Line |
Branch |
Exec |
Source |
1 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
2 |
|
|
// BSD 3-Clause License |
3 |
|
|
// |
4 |
|
|
// Copyright (C) 2021-2025, University of Edinburgh, University of Trento, |
5 |
|
|
// Heriot-Watt University |
6 |
|
|
// Copyright note valid unless otherwise stated in individual files. |
7 |
|
|
// All rights reserved. |
8 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
9 |
|
|
|
10 |
|
|
#ifndef CROCODDYL_CORE_CONTROLS_POLY_ONE_HPP_ |
11 |
|
|
#define CROCODDYL_CORE_CONTROLS_POLY_ONE_HPP_ |
12 |
|
|
|
13 |
|
|
#include "crocoddyl/core/control-base.hpp" |
14 |
|
|
#include "crocoddyl/core/fwd.hpp" |
15 |
|
|
|
16 |
|
|
namespace crocoddyl { |
17 |
|
|
|
18 |
|
|
/** |
19 |
|
|
* @brief A polynomial function of time of degree one, that is a linear function |
20 |
|
|
* |
21 |
|
|
* The size of the parameters \f$\mathbf{u}\f$ is twice the size of the control |
22 |
|
|
* input \f$\mathbf{w}\f$. The first half of \f$\mathbf{u}\f$ represents the |
23 |
|
|
* value of w at time 0. The second half of \f$\mathbf{u}\f$ represents the |
24 |
|
|
* value of \f$\mathbf{w}\f$ at time 0.5. |
25 |
|
|
* |
26 |
|
|
* The main computations are carried out in `calc`, `multiplyByJacobian` and |
27 |
|
|
* `multiplyJacobianTransposeBy`, where the former computes control input |
28 |
|
|
* \f$\mathbf{w}\in\mathbb{R}^{nw}\f$ from a set of control parameters |
29 |
|
|
* \f$\mathbf{u}\in\mathbb{R}^{nu}\f$ where `nw` and `nu` represent the |
30 |
|
|
* dimension of the control inputs and parameters, respectively, and the latter |
31 |
|
|
* defines useful operations across the Jacobian of the control-parametrization |
32 |
|
|
* model. Finally, `params` allows us to obtain the control parameters from the |
33 |
|
|
* control input, i.e., it is the inverse of `calc`. Note that |
34 |
|
|
* `multiplyByJacobian` and `multiplyJacobianTransposeBy` requires to run `calc` |
35 |
|
|
* first. |
36 |
|
|
* |
37 |
|
|
* \sa `ControlParametrizationAbstractTpl`, `calc()`, `calcDiff()`, |
38 |
|
|
* `createData()`, `params`, `multiplyByJacobian`, `multiplyJacobianTransposeBy` |
39 |
|
|
*/ |
40 |
|
|
template <typename _Scalar> |
41 |
|
|
class ControlParametrizationModelPolyOneTpl |
42 |
|
|
: public ControlParametrizationModelAbstractTpl<_Scalar> { |
43 |
|
|
public: |
44 |
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW |
45 |
|
✗ |
CROCODDYL_DERIVED_CAST(ControlParametrizationModelBase, |
46 |
|
|
ControlParametrizationModelPolyOneTpl) |
47 |
|
|
|
48 |
|
|
typedef _Scalar Scalar; |
49 |
|
|
typedef MathBaseTpl<Scalar> MathBase; |
50 |
|
|
typedef ControlParametrizationDataAbstractTpl<Scalar> |
51 |
|
|
ControlParametrizationDataAbstract; |
52 |
|
|
typedef ControlParametrizationModelAbstractTpl<Scalar> Base; |
53 |
|
|
typedef ControlParametrizationDataPolyOneTpl<Scalar> Data; |
54 |
|
|
typedef typename MathBase::VectorXs VectorXs; |
55 |
|
|
typedef typename MathBase::MatrixXs MatrixXs; |
56 |
|
|
|
57 |
|
|
/** |
58 |
|
|
* @brief Initialize the poly-one control parametrization |
59 |
|
|
* |
60 |
|
|
* @param[in] nw Dimension of control vector |
61 |
|
|
*/ |
62 |
|
|
explicit ControlParametrizationModelPolyOneTpl(const std::size_t nw); |
63 |
|
✗ |
virtual ~ControlParametrizationModelPolyOneTpl() = default; |
64 |
|
|
|
65 |
|
|
/** |
66 |
|
|
* @brief Get the value of the control at the specified time |
67 |
|
|
* |
68 |
|
|
* @param[in] data Control-parametrization data |
69 |
|
|
* @param[in] t Time in [0,1] |
70 |
|
|
* @param[in] u Control parameters |
71 |
|
|
*/ |
72 |
|
|
virtual void calc( |
73 |
|
|
const std::shared_ptr<ControlParametrizationDataAbstract>& data, |
74 |
|
|
const Scalar t, const Eigen::Ref<const VectorXs>& u) const override; |
75 |
|
|
|
76 |
|
|
/** |
77 |
|
|
* @brief Get the value of the Jacobian of the control with respect to the |
78 |
|
|
* parameters |
79 |
|
|
* |
80 |
|
|
* It assumes that `calc()` has been run first |
81 |
|
|
* |
82 |
|
|
* @param[in] data Control-parametrization data |
83 |
|
|
* @param[in] t Time in [0,1] |
84 |
|
|
* @param[in] u Control parameters |
85 |
|
|
*/ |
86 |
|
|
virtual void calcDiff( |
87 |
|
|
const std::shared_ptr<ControlParametrizationDataAbstract>& data, |
88 |
|
|
const Scalar t, const Eigen::Ref<const VectorXs>& u) const override; |
89 |
|
|
|
90 |
|
|
/** |
91 |
|
|
* @brief Create the control-parametrization data |
92 |
|
|
* |
93 |
|
|
* @return the control-parametrization data |
94 |
|
|
*/ |
95 |
|
|
virtual std::shared_ptr<ControlParametrizationDataAbstract> createData() |
96 |
|
|
override; |
97 |
|
|
|
98 |
|
|
/** |
99 |
|
|
* @brief Get a value of the control parameters such that the control at the |
100 |
|
|
* specified time t is equal to the specified value w |
101 |
|
|
* |
102 |
|
|
* @param[in] data Control-parametrization data |
103 |
|
|
* @param[in] t Time in [0,1] |
104 |
|
|
* @param[in] w Control values |
105 |
|
|
*/ |
106 |
|
|
virtual void params( |
107 |
|
|
const std::shared_ptr<ControlParametrizationDataAbstract>& data, |
108 |
|
|
const Scalar t, const Eigen::Ref<const VectorXs>& w) const override; |
109 |
|
|
|
110 |
|
|
/** |
111 |
|
|
* @brief Map the specified bounds from the control space to the parameter |
112 |
|
|
* space |
113 |
|
|
* |
114 |
|
|
* @param[in] w_lb Control lower bound |
115 |
|
|
* @param[in] w_ub Control lower bound |
116 |
|
|
* @param[out] u_lb Control parameters lower bound |
117 |
|
|
* @param[out] u_ub Control parameters upper bound |
118 |
|
|
*/ |
119 |
|
|
virtual void convertBounds(const Eigen::Ref<const VectorXs>& w_lb, |
120 |
|
|
const Eigen::Ref<const VectorXs>& w_ub, |
121 |
|
|
Eigen::Ref<VectorXs> u_lb, |
122 |
|
|
Eigen::Ref<VectorXs> u_ub) const override; |
123 |
|
|
|
124 |
|
|
/** |
125 |
|
|
* @brief Compute the product between a specified matrix and the Jacobian of |
126 |
|
|
* the control (with respect to the parameters) |
127 |
|
|
* |
128 |
|
|
* It assumes that `calc()` has been run first |
129 |
|
|
* |
130 |
|
|
* @param[in] data Control-parametrization data |
131 |
|
|
* @param[in] A A matrix to multiply times the Jacobian |
132 |
|
|
* @param[out] out Product between the matrix A and the Jacobian of the |
133 |
|
|
* control with respect to the parameters |
134 |
|
|
* @param[in] op Assignment operator which sets, adds, or removes the |
135 |
|
|
* given results |
136 |
|
|
*/ |
137 |
|
|
virtual void multiplyByJacobian( |
138 |
|
|
const std::shared_ptr<ControlParametrizationDataAbstract>& data, |
139 |
|
|
const Eigen::Ref<const MatrixXs>& A, Eigen::Ref<MatrixXs> out, |
140 |
|
|
const AssignmentOp = setto) const override; |
141 |
|
|
|
142 |
|
|
/** |
143 |
|
|
* @brief Compute the product between the transposed Jacobian of the control |
144 |
|
|
* (with respect to the parameters) and a specified matrix |
145 |
|
|
* |
146 |
|
|
* It assumes that `calc()` has been run first |
147 |
|
|
* |
148 |
|
|
* @param[in] data Control-parametrization data |
149 |
|
|
* @param[in] A A matrix to multiply times the Jacobian |
150 |
|
|
* @param[out] out Product between the transposed Jacobian of the control |
151 |
|
|
* with respect to the parameters and the matrix A |
152 |
|
|
* @param[in] op Assignment operator which sets, adds, or removes the |
153 |
|
|
* given results |
154 |
|
|
*/ |
155 |
|
|
virtual void multiplyJacobianTransposeBy( |
156 |
|
|
const std::shared_ptr<ControlParametrizationDataAbstract>& data, |
157 |
|
|
const Eigen::Ref<const MatrixXs>& A, Eigen::Ref<MatrixXs> out, |
158 |
|
|
const AssignmentOp = setto) const override; |
159 |
|
|
|
160 |
|
|
template <typename NewScalar> |
161 |
|
|
ControlParametrizationModelPolyOneTpl<NewScalar> cast() const; |
162 |
|
|
|
163 |
|
|
virtual void print(std::ostream& os) const override; |
164 |
|
|
|
165 |
|
|
protected: |
166 |
|
|
using Base::nu_; |
167 |
|
|
using Base::nw_; |
168 |
|
|
}; |
169 |
|
|
|
170 |
|
|
template <typename _Scalar> |
171 |
|
|
struct ControlParametrizationDataPolyOneTpl |
172 |
|
|
: public ControlParametrizationDataAbstractTpl<_Scalar> { |
173 |
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW |
174 |
|
|
|
175 |
|
|
typedef _Scalar Scalar; |
176 |
|
|
typedef MathBaseTpl<Scalar> MathBase; |
177 |
|
|
typedef ControlParametrizationDataAbstractTpl<Scalar> Base; |
178 |
|
|
typedef typename MathBase::Vector2s Vector2s; |
179 |
|
|
|
180 |
|
|
template <template <typename Scalar> class Model> |
181 |
|
✗ |
explicit ControlParametrizationDataPolyOneTpl(Model<Scalar>* const model) |
182 |
|
✗ |
: Base(model) { |
183 |
|
✗ |
c.setZero(); |
184 |
|
|
} |
185 |
|
✗ |
virtual ~ControlParametrizationDataPolyOneTpl() = default; |
186 |
|
|
|
187 |
|
|
Vector2s c; //!< Coefficients of the linear control that depends on time |
188 |
|
|
|
189 |
|
|
using Base::dw_du; |
190 |
|
|
using Base::u; |
191 |
|
|
using Base::w; |
192 |
|
|
}; |
193 |
|
|
|
194 |
|
|
} // namespace crocoddyl |
195 |
|
|
|
196 |
|
|
/* --- Details -------------------------------------------------------------- */ |
197 |
|
|
/* --- Details -------------------------------------------------------------- */ |
198 |
|
|
/* --- Details -------------------------------------------------------------- */ |
199 |
|
|
#include "crocoddyl/core/controls/poly-one.hxx" |
200 |
|
|
|
201 |
|
|
CROCODDYL_DECLARE_EXTERN_TEMPLATE_CLASS( |
202 |
|
|
crocoddyl::ControlParametrizationModelPolyOneTpl) |
203 |
|
|
CROCODDYL_DECLARE_EXTERN_TEMPLATE_STRUCT( |
204 |
|
|
crocoddyl::ControlParametrizationDataPolyOneTpl) |
205 |
|
|
|
206 |
|
|
#endif // CROCODDYL_CORE_CONTROLS_POLY_ONE_HPP_ |
207 |
|
|
|