Line |
Branch |
Exec |
Source |
1 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
2 |
|
|
// BSD 3-Clause License |
3 |
|
|
// |
4 |
|
|
// Copyright (C) 2022-2023, IRI: CSIC-UPC, Heriot-Watt University |
5 |
|
|
// Copyright note valid unless otherwise stated in individual files. |
6 |
|
|
// All rights reserved. |
7 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
8 |
|
|
|
9 |
|
|
#include "crocoddyl/core/solvers/ipopt/ipopt-iface.hpp" |
10 |
|
|
|
11 |
|
|
#include <cmath> |
12 |
|
|
|
13 |
|
|
namespace crocoddyl { |
14 |
|
|
|
15 |
|
✗ |
IpoptInterface::IpoptInterface(const std::shared_ptr<ShootingProblem>& problem) |
16 |
|
✗ |
: problem_(problem) { |
17 |
|
✗ |
const std::size_t T = problem_->get_T(); |
18 |
|
✗ |
xs_.resize(T + 1); |
19 |
|
✗ |
us_.resize(T); |
20 |
|
✗ |
datas_.resize(T + 1); |
21 |
|
✗ |
ixu_.resize(T + 1); |
22 |
|
|
|
23 |
|
✗ |
nconst_ = 0; |
24 |
|
✗ |
nvar_ = 0; |
25 |
|
|
const std::vector<std::shared_ptr<ActionModelAbstract> >& models = |
26 |
|
✗ |
problem_->get_runningModels(); |
27 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
28 |
|
✗ |
const std::size_t nxi = models[t]->get_state()->get_nx(); |
29 |
|
✗ |
const std::size_t ndxi = models[t]->get_state()->get_ndx(); |
30 |
|
✗ |
const std::size_t nui = models[t]->get_nu(); |
31 |
|
|
|
32 |
|
✗ |
xs_[t] = models[t]->get_state()->zero(); |
33 |
|
✗ |
us_[t] = Eigen::VectorXd::Zero(nui); |
34 |
|
✗ |
datas_[t] = createData(nxi, ndxi, nui); |
35 |
|
✗ |
ixu_[t] = nvar_; |
36 |
|
✗ |
nconst_ += ndxi; // T*ndx eq. constraints for dynamics |
37 |
|
✗ |
nvar_ += ndxi + nui; // Multiple shooting, states and controls |
38 |
|
|
} |
39 |
|
✗ |
ixu_[T] = nvar_; |
40 |
|
|
|
41 |
|
|
// Initial condition |
42 |
|
✗ |
nconst_ += models[0]->get_state()->get_ndx(); |
43 |
|
|
|
44 |
|
|
const std::shared_ptr<ActionModelAbstract>& model = |
45 |
|
✗ |
problem_->get_terminalModel(); |
46 |
|
✗ |
const std::size_t nxi = model->get_state()->get_nx(); |
47 |
|
✗ |
const std::size_t ndxi = model->get_state()->get_ndx(); |
48 |
|
✗ |
nvar_ += ndxi; // final node |
49 |
|
✗ |
xs_[T] = model->get_state()->zero(); |
50 |
|
✗ |
datas_[T] = createData(nxi, ndxi, 0); |
51 |
|
✗ |
} |
52 |
|
|
|
53 |
|
✗ |
void IpoptInterface::resizeData() { |
54 |
|
✗ |
const std::size_t T = problem_->get_T(); |
55 |
|
✗ |
nvar_ = 0; |
56 |
|
|
const std::vector<std::shared_ptr<ActionModelAbstract> >& models = |
57 |
|
✗ |
problem_->get_runningModels(); |
58 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
59 |
|
✗ |
const std::size_t nxi = models[t]->get_state()->get_nx(); |
60 |
|
✗ |
const std::size_t ndxi = models[t]->get_state()->get_ndx(); |
61 |
|
✗ |
const std::size_t nui = models[t]->get_nu(); |
62 |
|
|
|
63 |
|
✗ |
xs_[t].conservativeResize(nxi); |
64 |
|
✗ |
us_[t].conservativeResize(nui); |
65 |
|
✗ |
datas_[t]->resize(nxi, ndxi, nui); |
66 |
|
✗ |
ixu_[t] = nvar_; |
67 |
|
✗ |
nconst_ += ndxi; // T*ndx eq. constraints for dynamics |
68 |
|
✗ |
nvar_ += ndxi + nui; // Multiple shooting, states and controls |
69 |
|
|
} |
70 |
|
✗ |
ixu_[T] = nvar_; |
71 |
|
|
|
72 |
|
|
// Initial condition |
73 |
|
✗ |
nconst_ += models[0]->get_state()->get_ndx(); |
74 |
|
|
|
75 |
|
|
const std::shared_ptr<ActionModelAbstract>& model = |
76 |
|
✗ |
problem_->get_terminalModel(); |
77 |
|
✗ |
const std::size_t nxi = model->get_state()->get_nx(); |
78 |
|
✗ |
const std::size_t ndxi = model->get_state()->get_ndx(); |
79 |
|
✗ |
nvar_ += ndxi; // final node |
80 |
|
✗ |
xs_[T].conservativeResize(nxi); |
81 |
|
✗ |
datas_[T]->resize(nxi, ndxi, 0); |
82 |
|
✗ |
} |
83 |
|
|
|
84 |
|
✗ |
IpoptInterface::~IpoptInterface() {} |
85 |
|
|
|
86 |
|
✗ |
bool IpoptInterface::get_nlp_info(Ipopt::Index& n, Ipopt::Index& m, |
87 |
|
|
Ipopt::Index& nnz_jac_g, |
88 |
|
|
Ipopt::Index& nnz_h_lag, |
89 |
|
|
IndexStyleEnum& index_style) { |
90 |
|
✗ |
n = static_cast<Ipopt::Index>(nvar_); // number of variables |
91 |
|
✗ |
m = static_cast<Ipopt::Index>(nconst_); // number of constraints |
92 |
|
|
|
93 |
|
✗ |
nnz_jac_g = 0; // Jacobian nonzeros for dynamic constraints |
94 |
|
✗ |
nnz_h_lag = 0; // Hessian nonzeros (only lower triangular part) |
95 |
|
|
const std::vector<std::shared_ptr<ActionModelAbstract> >& models = |
96 |
|
✗ |
problem_->get_runningModels(); |
97 |
|
✗ |
const std::size_t T = problem_->get_T(); |
98 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
99 |
|
✗ |
const std::size_t ndxi = models[t]->get_state()->get_ndx(); |
100 |
|
|
const std::size_t ndxi_next = |
101 |
|
✗ |
t + 1 == T ? problem_->get_terminalModel()->get_state()->get_ndx() |
102 |
|
✗ |
: models[t + 1]->get_state()->get_ndx(); |
103 |
|
✗ |
const std::size_t nui = models[t]->get_nu(); |
104 |
|
✗ |
nnz_jac_g += ndxi * (ndxi + ndxi_next + nui); |
105 |
|
|
|
106 |
|
|
// Hessian |
107 |
|
✗ |
std::size_t nonzero = 0; |
108 |
|
✗ |
for (std::size_t i = 1; i <= (ndxi + nui); ++i) { |
109 |
|
✗ |
nonzero += i; |
110 |
|
|
} |
111 |
|
✗ |
nnz_h_lag += nonzero; |
112 |
|
|
} |
113 |
|
|
|
114 |
|
|
// Initial condition |
115 |
|
✗ |
nnz_jac_g += |
116 |
|
✗ |
models[0]->get_state()->get_ndx() * models[0]->get_state()->get_ndx(); |
117 |
|
|
|
118 |
|
|
// Hessian nonzero for the terminal cost |
119 |
|
|
const std::size_t ndxi = |
120 |
|
✗ |
problem_->get_terminalModel()->get_state()->get_ndx(); |
121 |
|
✗ |
std::size_t nonzero = 0; |
122 |
|
✗ |
for (std::size_t i = 1; i <= ndxi; ++i) { |
123 |
|
✗ |
nonzero += i; |
124 |
|
|
} |
125 |
|
✗ |
nnz_h_lag += nonzero; |
126 |
|
|
|
127 |
|
|
// use the C style indexing (0-based) |
128 |
|
✗ |
index_style = Ipopt::TNLP::C_STYLE; |
129 |
|
|
|
130 |
|
✗ |
return true; |
131 |
|
|
} |
132 |
|
|
|
133 |
|
|
#ifndef NDEBUG |
134 |
|
✗ |
bool IpoptInterface::get_bounds_info(Ipopt::Index n, Ipopt::Number* x_l, |
135 |
|
|
Ipopt::Number* x_u, Ipopt::Index m, |
136 |
|
|
Ipopt::Number* g_l, Ipopt::Number* g_u) { |
137 |
|
|
#else |
138 |
|
|
bool IpoptInterface::get_bounds_info(Ipopt::Index, Ipopt::Number* x_l, |
139 |
|
|
Ipopt::Number* x_u, Ipopt::Index, |
140 |
|
|
Ipopt::Number* g_l, Ipopt::Number* g_u) { |
141 |
|
|
#endif |
142 |
|
✗ |
assert_pretty(n == static_cast<Ipopt::Index>(nvar_), |
143 |
|
|
"Inconsistent number of decision variables"); |
144 |
|
✗ |
assert_pretty(m == static_cast<Ipopt::Index>(nconst_), |
145 |
|
|
"Inconsistent number of constraints"); |
146 |
|
|
|
147 |
|
|
// Adding bounds |
148 |
|
|
const std::vector<std::shared_ptr<ActionModelAbstract> >& models = |
149 |
|
✗ |
problem_->get_runningModels(); |
150 |
|
✗ |
for (std::size_t t = 0; t < problem_->get_T(); ++t) { |
151 |
|
|
// Running state bounds |
152 |
|
✗ |
const std::size_t ndxi = models[t]->get_state()->get_ndx(); |
153 |
|
✗ |
const std::size_t nui = models[t]->get_nu(); |
154 |
|
|
|
155 |
|
✗ |
for (std::size_t j = 0; j < ndxi; ++j) { |
156 |
|
✗ |
x_l[ixu_[t] + j] = std::numeric_limits<double>::lowest(); |
157 |
|
✗ |
x_u[ixu_[t] + j] = std::numeric_limits<double>::max(); |
158 |
|
|
} |
159 |
|
✗ |
for (std::size_t j = 0; j < nui; ++j) { |
160 |
|
✗ |
x_l[ixu_[t] + ndxi + j] = models[t]->get_has_control_limits() |
161 |
|
✗ |
? models[t]->get_u_lb()(j) |
162 |
|
✗ |
: std::numeric_limits<double>::lowest(); |
163 |
|
✗ |
x_u[ixu_[t] + ndxi + j] = models[t]->get_has_control_limits() |
164 |
|
✗ |
? models[t]->get_u_ub()(j) |
165 |
|
✗ |
: std::numeric_limits<double>::max(); |
166 |
|
|
} |
167 |
|
|
} |
168 |
|
|
|
169 |
|
|
// Final state bounds |
170 |
|
|
const std::size_t ndxi = |
171 |
|
✗ |
problem_->get_terminalModel()->get_state()->get_ndx(); |
172 |
|
✗ |
for (std::size_t j = 0; j < ndxi; j++) { |
173 |
|
✗ |
x_l[ixu_.back() + j] = std::numeric_limits<double>::lowest(); |
174 |
|
✗ |
x_u[ixu_.back() + j] = std::numeric_limits<double>::max(); |
175 |
|
|
} |
176 |
|
|
|
177 |
|
|
// Dynamics & Initial conditions (all equal to zero) |
178 |
|
✗ |
for (Ipopt::Index i = 0; i < static_cast<Ipopt::Index>(nconst_); ++i) { |
179 |
|
✗ |
g_l[i] = 0; |
180 |
|
✗ |
g_u[i] = 0; |
181 |
|
|
} |
182 |
|
|
|
183 |
|
✗ |
return true; |
184 |
|
|
} |
185 |
|
|
|
186 |
|
|
#ifndef NDEBUG |
187 |
|
✗ |
bool IpoptInterface::get_starting_point(Ipopt::Index n, bool init_x, |
188 |
|
|
Ipopt::Number* x, bool init_z, |
189 |
|
|
Ipopt::Number* /*z_L*/, |
190 |
|
|
Ipopt::Number* /*z_U*/, Ipopt::Index m, |
191 |
|
|
bool init_lambda, |
192 |
|
|
Ipopt::Number* /*lambda*/) { |
193 |
|
|
#else |
194 |
|
|
bool IpoptInterface::get_starting_point(Ipopt::Index, bool /*init_x*/, |
195 |
|
|
Ipopt::Number* x, bool, Ipopt::Number*, |
196 |
|
|
Ipopt::Number*, Ipopt::Index, bool, |
197 |
|
|
Ipopt::Number*) { |
198 |
|
|
#endif |
199 |
|
✗ |
assert_pretty(n == static_cast<Ipopt::Index>(nvar_), |
200 |
|
|
"Inconsistent number of decision variables"); |
201 |
|
✗ |
assert_pretty(m == static_cast<Ipopt::Index>(nconst_), |
202 |
|
|
"Inconsistent number of constraints"); |
203 |
|
✗ |
assert_pretty(init_x == true, |
204 |
|
|
"Make sure to provide initial value for primal variables"); |
205 |
|
✗ |
assert_pretty(init_z == false, |
206 |
|
|
"Cannot provide initial value for bound multipliers"); |
207 |
|
✗ |
assert_pretty(init_lambda == false, |
208 |
|
|
"Cannot provide initial value for constraint multipliers"); |
209 |
|
|
|
210 |
|
|
// initialize to the given starting point |
211 |
|
|
// State variables are always at 0 since they represent increments from the |
212 |
|
|
// given initial point |
213 |
|
|
const std::vector<std::shared_ptr<ActionModelAbstract> >& models = |
214 |
|
✗ |
problem_->get_runningModels(); |
215 |
|
✗ |
for (std::size_t t = 0; t < problem_->get_T(); ++t) { |
216 |
|
✗ |
const std::size_t ndxi = models[t]->get_state()->get_ndx(); |
217 |
|
✗ |
const std::size_t nui = models[t]->get_nu(); |
218 |
|
✗ |
for (std::size_t j = 0; j < ndxi; ++j) { |
219 |
|
✗ |
x[ixu_[t] + j] = 0; |
220 |
|
|
} |
221 |
|
✗ |
for (std::size_t j = 0; j < nui; ++j) { |
222 |
|
✗ |
x[ixu_[t] + ndxi + j] = us_[t](j); |
223 |
|
|
} |
224 |
|
|
} |
225 |
|
|
const std::size_t ndxi = |
226 |
|
✗ |
problem_->get_terminalModel()->get_state()->get_ndx(); |
227 |
|
✗ |
for (std::size_t j = 0; j < ndxi; j++) { |
228 |
|
✗ |
x[ixu_.back() + j] = 0; |
229 |
|
|
} |
230 |
|
|
|
231 |
|
✗ |
return true; |
232 |
|
|
} |
233 |
|
|
|
234 |
|
|
#ifndef NDEBUG |
235 |
|
✗ |
bool IpoptInterface::eval_f(Ipopt::Index n, const Ipopt::Number* x, |
236 |
|
|
bool /*new_x*/, Ipopt::Number& obj_value) { |
237 |
|
|
#else |
238 |
|
|
bool IpoptInterface::eval_f(Ipopt::Index, const Ipopt::Number* x, bool, |
239 |
|
|
Ipopt::Number& obj_value) { |
240 |
|
|
#endif |
241 |
|
✗ |
assert_pretty(n == static_cast<Ipopt::Index>(nvar_), |
242 |
|
|
"Inconsistent number of decision variables"); |
243 |
|
|
|
244 |
|
|
// Running costs |
245 |
|
|
const std::vector<std::shared_ptr<ActionModelAbstract> >& models = |
246 |
|
✗ |
problem_->get_runningModels(); |
247 |
|
|
const std::vector<std::shared_ptr<ActionDataAbstract> >& datas = |
248 |
|
✗ |
problem_->get_runningDatas(); |
249 |
|
✗ |
const std::size_t T = problem_->get_T(); |
250 |
|
|
#ifdef CROCODDYL_WITH_MULTITHREADING |
251 |
|
|
#pragma omp parallel for num_threads(problem_->get_nthreads()) |
252 |
|
|
#endif |
253 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
254 |
|
✗ |
const std::shared_ptr<ActionModelAbstract>& model = models[t]; |
255 |
|
✗ |
const std::shared_ptr<ActionDataAbstract>& data = datas[t]; |
256 |
|
✗ |
const std::size_t ndxi = model->get_state()->get_ndx(); |
257 |
|
✗ |
const std::size_t nui = model->get_nu(); |
258 |
|
|
|
259 |
|
✗ |
datas_[t]->dx = Eigen::VectorXd::Map(x + ixu_[t], ndxi); |
260 |
|
✗ |
datas_[t]->u = Eigen::VectorXd::Map(x + ixu_[t] + ndxi, nui); |
261 |
|
✗ |
model->get_state()->integrate(xs_[t], datas_[t]->dx, datas_[t]->x); |
262 |
|
✗ |
model->calc(data, datas_[t]->x, datas_[t]->u); |
263 |
|
|
} |
264 |
|
|
|
265 |
|
|
#ifdef CROCODDYL_WITH_MULTITHREADING |
266 |
|
|
#pragma omp simd reduction(+ : obj_value) |
267 |
|
|
#endif |
268 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
269 |
|
✗ |
const std::shared_ptr<ActionDataAbstract>& data = datas[t]; |
270 |
|
✗ |
obj_value += data->cost; |
271 |
|
|
} |
272 |
|
|
|
273 |
|
|
// Terminal costs |
274 |
|
|
const std::shared_ptr<ActionModelAbstract>& model = |
275 |
|
✗ |
problem_->get_terminalModel(); |
276 |
|
|
const std::shared_ptr<ActionDataAbstract>& data = |
277 |
|
✗ |
problem_->get_terminalData(); |
278 |
|
✗ |
const std::size_t ndxi = model->get_state()->get_ndx(); |
279 |
|
|
|
280 |
|
✗ |
datas_[T]->dx = Eigen::VectorXd::Map(x + ixu_.back(), ndxi); |
281 |
|
✗ |
model->get_state()->integrate(xs_[T], datas_[T]->dx, datas_[T]->x); |
282 |
|
✗ |
model->calc(data, datas_[T]->x); |
283 |
|
✗ |
obj_value += data->cost; |
284 |
|
|
|
285 |
|
✗ |
return true; |
286 |
|
|
} |
287 |
|
|
|
288 |
|
|
#ifndef NDEBUG |
289 |
|
✗ |
bool IpoptInterface::eval_grad_f(Ipopt::Index n, const Ipopt::Number* x, |
290 |
|
|
bool /*new_x*/, Ipopt::Number* grad_f) { |
291 |
|
|
#else |
292 |
|
|
bool IpoptInterface::eval_grad_f(Ipopt::Index, const Ipopt::Number* x, bool, |
293 |
|
|
Ipopt::Number* grad_f) { |
294 |
|
|
#endif |
295 |
|
✗ |
assert_pretty(n == static_cast<Ipopt::Index>(nvar_), |
296 |
|
|
"Inconsistent number of decision variables"); |
297 |
|
|
|
298 |
|
|
const std::vector<std::shared_ptr<ActionModelAbstract> >& models = |
299 |
|
✗ |
problem_->get_runningModels(); |
300 |
|
|
const std::vector<std::shared_ptr<ActionDataAbstract> >& datas = |
301 |
|
✗ |
problem_->get_runningDatas(); |
302 |
|
✗ |
const std::size_t T = problem_->get_T(); |
303 |
|
|
#ifdef CROCODDYL_WITH_MULTITHREADING |
304 |
|
|
#pragma omp parallel for num_threads(problem_->get_nthreads()) |
305 |
|
|
#endif |
306 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
307 |
|
✗ |
const std::shared_ptr<ActionModelAbstract>& model = models[t]; |
308 |
|
✗ |
const std::shared_ptr<ActionDataAbstract>& data = datas[t]; |
309 |
|
✗ |
const std::size_t ndxi = model->get_state()->get_ndx(); |
310 |
|
✗ |
const std::size_t nui = model->get_nu(); |
311 |
|
|
|
312 |
|
✗ |
datas_[t]->dx = Eigen::VectorXd::Map(x + ixu_[t], ndxi); |
313 |
|
✗ |
datas_[t]->u = Eigen::VectorXd::Map(x + ixu_[t] + ndxi, nui); |
314 |
|
✗ |
model->get_state()->integrate(xs_[t], datas_[t]->dx, datas_[t]->x); |
315 |
|
✗ |
model->get_state()->Jintegrate(xs_[t], datas_[t]->dx, datas_[t]->Jint_dx, |
316 |
|
✗ |
datas_[t]->Jint_dx, second, setto); |
317 |
|
✗ |
model->calc(data, datas_[t]->x, datas_[t]->u); |
318 |
|
✗ |
model->calcDiff(data, datas_[t]->x, datas_[t]->u); |
319 |
|
✗ |
datas_[t]->Ldx.noalias() = datas_[t]->Jint_dx.transpose() * data->Lx; |
320 |
|
|
} |
321 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
322 |
|
✗ |
const std::shared_ptr<ActionModelAbstract>& model = models[t]; |
323 |
|
✗ |
const std::shared_ptr<ActionDataAbstract>& data = datas[t]; |
324 |
|
✗ |
const std::size_t ndxi = model->get_state()->get_ndx(); |
325 |
|
✗ |
const std::size_t nui = model->get_nu(); |
326 |
|
✗ |
for (std::size_t j = 0; j < ndxi; ++j) { |
327 |
|
✗ |
grad_f[ixu_[t] + j] = datas_[t]->Ldx(j); |
328 |
|
|
} |
329 |
|
✗ |
for (std::size_t j = 0; j < nui; ++j) { |
330 |
|
✗ |
grad_f[ixu_[t] + ndxi + j] = data->Lu(j); |
331 |
|
|
} |
332 |
|
|
} |
333 |
|
|
|
334 |
|
|
// Terminal model |
335 |
|
|
const std::shared_ptr<ActionModelAbstract>& model = |
336 |
|
✗ |
problem_->get_terminalModel(); |
337 |
|
|
const std::shared_ptr<ActionDataAbstract>& data = |
338 |
|
✗ |
problem_->get_terminalData(); |
339 |
|
✗ |
const std::size_t ndxi = model->get_state()->get_ndx(); |
340 |
|
|
|
341 |
|
✗ |
datas_[T]->dx = Eigen::VectorXd::Map(x + ixu_.back(), ndxi); |
342 |
|
✗ |
model->get_state()->integrate(xs_[T], datas_[T]->dx, datas_[T]->x); |
343 |
|
✗ |
model->get_state()->Jintegrate(xs_[T], datas_[T]->dx, datas_[T]->Jint_dx, |
344 |
|
✗ |
datas_[T]->Jint_dx, second, setto); |
345 |
|
✗ |
model->calc(data, datas_[T]->x); |
346 |
|
✗ |
model->calcDiff(data, datas_[T]->x); |
347 |
|
✗ |
datas_[T]->Ldx.noalias() = datas_[T]->Jint_dx.transpose() * data->Lx; |
348 |
|
✗ |
for (std::size_t j = 0; j < ndxi; ++j) { |
349 |
|
✗ |
grad_f[ixu_.back() + j] = datas_[T]->Ldx(j); |
350 |
|
|
} |
351 |
|
|
|
352 |
|
✗ |
return true; |
353 |
|
|
} |
354 |
|
|
|
355 |
|
|
#ifndef NDEBUG |
356 |
|
✗ |
bool IpoptInterface::eval_g(Ipopt::Index n, const Ipopt::Number* x, |
357 |
|
|
bool /*new_x*/, Ipopt::Index m, Ipopt::Number* g) { |
358 |
|
|
#else |
359 |
|
|
bool IpoptInterface::eval_g(Ipopt::Index, const Ipopt::Number* x, |
360 |
|
|
bool /*new_x*/, Ipopt::Index, Ipopt::Number* g) { |
361 |
|
|
#endif |
362 |
|
✗ |
assert_pretty(n == static_cast<Ipopt::Index>(nvar_), |
363 |
|
|
"Inconsistent number of decision variables"); |
364 |
|
✗ |
assert_pretty(m == static_cast<Ipopt::Index>(nconst_), |
365 |
|
|
"Inconsistent number of constraints"); |
366 |
|
|
|
367 |
|
|
// Dynamic constraints |
368 |
|
|
const std::vector<std::shared_ptr<ActionModelAbstract> >& models = |
369 |
|
✗ |
problem_->get_runningModels(); |
370 |
|
|
const std::vector<std::shared_ptr<ActionDataAbstract> >& datas = |
371 |
|
✗ |
problem_->get_runningDatas(); |
372 |
|
✗ |
const std::size_t T = problem_->get_T(); |
373 |
|
|
#ifdef CROCODDYL_WITH_MULTITHREADING |
374 |
|
|
#pragma omp parallel for num_threads(problem_->get_nthreads()) |
375 |
|
|
#endif |
376 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
377 |
|
✗ |
const std::shared_ptr<ActionModelAbstract>& model = models[t]; |
378 |
|
✗ |
const std::shared_ptr<ActionDataAbstract>& data = datas[t]; |
379 |
|
✗ |
const std::size_t ndxi = model->get_state()->get_ndx(); |
380 |
|
✗ |
const std::size_t nui = model->get_nu(); |
381 |
|
|
const std::shared_ptr<ActionModelAbstract>& model_next = |
382 |
|
✗ |
t + 1 == T ? problem_->get_terminalModel() : models[t + 1]; |
383 |
|
✗ |
const std::size_t ndxi_next = model_next->get_state()->get_ndx(); |
384 |
|
|
|
385 |
|
✗ |
datas_[t]->dx = Eigen::VectorXd::Map(x + ixu_[t], ndxi); |
386 |
|
✗ |
datas_[t]->u = Eigen::VectorXd::Map(x + ixu_[t] + ndxi, nui); |
387 |
|
✗ |
datas_[t]->dxnext = |
388 |
|
✗ |
Eigen::VectorXd::Map(x + ixu_[t] + ndxi + nui, ndxi_next); |
389 |
|
✗ |
model->get_state()->integrate(xs_[t], datas_[t]->dx, datas_[t]->x); |
390 |
|
✗ |
model_next->get_state()->integrate(xs_[t + 1], datas_[t]->dxnext, |
391 |
|
✗ |
datas_[t]->xnext); |
392 |
|
✗ |
model->calc(data, datas_[t]->x, datas_[t]->u); |
393 |
|
✗ |
model->get_state()->diff(data->xnext, datas_[t]->xnext, datas_[t]->x_diff); |
394 |
|
|
} |
395 |
|
|
|
396 |
|
✗ |
std::size_t ix = 0; |
397 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
398 |
|
✗ |
const std::shared_ptr<ActionModelAbstract>& model = models[t]; |
399 |
|
✗ |
const std::size_t ndxi = model->get_state()->get_ndx(); |
400 |
|
✗ |
for (std::size_t j = 0; j < ndxi; ++j) { |
401 |
|
✗ |
g[ix + j] = datas_[t]->x_diff[j]; |
402 |
|
|
} |
403 |
|
✗ |
ix += ndxi; |
404 |
|
|
} |
405 |
|
|
|
406 |
|
|
// Initial conditions |
407 |
|
✗ |
const std::shared_ptr<ActionModelAbstract>& model = models[0]; |
408 |
|
✗ |
const std::size_t ndxi = model->get_state()->get_ndx(); |
409 |
|
✗ |
datas_[0]->dx = Eigen::VectorXd::Map(x, ndxi); |
410 |
|
✗ |
model->get_state()->integrate(xs_[0], datas_[0]->dx, datas_[0]->x); |
411 |
|
✗ |
model->get_state()->diff(datas_[0]->x, problem_->get_x0(), |
412 |
|
✗ |
datas_[0]->x_diff); // x(0) - x_0 |
413 |
|
✗ |
for (std::size_t j = 0; j < ndxi; j++) { |
414 |
|
✗ |
g[ix + j] = datas_[0]->x_diff[j]; |
415 |
|
|
} |
416 |
|
|
|
417 |
|
✗ |
return true; |
418 |
|
|
} |
419 |
|
|
|
420 |
|
|
#ifndef NDEBUG |
421 |
|
✗ |
bool IpoptInterface::eval_jac_g(Ipopt::Index n, const Ipopt::Number* x, |
422 |
|
|
bool /*new_x*/, Ipopt::Index m, |
423 |
|
|
Ipopt::Index nele_jac, Ipopt::Index* iRow, |
424 |
|
|
Ipopt::Index* jCol, Ipopt::Number* values) { |
425 |
|
|
#else |
426 |
|
|
bool IpoptInterface::eval_jac_g(Ipopt::Index, const Ipopt::Number* x, bool, |
427 |
|
|
Ipopt::Index, Ipopt::Index, Ipopt::Index* iRow, |
428 |
|
|
Ipopt::Index* jCol, Ipopt::Number* values) { |
429 |
|
|
#endif |
430 |
|
✗ |
assert_pretty(n == static_cast<Ipopt::Index>(nvar_), |
431 |
|
|
"Inconsistent number of decision variables"); |
432 |
|
✗ |
assert_pretty(m == static_cast<Ipopt::Index>(nconst_), |
433 |
|
|
"Inconsistent number of constraints"); |
434 |
|
|
|
435 |
|
|
const std::vector<std::shared_ptr<ActionModelAbstract> >& models = |
436 |
|
✗ |
problem_->get_runningModels(); |
437 |
|
✗ |
if (values == NULL) { |
438 |
|
|
// Dynamic constraints |
439 |
|
✗ |
std::size_t idx = 0; |
440 |
|
✗ |
std::size_t ix = 0; |
441 |
|
✗ |
const std::size_t T = problem_->get_T(); |
442 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
443 |
|
✗ |
const std::shared_ptr<ActionModelAbstract>& model = models[t]; |
444 |
|
✗ |
const std::size_t ndxi = model->get_state()->get_ndx(); |
445 |
|
✗ |
const std::size_t nui = model->get_nu(); |
446 |
|
|
const std::size_t ndxi_next = |
447 |
|
✗ |
t + 1 == T ? problem_->get_terminalModel()->get_state()->get_ndx() |
448 |
|
✗ |
: models[t + 1]->get_state()->get_ndx(); |
449 |
|
✗ |
for (std::size_t idx_row = 0; idx_row < ndxi; ++idx_row) { |
450 |
|
✗ |
for (std::size_t idx_col = 0; idx_col < (ndxi + nui + ndxi_next); |
451 |
|
|
++idx_col) { |
452 |
|
✗ |
iRow[idx] = static_cast<Ipopt::Index>(ix + idx_row); |
453 |
|
✗ |
jCol[idx] = static_cast<Ipopt::Index>(ixu_[t] + idx_col); |
454 |
|
✗ |
idx++; |
455 |
|
|
} |
456 |
|
|
} |
457 |
|
✗ |
ix += ndxi; |
458 |
|
|
} |
459 |
|
|
|
460 |
|
|
// Initial condition |
461 |
|
✗ |
const std::size_t ndxi = models[0]->get_state()->get_ndx(); |
462 |
|
✗ |
for (std::size_t idx_row = 0; idx_row < ndxi; ++idx_row) { |
463 |
|
✗ |
for (std::size_t idx_col = 0; idx_col < ndxi; ++idx_col) { |
464 |
|
✗ |
iRow[idx] = static_cast<Ipopt::Index>(ix + idx_row); |
465 |
|
✗ |
jCol[idx] = static_cast<Ipopt::Index>(idx_col); |
466 |
|
✗ |
idx++; |
467 |
|
|
} |
468 |
|
|
} |
469 |
|
|
|
470 |
|
✗ |
assert_pretty(nele_jac == static_cast<Ipopt::Index>(idx), |
471 |
|
|
"Number of jacobian elements set does not coincide with the " |
472 |
|
|
"total non-zero Jacobian values"); |
473 |
|
|
} else { |
474 |
|
|
const std::vector<std::shared_ptr<ActionDataAbstract> >& datas = |
475 |
|
✗ |
problem_->get_runningDatas(); |
476 |
|
|
// Dynamic constraints |
477 |
|
✗ |
const std::size_t T = problem_->get_T(); |
478 |
|
|
#ifdef CROCODDYL_WITH_MULTITHREADING |
479 |
|
|
#pragma omp parallel for num_threads(problem_->get_nthreads()) |
480 |
|
|
#endif |
481 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
482 |
|
✗ |
const std::shared_ptr<ActionModelAbstract>& model = models[t]; |
483 |
|
✗ |
const std::shared_ptr<ActionDataAbstract>& data = datas[t]; |
484 |
|
|
const std::shared_ptr<ActionModelAbstract>& model_next = |
485 |
|
✗ |
t + 1 == T ? problem_->get_terminalModel() : models[t + 1]; |
486 |
|
✗ |
const std::size_t ndxi = model->get_state()->get_ndx(); |
487 |
|
✗ |
const std::size_t ndxi_next = model_next->get_state()->get_ndx(); |
488 |
|
✗ |
const std::size_t nui = model->get_nu(); |
489 |
|
✗ |
datas_[t]->dx = Eigen::VectorXd::Map(x + ixu_[t], ndxi); |
490 |
|
✗ |
datas_[t]->u = Eigen::VectorXd::Map(x + ixu_[t] + ndxi, nui); |
491 |
|
✗ |
datas_[t]->dxnext = |
492 |
|
✗ |
Eigen::VectorXd::Map(x + ixu_[t] + ndxi + nui, ndxi_next); |
493 |
|
|
|
494 |
|
✗ |
model->get_state()->integrate(xs_[t], datas_[t]->dx, datas_[t]->x); |
495 |
|
✗ |
model_next->get_state()->integrate(xs_[t + 1], datas_[t]->dxnext, |
496 |
|
✗ |
datas_[t]->xnext); |
497 |
|
✗ |
model->calcDiff(data, datas_[t]->x, datas_[t]->u); |
498 |
|
✗ |
model_next->get_state()->Jintegrate( |
499 |
|
✗ |
xs_[t + 1], datas_[t]->dxnext, datas_[t]->Jint_dxnext, |
500 |
|
✗ |
datas_[t]->Jint_dxnext, second, |
501 |
|
|
setto); // datas_[t]->Jsum_dxnext == eq. 81 |
502 |
|
✗ |
model->get_state()->Jdiff( |
503 |
|
✗ |
data->xnext, datas_[t]->xnext, datas_[t]->Jdiff_x, |
504 |
|
✗ |
datas_[t]->Jdiff_xnext, |
505 |
|
|
both); // datas_[t+1]->Jdiff_x == eq. 83, datas_[t]->Jdiff_x == eq.82 |
506 |
|
✗ |
model->get_state()->Jintegrate(xs_[t], datas_[t]->dx, datas_[t]->Jint_dx, |
507 |
|
✗ |
datas_[t]->Jint_dx, second, |
508 |
|
|
setto); // datas_[t]->Jsum_dx == eq. 81 |
509 |
|
✗ |
datas_[t]->Jg_dxnext.noalias() = |
510 |
|
✗ |
datas_[t]->Jdiff_xnext * datas_[t]->Jint_dxnext; // chain rule |
511 |
|
✗ |
datas_[t]->FxJint_dx.noalias() = data->Fx * datas_[t]->Jint_dx; |
512 |
|
✗ |
datas_[t]->Jg_dx.noalias() = datas_[t]->Jdiff_x * datas_[t]->FxJint_dx; |
513 |
|
✗ |
datas_[t]->Jg_u.noalias() = datas_[t]->Jdiff_x * data->Fu; |
514 |
|
|
} |
515 |
|
✗ |
std::size_t idx = 0; |
516 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
517 |
|
✗ |
const std::shared_ptr<ActionModelAbstract>& model = models[t]; |
518 |
|
|
const std::shared_ptr<ActionModelAbstract>& model_next = |
519 |
|
✗ |
t + 1 == T ? problem_->get_terminalModel() : models[t + 1]; |
520 |
|
✗ |
const std::size_t ndxi = model->get_state()->get_ndx(); |
521 |
|
✗ |
const std::size_t nui = model->get_nu(); |
522 |
|
✗ |
const std::size_t ndxi_next = model_next->get_state()->get_ndx(); |
523 |
|
✗ |
for (std::size_t idx_row = 0; idx_row < ndxi; ++idx_row) { |
524 |
|
✗ |
for (std::size_t idx_col = 0; idx_col < ndxi; ++idx_col) { |
525 |
|
✗ |
values[idx] = datas_[t]->Jg_dx(idx_row, idx_col); |
526 |
|
✗ |
idx++; |
527 |
|
|
} |
528 |
|
✗ |
for (std::size_t idx_col = 0; idx_col < nui; ++idx_col) { |
529 |
|
✗ |
values[idx] = datas_[t]->Jg_u(idx_row, idx_col); |
530 |
|
✗ |
idx++; |
531 |
|
|
} |
532 |
|
|
// This could be more optimized since there are a lot of zeros! |
533 |
|
✗ |
for (std::size_t idx_col = 0; idx_col < ndxi_next; ++idx_col) { |
534 |
|
✗ |
values[idx] = datas_[t]->Jg_dxnext(idx_row, idx_col); |
535 |
|
✗ |
idx++; |
536 |
|
|
} |
537 |
|
|
} |
538 |
|
|
} |
539 |
|
|
|
540 |
|
|
// Initial condition |
541 |
|
✗ |
const std::shared_ptr<ActionModelAbstract>& model = models[0]; |
542 |
|
✗ |
const std::size_t ndxi = model->get_state()->get_ndx(); |
543 |
|
✗ |
datas_[0]->dx = Eigen::VectorXd::Map(x, ndxi); |
544 |
|
|
|
545 |
|
✗ |
model->get_state()->integrate(xs_[0], datas_[0]->dx, datas_[0]->x); |
546 |
|
✗ |
model->get_state()->Jdiff(datas_[0]->x, problem_->get_x0(), |
547 |
|
✗ |
datas_[0]->Jdiff_x, datas_[0]->Jdiff_x, first); |
548 |
|
✗ |
model->get_state()->Jintegrate(xs_[0], datas_[0]->dx, datas_[0]->Jint_dx, |
549 |
|
✗ |
datas_[0]->Jint_dx, second, setto); |
550 |
|
✗ |
datas_[0]->Jg_ic.noalias() = datas_[0]->Jdiff_x * datas_[0]->Jint_dx; |
551 |
|
✗ |
for (std::size_t idx_row = 0; idx_row < ndxi; ++idx_row) { |
552 |
|
✗ |
for (std::size_t idx_col = 0; idx_col < ndxi; ++idx_col) { |
553 |
|
✗ |
values[idx] = datas_[0]->Jg_ic(idx_row, idx_col); |
554 |
|
✗ |
idx++; |
555 |
|
|
} |
556 |
|
|
} |
557 |
|
|
} |
558 |
|
|
|
559 |
|
✗ |
return true; |
560 |
|
|
} |
561 |
|
|
|
562 |
|
|
#ifndef NDEBUG |
563 |
|
✗ |
bool IpoptInterface::eval_h(Ipopt::Index n, const Ipopt::Number* x, |
564 |
|
|
bool /*new_x*/, Ipopt::Number obj_factor, |
565 |
|
|
Ipopt::Index m, const Ipopt::Number* /*lambda*/, |
566 |
|
|
bool /*new_lambda*/, Ipopt::Index nele_hess, |
567 |
|
|
Ipopt::Index* iRow, Ipopt::Index* jCol, |
568 |
|
|
Ipopt::Number* values) { |
569 |
|
|
#else |
570 |
|
|
bool IpoptInterface::eval_h(Ipopt::Index, const Ipopt::Number* x, bool, |
571 |
|
|
Ipopt::Number obj_factor, Ipopt::Index, |
572 |
|
|
const Ipopt::Number*, bool, Ipopt::Index, |
573 |
|
|
Ipopt::Index* iRow, Ipopt::Index* jCol, |
574 |
|
|
Ipopt::Number* values) { |
575 |
|
|
#endif |
576 |
|
✗ |
assert_pretty(n == static_cast<Ipopt::Index>(nvar_), |
577 |
|
|
"Inconsistent number of decision variables"); |
578 |
|
✗ |
assert_pretty(m == static_cast<Ipopt::Index>(nconst_), |
579 |
|
|
"Inconsistent number of constraints"); |
580 |
|
|
|
581 |
|
|
const std::vector<std::shared_ptr<ActionModelAbstract> >& models = |
582 |
|
✗ |
problem_->get_runningModels(); |
583 |
|
✗ |
const std::size_t T = problem_->get_T(); |
584 |
|
✗ |
if (values == NULL) { |
585 |
|
|
// return the structure. This is a symmetric matrix, fill the lower left |
586 |
|
|
// triangle only |
587 |
|
|
|
588 |
|
|
// Running Costs |
589 |
|
✗ |
std::size_t idx = 0; |
590 |
|
✗ |
for (std::size_t t = 0; t < problem_->get_T(); ++t) { |
591 |
|
✗ |
const std::shared_ptr<ActionModelAbstract> model = models[t]; |
592 |
|
✗ |
const std::size_t ndxi = model->get_state()->get_ndx(); |
593 |
|
✗ |
const std::size_t nui = model->get_nu(); |
594 |
|
✗ |
for (std::size_t idx_row = 0; idx_row < ndxi + nui; ++idx_row) { |
595 |
|
✗ |
for (std::size_t idx_col = 0; idx_col < ndxi + nui; ++idx_col) { |
596 |
|
|
// We need the lower triangular matrix |
597 |
|
✗ |
if (idx_col > idx_row) { |
598 |
|
✗ |
break; |
599 |
|
|
} |
600 |
|
✗ |
iRow[idx] = static_cast<Ipopt::Index>(ixu_[t] + idx_row); |
601 |
|
✗ |
jCol[idx] = static_cast<Ipopt::Index>(ixu_[t] + idx_col); |
602 |
|
✗ |
idx++; |
603 |
|
|
} |
604 |
|
|
} |
605 |
|
✗ |
} |
606 |
|
|
|
607 |
|
|
// Terminal costs |
608 |
|
|
const std::size_t ndxi = |
609 |
|
✗ |
problem_->get_terminalModel()->get_state()->get_ndx(); |
610 |
|
✗ |
for (std::size_t idx_row = 0; idx_row < ndxi; idx_row++) { |
611 |
|
✗ |
for (std::size_t idx_col = 0; idx_col < ndxi; idx_col++) { |
612 |
|
|
// We need the lower triangular matrix |
613 |
|
✗ |
if (idx_col > idx_row) { |
614 |
|
✗ |
break; |
615 |
|
|
} |
616 |
|
✗ |
iRow[idx] = static_cast<Ipopt::Index>(ixu_.back() + idx_row); |
617 |
|
✗ |
jCol[idx] = static_cast<Ipopt::Index>(ixu_.back() + idx_col); |
618 |
|
✗ |
idx++; |
619 |
|
|
} |
620 |
|
|
} |
621 |
|
|
|
622 |
|
✗ |
assert_pretty(nele_hess == static_cast<Ipopt::Index>(idx), |
623 |
|
|
"Number of Hessian elements set does not coincide with the " |
624 |
|
|
"total non-zero Hessian values"); |
625 |
|
|
} else { |
626 |
|
|
// return the values. This is a symmetric matrix, fill the lower left |
627 |
|
|
// triangle only |
628 |
|
|
// Running Costs |
629 |
|
|
const std::vector<std::shared_ptr<ActionDataAbstract> >& datas = |
630 |
|
✗ |
problem_->get_runningDatas(); |
631 |
|
|
#ifdef CROCODDYL_WITH_MULTITHREADING |
632 |
|
|
#pragma omp parallel for num_threads(problem_->get_nthreads()) |
633 |
|
|
#endif |
634 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
635 |
|
✗ |
const std::shared_ptr<ActionModelAbstract>& model = models[t]; |
636 |
|
✗ |
const std::shared_ptr<ActionDataAbstract>& data = datas[t]; |
637 |
|
✗ |
const std::size_t ndxi = model->get_state()->get_ndx(); |
638 |
|
✗ |
const std::size_t nui = model->get_nu(); |
639 |
|
✗ |
datas_[t]->dx = Eigen::VectorXd::Map(x + ixu_[t], ndxi); |
640 |
|
✗ |
datas_[t]->u = Eigen::VectorXd::Map(x + ixu_[t] + ndxi, nui); |
641 |
|
|
|
642 |
|
✗ |
model->get_state()->integrate(xs_[t], datas_[t]->dx, datas_[t]->x); |
643 |
|
✗ |
model->calcDiff(data, datas_[t]->x, |
644 |
|
✗ |
datas_[t]->u); // this might be removed |
645 |
|
✗ |
model->get_state()->Jintegrate(xs_[t], datas_[t]->dx, datas_[t]->Jint_dx, |
646 |
|
✗ |
datas_[t]->Jint_dx, second, setto); |
647 |
|
✗ |
datas_[t]->Ldxdx.noalias() = |
648 |
|
✗ |
datas_[t]->Jint_dx.transpose() * data->Lxx * datas_[t]->Jint_dx; |
649 |
|
✗ |
datas_[t]->Ldxu.noalias() = datas_[t]->Jint_dx.transpose() * data->Lxu; |
650 |
|
|
} |
651 |
|
|
|
652 |
|
✗ |
std::size_t idx = 0; |
653 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
654 |
|
✗ |
const std::shared_ptr<ActionModelAbstract>& model = models[t]; |
655 |
|
✗ |
const std::shared_ptr<ActionDataAbstract>& data = datas[t]; |
656 |
|
✗ |
const std::size_t ndxi = model->get_state()->get_ndx(); |
657 |
|
✗ |
const std::size_t nui = model->get_nu(); |
658 |
|
✗ |
for (std::size_t idx_row = 0; idx_row < ndxi; ++idx_row) { |
659 |
|
✗ |
for (std::size_t idx_col = 0; idx_col < ndxi; ++idx_col) { |
660 |
|
|
// We need the lower triangular matrix |
661 |
|
✗ |
if (idx_col > idx_row) { |
662 |
|
✗ |
break; |
663 |
|
|
} |
664 |
|
✗ |
values[idx] = obj_factor * datas_[t]->Ldxdx(idx_row, idx_col); |
665 |
|
✗ |
idx++; |
666 |
|
|
} |
667 |
|
|
} |
668 |
|
✗ |
for (std::size_t idx_row = 0; idx_row < nui; ++idx_row) { |
669 |
|
✗ |
for (std::size_t idx_col = 0; idx_col < ndxi; ++idx_col) { |
670 |
|
✗ |
values[idx] = obj_factor * datas_[t]->Ldxu(idx_col, idx_row); |
671 |
|
✗ |
idx++; |
672 |
|
|
} |
673 |
|
✗ |
for (std::size_t idx_col = 0; idx_col < nui; ++idx_col) { |
674 |
|
✗ |
if (idx_col > idx_row) { |
675 |
|
✗ |
break; |
676 |
|
|
} |
677 |
|
✗ |
values[idx] = obj_factor * data->Luu(idx_row, idx_col); |
678 |
|
✗ |
idx++; |
679 |
|
|
} |
680 |
|
|
} |
681 |
|
|
} |
682 |
|
|
|
683 |
|
|
// Terminal costs |
684 |
|
|
const std::shared_ptr<ActionModelAbstract>& model = |
685 |
|
✗ |
problem_->get_terminalModel(); |
686 |
|
|
const std::shared_ptr<ActionDataAbstract>& data = |
687 |
|
✗ |
problem_->get_terminalData(); |
688 |
|
✗ |
const std::size_t ndxi = model->get_state()->get_ndx(); |
689 |
|
✗ |
datas_[T]->dx = Eigen::VectorXd::Map(x + ixu_.back(), ndxi); |
690 |
|
|
|
691 |
|
✗ |
model->get_state()->integrate(xs_[T], datas_[T]->dx, datas_[T]->x); |
692 |
|
✗ |
model->calc(data, datas_[T]->x); |
693 |
|
✗ |
model->calcDiff(data, datas_[T]->x); |
694 |
|
✗ |
model->get_state()->Jintegrate(xs_[T], datas_[T]->dx, datas_[T]->Jint_dx, |
695 |
|
✗ |
datas_[T]->Jint_dx, second, setto); |
696 |
|
✗ |
datas_[T]->Ldxdx.noalias() = |
697 |
|
✗ |
datas_[T]->Jint_dx.transpose() * data->Lxx * datas_[T]->Jint_dx; |
698 |
|
✗ |
for (std::size_t idx_row = 0; idx_row < ndxi; idx_row++) { |
699 |
|
✗ |
for (std::size_t idx_col = 0; idx_col < ndxi; idx_col++) { |
700 |
|
|
// We need the lower triangular matrix |
701 |
|
✗ |
if (idx_col > idx_row) { |
702 |
|
✗ |
break; |
703 |
|
|
} |
704 |
|
✗ |
values[idx] = datas_[T]->Ldxdx(idx_row, idx_col); |
705 |
|
✗ |
idx++; |
706 |
|
|
} |
707 |
|
|
} |
708 |
|
|
} |
709 |
|
|
|
710 |
|
✗ |
return true; |
711 |
|
|
} |
712 |
|
|
|
713 |
|
✗ |
void IpoptInterface::finalize_solution( |
714 |
|
|
Ipopt::SolverReturn /*status*/, Ipopt::Index /*n*/, const Ipopt::Number* x, |
715 |
|
|
const Ipopt::Number* /*z_L*/, const Ipopt::Number* /*z_U*/, |
716 |
|
|
Ipopt::Index /*m*/, const Ipopt::Number* /*g*/, |
717 |
|
|
const Ipopt::Number* /*lambda*/, Ipopt::Number obj_value, |
718 |
|
|
const Ipopt::IpoptData* /*ip_data*/, |
719 |
|
|
Ipopt::IpoptCalculatedQuantities* /*ip_cq*/) { |
720 |
|
|
// Copy the solution to vector once solver is finished |
721 |
|
|
const std::vector<std::shared_ptr<ActionModelAbstract> >& models = |
722 |
|
✗ |
problem_->get_runningModels(); |
723 |
|
✗ |
const std::size_t T = problem_->get_T(); |
724 |
|
✗ |
for (std::size_t t = 0; t < T; ++t) { |
725 |
|
✗ |
const std::size_t ndxi = models[t]->get_state()->get_ndx(); |
726 |
|
✗ |
const std::size_t nui = models[t]->get_nu(); |
727 |
|
✗ |
datas_[t]->dx = Eigen::VectorXd::Map(x + ixu_[t], ndxi); |
728 |
|
✗ |
datas_[t]->u = Eigen::VectorXd::Map(x + ixu_[t] + ndxi, nui); |
729 |
|
|
|
730 |
|
✗ |
models[t]->get_state()->integrate(xs_[t], datas_[t]->dx, datas_[t]->x); |
731 |
|
✗ |
xs_[t] = datas_[t]->x; |
732 |
|
✗ |
us_[t] = datas_[t]->u; |
733 |
|
|
} |
734 |
|
|
// Terminal node |
735 |
|
|
const std::shared_ptr<ActionModelAbstract>& model = |
736 |
|
✗ |
problem_->get_terminalModel(); |
737 |
|
✗ |
const std::size_t ndxi = model->get_state()->get_ndx(); |
738 |
|
✗ |
datas_[T]->dx = Eigen::VectorXd::Map(x + ixu_.back(), ndxi); |
739 |
|
✗ |
model->get_state()->integrate(xs_[T], datas_[T]->dx, datas_[T]->x); |
740 |
|
✗ |
xs_[T] = datas_[T]->x; |
741 |
|
|
|
742 |
|
✗ |
cost_ = obj_value; |
743 |
|
✗ |
} |
744 |
|
|
|
745 |
|
✗ |
bool IpoptInterface::intermediate_callback( |
746 |
|
|
Ipopt::AlgorithmMode /*mode*/, Ipopt::Index /*iter*/, |
747 |
|
|
Ipopt::Number /*obj_value*/, Ipopt::Number /*inf_pr*/, |
748 |
|
|
Ipopt::Number /*inf_du*/, Ipopt::Number /*mu*/, Ipopt::Number /*d_norm*/, |
749 |
|
|
Ipopt::Number /*regularization_size*/, Ipopt::Number /*alpha_du*/, |
750 |
|
|
Ipopt::Number /*alpha_pr*/, Ipopt::Index /*ls_trials*/, |
751 |
|
|
const Ipopt::IpoptData* /*ip_data*/, |
752 |
|
|
Ipopt::IpoptCalculatedQuantities* /*ip_cq*/) { |
753 |
|
✗ |
return true; |
754 |
|
|
} |
755 |
|
|
|
756 |
|
✗ |
std::shared_ptr<IpoptInterfaceData> IpoptInterface::createData( |
757 |
|
|
const std::size_t nx, const std::size_t ndx, const std::size_t nu) { |
758 |
|
|
return std::allocate_shared<IpoptInterfaceData>( |
759 |
|
✗ |
Eigen::aligned_allocator<IpoptInterfaceData>(), nx, ndx, nu); |
760 |
|
|
} |
761 |
|
|
|
762 |
|
✗ |
void IpoptInterface::set_xs(const std::vector<Eigen::VectorXd>& xs) { |
763 |
|
✗ |
xs_ = xs; |
764 |
|
✗ |
} |
765 |
|
|
|
766 |
|
✗ |
void IpoptInterface::set_us(const std::vector<Eigen::VectorXd>& us) { |
767 |
|
✗ |
us_ = us; |
768 |
|
✗ |
} |
769 |
|
|
|
770 |
|
✗ |
std::size_t IpoptInterface::get_nvar() const { return nvar_; } |
771 |
|
|
|
772 |
|
✗ |
std::size_t IpoptInterface::get_nconst() const { return nconst_; } |
773 |
|
|
|
774 |
|
✗ |
const std::vector<Eigen::VectorXd>& IpoptInterface::get_xs() const { |
775 |
|
✗ |
return xs_; |
776 |
|
|
} |
777 |
|
|
|
778 |
|
✗ |
const std::vector<Eigen::VectorXd>& IpoptInterface::get_us() const { |
779 |
|
✗ |
return us_; |
780 |
|
|
} |
781 |
|
|
|
782 |
|
✗ |
const std::shared_ptr<ShootingProblem>& IpoptInterface::get_problem() const { |
783 |
|
✗ |
return problem_; |
784 |
|
|
} |
785 |
|
|
|
786 |
|
✗ |
double IpoptInterface::get_cost() const { return cost_; } |
787 |
|
|
|
788 |
|
|
} // namespace crocoddyl |
789 |
|
|
|