Directory: | ./ |
---|---|
File: | src/core/solvers/intro.cpp |
Date: | 2025-01-16 08:47:40 |
Exec | Total | Coverage | |
---|---|---|---|
Lines: | 49 | 311 | 15.8% |
Branches: | 49 | 805 | 6.1% |
Line | Branch | Exec | Source |
---|---|---|---|
1 | /////////////////////////////////////////////////////////////////////////////// | ||
2 | // BSD 3-Clause License | ||
3 | // | ||
4 | // Copyright (C) 2021-2023, Heriot-Watt University, University of Edinburgh | ||
5 | // Copyright note valid unless otherwise stated in individual files. | ||
6 | // All rights reserved. | ||
7 | /////////////////////////////////////////////////////////////////////////////// | ||
8 | |||
9 | #include "crocoddyl/core/solvers/intro.hpp" | ||
10 | |||
11 | #include <iostream> | ||
12 | |||
13 | #include "crocoddyl/core/utils/exception.hpp" | ||
14 | #include "crocoddyl/core/utils/stop-watch.hpp" | ||
15 | |||
16 | namespace crocoddyl { | ||
17 | |||
18 | 1 | SolverIntro::SolverIntro(boost::shared_ptr<ShootingProblem> problem) | |
19 | : SolverFDDP(problem), | ||
20 | 1 | eq_solver_(LuNull), | |
21 | 1 | th_feas_(1e-4), | |
22 | 1 | rho_(0.3), | |
23 | 1 | upsilon_(0.), | |
24 |
1/2✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
|
1 | zero_upsilon_(false) { |
25 | 1 | const std::size_t T = problem_->get_T(); | |
26 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | Hu_rank_.resize(T); |
27 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | KQuu_tmp_.resize(T); |
28 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | YZ_.resize(T); |
29 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | Hy_.resize(T); |
30 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | Qz_.resize(T); |
31 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | Qzz_.resize(T); |
32 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | Qxz_.resize(T); |
33 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | Quz_.resize(T); |
34 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | kz_.resize(T); |
35 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | Kz_.resize(T); |
36 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | ks_.resize(T); |
37 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | Ks_.resize(T); |
38 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | QuuinvHuT_.resize(T); |
39 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | Qzz_llt_.resize(T); |
40 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | Hu_lu_.resize(T); |
41 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | Hu_qr_.resize(T); |
42 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | Hy_lu_.resize(T); |
43 | |||
44 | 1 | const std::size_t ndx = problem_->get_ndx(); | |
45 | const std::vector<boost::shared_ptr<ActionModelAbstract> >& models = | ||
46 | 1 | problem_->get_runningModels(); | |
47 |
2/2✓ Branch 0 taken 10 times.
✓ Branch 1 taken 1 times.
|
11 | for (std::size_t t = 0; t < T; ++t) { |
48 | 10 | const boost::shared_ptr<ActionModelAbstract>& model = models[t]; | |
49 | 10 | const std::size_t nu = model->get_nu(); | |
50 |
1/2✓ Branch 2 taken 10 times.
✗ Branch 3 not taken.
|
10 | const std::size_t nh = model->get_nh(); |
51 | 10 | Hu_rank_[t] = nh; | |
52 |
2/4✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
✓ Branch 5 taken 10 times.
✗ Branch 6 not taken.
|
10 | KQuu_tmp_[t] = Eigen::MatrixXd::Zero(ndx, nu); |
53 |
2/4✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
✓ Branch 5 taken 10 times.
✗ Branch 6 not taken.
|
10 | YZ_[t] = Eigen::MatrixXd::Zero(nu, nu); |
54 |
2/4✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
✓ Branch 5 taken 10 times.
✗ Branch 6 not taken.
|
10 | Hy_[t] = Eigen::MatrixXd::Zero(nh, nh); |
55 |
2/4✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
✓ Branch 5 taken 10 times.
✗ Branch 6 not taken.
|
10 | Qz_[t] = Eigen::VectorXd::Zero(nh); |
56 |
2/4✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
✓ Branch 5 taken 10 times.
✗ Branch 6 not taken.
|
10 | Qzz_[t] = Eigen::MatrixXd::Zero(nh, nh); |
57 |
2/4✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
✓ Branch 5 taken 10 times.
✗ Branch 6 not taken.
|
10 | Qxz_[t] = Eigen::MatrixXd::Zero(ndx, nh); |
58 |
2/4✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
✓ Branch 5 taken 10 times.
✗ Branch 6 not taken.
|
10 | Quz_[t] = Eigen::MatrixXd::Zero(nu, nh); |
59 |
2/4✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
✓ Branch 5 taken 10 times.
✗ Branch 6 not taken.
|
10 | kz_[t] = Eigen::VectorXd::Zero(nu); |
60 |
2/4✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
✓ Branch 5 taken 10 times.
✗ Branch 6 not taken.
|
10 | Kz_[t] = Eigen::MatrixXd::Zero(nu, ndx); |
61 |
2/4✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
✓ Branch 5 taken 10 times.
✗ Branch 6 not taken.
|
10 | ks_[t] = Eigen::VectorXd::Zero(nh); |
62 |
2/4✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
✓ Branch 5 taken 10 times.
✗ Branch 6 not taken.
|
10 | Ks_[t] = Eigen::MatrixXd::Zero(nh, ndx); |
63 |
2/4✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
✓ Branch 5 taken 10 times.
✗ Branch 6 not taken.
|
10 | QuuinvHuT_[t] = Eigen::MatrixXd::Zero(nu, nh); |
64 |
1/2✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
|
10 | Qzz_llt_[t] = Eigen::LLT<Eigen::MatrixXd>(nh); |
65 |
1/2✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
|
10 | Hu_lu_[t] = Eigen::FullPivLU<Eigen::MatrixXd>(nh, nu); |
66 |
1/2✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
|
10 | Hu_qr_[t] = Eigen::ColPivHouseholderQR<Eigen::MatrixXd>(nu, nh); |
67 |
1/2✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
|
10 | Hy_lu_[t] = Eigen::PartialPivLU<Eigen::MatrixXd>(nh); |
68 | } | ||
69 | 1 | } | |
70 | |||
71 | 6 | SolverIntro::~SolverIntro() {} | |
72 | |||
73 | ✗ | bool SolverIntro::solve(const std::vector<Eigen::VectorXd>& init_xs, | |
74 | const std::vector<Eigen::VectorXd>& init_us, | ||
75 | const std::size_t maxiter, const bool is_feasible, | ||
76 | const double init_reg) { | ||
77 | ✗ | START_PROFILER("SolverIntro::solve"); | |
78 | ✗ | if (problem_->is_updated()) { | |
79 | ✗ | resizeData(); | |
80 | } | ||
81 | ✗ | xs_try_[0] = | |
82 | ✗ | problem_->get_x0(); // it is needed in case that init_xs[0] is infeasible | |
83 | ✗ | setCandidate(init_xs, init_us, is_feasible); | |
84 | |||
85 | ✗ | if (std::isnan(init_reg)) { | |
86 | ✗ | preg_ = reg_min_; | |
87 | ✗ | dreg_ = reg_min_; | |
88 | } else { | ||
89 | ✗ | preg_ = init_reg; | |
90 | ✗ | dreg_ = init_reg; | |
91 | } | ||
92 | ✗ | was_feasible_ = false; | |
93 | ✗ | if (zero_upsilon_) { | |
94 | ✗ | upsilon_ = 0.; | |
95 | } | ||
96 | |||
97 | ✗ | bool recalcDiff = true; | |
98 | ✗ | for (iter_ = 0; iter_ < maxiter; ++iter_) { | |
99 | while (true) { | ||
100 | try { | ||
101 | ✗ | computeDirection(recalcDiff); | |
102 | ✗ | } catch (std::exception& e) { | |
103 | ✗ | recalcDiff = false; | |
104 | ✗ | increaseRegularization(); | |
105 | ✗ | if (preg_ == reg_max_) { | |
106 | ✗ | return false; | |
107 | } else { | ||
108 | ✗ | continue; | |
109 | } | ||
110 | } | ||
111 | ✗ | break; | |
112 | } | ||
113 | ✗ | updateExpectedImprovement(); | |
114 | ✗ | expectedImprovement(); | |
115 | |||
116 | // Update the penalty parameter for computing the merit function and its | ||
117 | // directional derivative For more details see Section 3 of "An Interior | ||
118 | // Point Algorithm for Large Scale Nonlinear Programming" | ||
119 | ✗ | if (hfeas_ != 0 && iter_ != 0) { | |
120 | ✗ | upsilon_ = | |
121 | ✗ | std::max(upsilon_, (d_[0] + .5 * d_[1]) / ((1 - rho_) * hfeas_)); | |
122 | } | ||
123 | |||
124 | // We need to recalculate the derivatives when the step length passes | ||
125 | ✗ | recalcDiff = false; | |
126 | ✗ | for (std::vector<double>::const_iterator it = alphas_.begin(); | |
127 | ✗ | it != alphas_.end(); ++it) { | |
128 | ✗ | steplength_ = *it; | |
129 | try { | ||
130 | ✗ | dV_ = tryStep(steplength_); | |
131 | ✗ | dfeas_ = hfeas_ - hfeas_try_; | |
132 | ✗ | dPhi_ = dV_ + upsilon_ * dfeas_; | |
133 | ✗ | } catch (std::exception& e) { | |
134 | ✗ | continue; | |
135 | } | ||
136 | ✗ | expectedImprovement(); | |
137 | ✗ | dVexp_ = steplength_ * (d_[0] + 0.5 * steplength_ * d_[1]); | |
138 | ✗ | dPhiexp_ = dVexp_ + steplength_ * upsilon_ * dfeas_; | |
139 | ✗ | if (dPhiexp_ >= 0) { // descend direction | |
140 | ✗ | if (std::abs(d_[0]) < th_grad_ || dPhi_ > th_acceptstep_ * dPhiexp_) { | |
141 | ✗ | was_feasible_ = is_feasible_; | |
142 | ✗ | setCandidate(xs_try_, us_try_, (was_feasible_) || (steplength_ == 1)); | |
143 | ✗ | cost_ = cost_try_; | |
144 | ✗ | hfeas_ = hfeas_try_; | |
145 | ✗ | merit_ = cost_ + upsilon_ * hfeas_; | |
146 | ✗ | recalcDiff = true; | |
147 | ✗ | break; | |
148 | } | ||
149 | } else { // reducing the gaps by allowing a small increment in the cost | ||
150 | // value | ||
151 | ✗ | if (dV_ > th_acceptnegstep_ * dVexp_) { | |
152 | ✗ | was_feasible_ = is_feasible_; | |
153 | ✗ | setCandidate(xs_try_, us_try_, (was_feasible_) || (steplength_ == 1)); | |
154 | ✗ | cost_ = cost_try_; | |
155 | ✗ | hfeas_ = hfeas_try_; | |
156 | ✗ | merit_ = cost_ + upsilon_ * hfeas_; | |
157 | ✗ | recalcDiff = true; | |
158 | ✗ | break; | |
159 | } | ||
160 | } | ||
161 | } | ||
162 | |||
163 | ✗ | stoppingCriteria(); | |
164 | ✗ | const std::size_t n_callbacks = callbacks_.size(); | |
165 | ✗ | for (std::size_t c = 0; c < n_callbacks; ++c) { | |
166 | ✗ | CallbackAbstract& callback = *callbacks_[c]; | |
167 | ✗ | callback(*this); | |
168 | } | ||
169 | |||
170 | ✗ | if (steplength_ > th_stepdec_ && dV_ >= 0.) { | |
171 | ✗ | decreaseRegularization(); | |
172 | } | ||
173 | ✗ | if (steplength_ <= th_stepinc_ || std::abs(d_[1]) <= th_feas_) { | |
174 | ✗ | if (preg_ == reg_max_) { | |
175 | ✗ | STOP_PROFILER("SolverIntro::solve"); | |
176 | ✗ | return false; | |
177 | } | ||
178 | ✗ | increaseRegularization(); | |
179 | } | ||
180 | |||
181 | ✗ | if (is_feasible_ && stop_ < th_stop_) { | |
182 | ✗ | STOP_PROFILER("SolverIntro::solve"); | |
183 | ✗ | return true; | |
184 | } | ||
185 | } | ||
186 | ✗ | STOP_PROFILER("SolverIntro::solve"); | |
187 | ✗ | return false; | |
188 | } | ||
189 | |||
190 | ✗ | double SolverIntro::tryStep(const double steplength) { | |
191 | ✗ | forwardPass(steplength); | |
192 | ✗ | hfeas_try_ = computeEqualityFeasibility(); | |
193 | ✗ | return cost_ - cost_try_; | |
194 | } | ||
195 | |||
196 | ✗ | double SolverIntro::stoppingCriteria() { | |
197 | ✗ | stop_ = std::max(hfeas_, std::abs(d_[0] + 0.5 * d_[1])); | |
198 | ✗ | return stop_; | |
199 | } | ||
200 | |||
201 | ✗ | void SolverIntro::resizeData() { | |
202 | ✗ | START_PROFILER("SolverIntro::resizeData"); | |
203 | ✗ | SolverFDDP::resizeData(); | |
204 | |||
205 | ✗ | const std::size_t T = problem_->get_T(); | |
206 | ✗ | const std::size_t ndx = problem_->get_ndx(); | |
207 | const std::vector<boost::shared_ptr<ActionModelAbstract> >& models = | ||
208 | ✗ | problem_->get_runningModels(); | |
209 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
210 | ✗ | const boost::shared_ptr<ActionModelAbstract>& model = models[t]; | |
211 | ✗ | const std::size_t nu = model->get_nu(); | |
212 | ✗ | const std::size_t nh = model->get_nh(); | |
213 | ✗ | KQuu_tmp_[t].conservativeResize(ndx, nu); | |
214 | ✗ | YZ_[t].conservativeResize(nu, nu); | |
215 | ✗ | Hy_[t].conservativeResize(nh, nh); | |
216 | ✗ | Qz_[t].conservativeResize(nh); | |
217 | ✗ | Qzz_[t].conservativeResize(nh, nh); | |
218 | ✗ | Qxz_[t].conservativeResize(ndx, nh); | |
219 | ✗ | Quz_[t].conservativeResize(nu, nh); | |
220 | ✗ | kz_[t].conservativeResize(nu); | |
221 | ✗ | Kz_[t].conservativeResize(nu, ndx); | |
222 | ✗ | ks_[t].conservativeResize(nh); | |
223 | ✗ | Ks_[t].conservativeResize(nh, ndx); | |
224 | ✗ | QuuinvHuT_[t].conservativeResize(nu, nh); | |
225 | } | ||
226 | ✗ | STOP_PROFILER("SolverIntro::resizeData"); | |
227 | } | ||
228 | |||
229 | ✗ | double SolverIntro::calcDiff() { | |
230 | ✗ | START_PROFILER("SolverIntro::calcDiff"); | |
231 | ✗ | SolverFDDP::calcDiff(); | |
232 | ✗ | const std::size_t T = problem_->get_T(); | |
233 | const std::vector<boost::shared_ptr<ActionModelAbstract> >& models = | ||
234 | ✗ | problem_->get_runningModels(); | |
235 | const std::vector<boost::shared_ptr<ActionDataAbstract> >& datas = | ||
236 | ✗ | problem_->get_runningDatas(); | |
237 | ✗ | switch (eq_solver_) { | |
238 | ✗ | case LuNull: | |
239 | #ifdef CROCODDYL_WITH_MULTITHREADING | ||
240 | #pragma omp parallel for num_threads(problem_->get_nthreads()) | ||
241 | #endif | ||
242 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
243 | const boost::shared_ptr<crocoddyl::ActionModelAbstract>& model = | ||
244 | ✗ | models[t]; | |
245 | ✗ | const boost::shared_ptr<crocoddyl::ActionDataAbstract>& data = datas[t]; | |
246 | ✗ | if (model->get_nu() > 0 && model->get_nh() > 0) { | |
247 | ✗ | Hu_lu_[t].compute(data->Hu); | |
248 | ✗ | YZ_[t] << Hu_lu_[t].matrixLU().transpose(), Hu_lu_[t].kernel(); | |
249 | ✗ | Hu_rank_[t] = Hu_lu_[t].rank(); | |
250 | const Eigen::Block<Eigen::MatrixXd, Eigen::Dynamic, Eigen::Dynamic, | ||
251 | Eigen::RowMajor> | ||
252 | ✗ | Y = YZ_[t].leftCols(Hu_lu_[t].rank()); | |
253 | ✗ | Hy_[t].noalias() = data->Hu * Y; | |
254 | ✗ | Hy_lu_[t].compute(Hy_[t]); | |
255 | const Eigen::Inverse<Eigen::PartialPivLU<Eigen::MatrixXd> > Hy_inv = | ||
256 | ✗ | Hy_lu_[t].inverse(); | |
257 | ✗ | ks_[t].noalias() = Hy_inv * data->h; | |
258 | ✗ | Ks_[t].noalias() = Hy_inv * data->Hx; | |
259 | ✗ | kz_[t].noalias() = Y * ks_[t]; | |
260 | ✗ | Kz_[t].noalias() = Y * Ks_[t]; | |
261 | } | ||
262 | } | ||
263 | ✗ | break; | |
264 | ✗ | case QrNull: | |
265 | #ifdef CROCODDYL_WITH_MULTITHREADING | ||
266 | #pragma omp parallel for num_threads(problem_->get_nthreads()) | ||
267 | #endif | ||
268 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
269 | const boost::shared_ptr<crocoddyl::ActionModelAbstract>& model = | ||
270 | ✗ | models[t]; | |
271 | ✗ | const boost::shared_ptr<crocoddyl::ActionDataAbstract>& data = datas[t]; | |
272 | ✗ | if (model->get_nu() > 0 && model->get_nh() > 0) { | |
273 | ✗ | Hu_qr_[t].compute(data->Hu.transpose()); | |
274 | ✗ | YZ_[t] = Hu_qr_[t].householderQ(); | |
275 | ✗ | Hu_rank_[t] = Hu_qr_[t].rank(); | |
276 | const Eigen::Block<Eigen::MatrixXd, Eigen::Dynamic, Eigen::Dynamic, | ||
277 | Eigen::RowMajor> | ||
278 | ✗ | Y = YZ_[t].leftCols(Hu_qr_[t].rank()); | |
279 | ✗ | Hy_[t].noalias() = data->Hu * Y; | |
280 | ✗ | Hy_lu_[t].compute(Hy_[t]); | |
281 | const Eigen::Inverse<Eigen::PartialPivLU<Eigen::MatrixXd> > Hy_inv = | ||
282 | ✗ | Hy_lu_[t].inverse(); | |
283 | ✗ | ks_[t].noalias() = Hy_inv * data->h; | |
284 | ✗ | Ks_[t].noalias() = Hy_inv * data->Hx; | |
285 | ✗ | kz_[t].noalias() = Y * ks_[t]; | |
286 | ✗ | Kz_[t].noalias() = Y * Ks_[t]; | |
287 | } | ||
288 | } | ||
289 | ✗ | break; | |
290 | ✗ | case Schur: | |
291 | ✗ | break; | |
292 | } | ||
293 | |||
294 | ✗ | STOP_PROFILER("SolverIntro::calcDiff"); | |
295 | ✗ | return cost_; | |
296 | } | ||
297 | |||
298 | ✗ | void SolverIntro::computeValueFunction( | |
299 | const std::size_t t, const boost::shared_ptr<ActionModelAbstract>& model) { | ||
300 | ✗ | const std::size_t nu = model->get_nu(); | |
301 | ✗ | Vx_[t] = Qx_[t]; | |
302 | ✗ | Vxx_[t] = Qxx_[t]; | |
303 | ✗ | if (nu != 0) { | |
304 | ✗ | START_PROFILER("SolverIntro::Vx"); | |
305 | ✗ | Quuk_[t].noalias() = Quu_[t] * k_[t]; | |
306 | ✗ | Vx_[t].noalias() -= Qxu_[t] * k_[t]; | |
307 | ✗ | Qu_[t] -= Quuk_[t]; | |
308 | ✗ | Vx_[t].noalias() -= K_[t].transpose() * Qu_[t]; | |
309 | ✗ | Qu_[t] += Quuk_[t]; | |
310 | ✗ | STOP_PROFILER("SolverIntro::Vx"); | |
311 | ✗ | START_PROFILER("SolverIntro::Vxx"); | |
312 | ✗ | KQuu_tmp_[t].noalias() = K_[t].transpose() * Quu_[t]; | |
313 | ✗ | KQuu_tmp_[t].noalias() -= 2 * Qxu_[t]; | |
314 | ✗ | Vxx_[t].noalias() += KQuu_tmp_[t] * K_[t]; | |
315 | ✗ | STOP_PROFILER("SolverIntro::Vxx"); | |
316 | } | ||
317 | ✗ | Vxx_tmp_ = 0.5 * (Vxx_[t] + Vxx_[t].transpose()); | |
318 | ✗ | Vxx_[t] = Vxx_tmp_; | |
319 | |||
320 | ✗ | if (!std::isnan(preg_)) { | |
321 | ✗ | Vxx_[t].diagonal().array() += preg_; | |
322 | } | ||
323 | |||
324 | // Compute and store the Vx gradient at end of the interval (rollout state) | ||
325 | ✗ | if (!is_feasible_) { | |
326 | ✗ | Vx_[t].noalias() += Vxx_[t] * fs_[t]; | |
327 | } | ||
328 | } | ||
329 | |||
330 | ✗ | void SolverIntro::computeGains(const std::size_t t) { | |
331 | ✗ | START_PROFILER("SolverIntro::computeGains"); | |
332 | const boost::shared_ptr<crocoddyl::ActionModelAbstract>& model = | ||
333 | ✗ | problem_->get_runningModels()[t]; | |
334 | const boost::shared_ptr<crocoddyl::ActionDataAbstract>& data = | ||
335 | ✗ | problem_->get_runningDatas()[t]; | |
336 | |||
337 | ✗ | const std::size_t nu = model->get_nu(); | |
338 | ✗ | const std::size_t nh = model->get_nh(); | |
339 | ✗ | switch (eq_solver_) { | |
340 | ✗ | case LuNull: | |
341 | case QrNull: | ||
342 | ✗ | if (nu > 0 && nh > 0) { | |
343 | ✗ | START_PROFILER("SolverIntro::Qzz_inv"); | |
344 | ✗ | const std::size_t rank = Hu_rank_[t]; | |
345 | ✗ | const std::size_t nullity = data->Hu.cols() - rank; | |
346 | const Eigen::Block<Eigen::MatrixXd, Eigen::Dynamic, Eigen::Dynamic, | ||
347 | Eigen::RowMajor> | ||
348 | ✗ | Z = YZ_[t].rightCols(nullity); | |
349 | ✗ | Quz_[t].noalias() = Quu_[t] * Z; | |
350 | ✗ | Qzz_[t].noalias() = Z.transpose() * Quz_[t]; | |
351 | ✗ | Qzz_llt_[t].compute(Qzz_[t]); | |
352 | ✗ | STOP_PROFILER("SolverIntro::Qzz_inv"); | |
353 | ✗ | const Eigen::ComputationInfo& info = Qzz_llt_[t].info(); | |
354 | ✗ | if (info != Eigen::Success) { | |
355 | ✗ | throw_pretty("backward error"); | |
356 | } | ||
357 | |||
358 | ✗ | k_[t] = kz_[t]; | |
359 | ✗ | K_[t] = Kz_[t]; | |
360 | ✗ | Eigen::Transpose<Eigen::MatrixXd> QzzinvQzu = Quz_[t].transpose(); | |
361 | ✗ | Qzz_llt_[t].solveInPlace(QzzinvQzu); | |
362 | ✗ | Qz_[t].noalias() = Z.transpose() * Qu_[t]; | |
363 | ✗ | Qzz_llt_[t].solveInPlace(Qz_[t]); | |
364 | ✗ | Qxz_[t].noalias() = Qxu_[t] * Z; | |
365 | ✗ | Eigen::Transpose<Eigen::MatrixXd> Qzx = Qxz_[t].transpose(); | |
366 | ✗ | Qzz_llt_[t].solveInPlace(Qzx); | |
367 | ✗ | Qz_[t].noalias() -= QzzinvQzu * kz_[t]; | |
368 | ✗ | Qzx.noalias() -= QzzinvQzu * Kz_[t]; | |
369 | ✗ | k_[t].noalias() += Z * Qz_[t]; | |
370 | ✗ | K_[t].noalias() += Z * Qzx; | |
371 | ✗ | } else { | |
372 | ✗ | SolverFDDP::computeGains(t); | |
373 | } | ||
374 | ✗ | break; | |
375 | ✗ | case Schur: | |
376 | ✗ | SolverFDDP::computeGains(t); | |
377 | ✗ | if (nu > 0 && nh > 0) { | |
378 | ✗ | START_PROFILER("SolverIntro::Qzz_inv"); | |
379 | ✗ | QuuinvHuT_[t] = data->Hu.transpose(); | |
380 | ✗ | Quu_llt_[t].solveInPlace(QuuinvHuT_[t]); | |
381 | ✗ | Qzz_[t].noalias() = data->Hu * QuuinvHuT_[t]; | |
382 | ✗ | Qzz_llt_[t].compute(Qzz_[t]); | |
383 | ✗ | STOP_PROFILER("SolverIntro::Qzz_inv"); | |
384 | ✗ | const Eigen::ComputationInfo& info = Qzz_llt_[t].info(); | |
385 | ✗ | if (info != Eigen::Success) { | |
386 | ✗ | throw_pretty("backward error"); | |
387 | } | ||
388 | ✗ | Eigen::Transpose<Eigen::MatrixXd> HuQuuinv = QuuinvHuT_[t].transpose(); | |
389 | ✗ | Qzz_llt_[t].solveInPlace(HuQuuinv); | |
390 | ✗ | ks_[t] = data->h; | |
391 | ✗ | ks_[t].noalias() -= data->Hu * k_[t]; | |
392 | ✗ | Ks_[t] = data->Hx; | |
393 | ✗ | Ks_[t].noalias() -= data->Hu * K_[t]; | |
394 | ✗ | k_[t].noalias() += QuuinvHuT_[t] * ks_[t]; | |
395 | ✗ | K_[t] += QuuinvHuT_[t] * Ks_[t]; | |
396 | } | ||
397 | ✗ | break; | |
398 | } | ||
399 | ✗ | STOP_PROFILER("SolverIntro::computeGains"); | |
400 | } | ||
401 | |||
402 | ✗ | EqualitySolverType SolverIntro::get_equality_solver() const { | |
403 | ✗ | return eq_solver_; | |
404 | } | ||
405 | |||
406 | ✗ | double SolverIntro::get_th_feas() const { return th_feas_; } | |
407 | |||
408 | ✗ | double SolverIntro::get_rho() const { return rho_; } | |
409 | |||
410 | ✗ | double SolverIntro::get_upsilon() const { return upsilon_; } | |
411 | |||
412 | ✗ | bool SolverIntro::get_zero_upsilon() const { return zero_upsilon_; } | |
413 | |||
414 | ✗ | const std::vector<std::size_t>& SolverIntro::get_Hu_rank() const { | |
415 | ✗ | return Hu_rank_; | |
416 | } | ||
417 | |||
418 | ✗ | const std::vector<Eigen::MatrixXd>& SolverIntro::get_YZ() const { return YZ_; } | |
419 | |||
420 | ✗ | const std::vector<Eigen::MatrixXd>& SolverIntro::get_Qzz() const { | |
421 | ✗ | return Qzz_; | |
422 | } | ||
423 | |||
424 | ✗ | const std::vector<Eigen::MatrixXd>& SolverIntro::get_Qxz() const { | |
425 | ✗ | return Qxz_; | |
426 | } | ||
427 | |||
428 | ✗ | const std::vector<Eigen::MatrixXd>& SolverIntro::get_Quz() const { | |
429 | ✗ | return Quz_; | |
430 | } | ||
431 | |||
432 | ✗ | const std::vector<Eigen::VectorXd>& SolverIntro::get_Qz() const { return Qz_; } | |
433 | |||
434 | ✗ | const std::vector<Eigen::MatrixXd>& SolverIntro::get_Hy() const { return Hy_; } | |
435 | |||
436 | ✗ | const std::vector<Eigen::VectorXd>& SolverIntro::get_kz() const { return kz_; } | |
437 | |||
438 | ✗ | const std::vector<Eigen::MatrixXd>& SolverIntro::get_Kz() const { return Kz_; } | |
439 | |||
440 | ✗ | const std::vector<Eigen::VectorXd>& SolverIntro::get_ks() const { return ks_; } | |
441 | |||
442 | ✗ | const std::vector<Eigen::MatrixXd>& SolverIntro::get_Ks() const { return Ks_; } | |
443 | |||
444 | ✗ | void SolverIntro::set_equality_solver(const EqualitySolverType type) { | |
445 | ✗ | eq_solver_ = type; | |
446 | } | ||
447 | |||
448 | ✗ | void SolverIntro::set_th_feas(const double th_feas) { th_feas_ = th_feas; } | |
449 | |||
450 | ✗ | void SolverIntro::set_rho(const double rho) { | |
451 | ✗ | if (0. >= rho || rho > 1.) { | |
452 | ✗ | throw_pretty("Invalid argument: " << "rho value should between 0 and 1."); | |
453 | } | ||
454 | ✗ | rho_ = rho; | |
455 | } | ||
456 | |||
457 | ✗ | void SolverIntro::set_zero_upsilon(const bool zero_upsilon) { | |
458 | ✗ | zero_upsilon_ = zero_upsilon; | |
459 | } | ||
460 | |||
461 | } // namespace crocoddyl | ||
462 |