_feas() const { return th_feas_; } | |
| 406 | |||
| 407 | ✗ | double SolverIntro::get_rho() const { return rho_; } | |
| 408 | |||
| 409 | ✗ | double SolverIntro::get_upsilon() const { return upsilon_; } | |
| 410 | |||
| 411 | ✗ | bool SolverIntro::get_zero_upsilon() const { return zero_upsilon_; } | |
| 412 | |||
| 413 | ✗ | const std::vector<std::size_t>& SolverIntro::get_Hu_rank() const { | |
| 414 | ✗ | return Hu_rank_; | |
| 415 | } | ||
| 416 | |||
| 417 | ✗ | const std::vector<Eigen::MatrixXd>& SolverIntro::get_YZ() const { return YZ_; } | |
| 418 | |||
| 419 | ✗ | const std::vector<Eigen::MatrixXd>& SolverIntro::get_Qzz() const { | |
| 420 | ✗ | return Qzz_; | |
| 421 | } | ||
| 422 | |||
| 423 | ✗ | const std::vector<Eigen::MatrixXd>& SolverIntro::get_Qxz() const { | |
| 424 | ✗ | return Qxz_; | |
| 425 | } | ||
| 426 | |||
| 427 | ✗ | const std::vector<Eigen::MatrixXd>& SolverIntro::get_Quz() const { | |
| 428 | ✗ | return Quz_; | |
| 429 | } | ||
| 430 | |||
| 431 | ✗ | const std::vector<Eigen::VectorXd>& SolverIntro::get_Qz() const { return Qz_; } | |
| 432 | |||
| 433 | ✗ | const std::vector<Eigen::MatrixXd>& SolverIntro::get_Hy() const { return Hy_; } | |
| 434 | |||
| 435 | ✗ | const std::vector<Eigen::VectorXd>& SolverIntro::get_kz() const { return kz_; } | |
| 436 | |||
| 437 | ✗ | const std::vector<Eigen::MatrixXd>& SolverIntro::get_Kz() const { return Kz_; } | |
| 438 | |||
| 439 | ✗ | const std::vector<Eigen::VectorXd>& SolverIntro::get_ks() const { return ks_; } | |
| 440 | |||
| 441 | ✗ | const std::vector<Eigen::MatrixXd>& SolverIntro::get_Ks() const { return Ks_; } | |
| 442 | |||
| 443 | ✗ | void SolverIntro::set_equality_solver(const EqualitySolverType type) { | |
| 444 | ✗ | eq_solver_ = type; | |
| 445 | ✗ | } | |
| 446 | |||
| 447 | ✗ | void SolverIntro::set_th_feas(const double th_feas) { th_feas_ = th_feas; } | |
| 448 | |||
| 449 | ✗ | void SolverIntro::set_rho(const double rho) { | |
| 450 | ✗ | if (0. >= rho || rho > 1.) { | |
| 451 | ✗ | throw_pretty("Invalid argument: " << "rho value should between 0 and 1."); | |
| 452 | } | ||
| 453 | ✗ | rho_ = rho; | |
| 454 | ✗ | } | |
| 455 | |||
| 456 | ✗ | void SolverIntro::set_zero_upsilon(const bool zero_upsilon) { | |
| 457 | ✗ | zero_upsilon_ = zero_upsilon; | |
| 458 | ✗ | } | |
| 459 | |||
| 460 | } // namespace crocoddyl | ||
| 461 |