| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | /////////////////////////////////////////////////////////////////////////////// | ||
| 2 | // BSD 3-Clause License | ||
| 3 | // | ||
| 4 | // Copyright (C) 2021-2025, University of Edinburgh, Heriot-Watt University | ||
| 5 | // Copyright note valid unless otherwise stated in individual files. | ||
| 6 | // All rights reserved. | ||
| 7 | /////////////////////////////////////////////////////////////////////////////// | ||
| 8 | |||
| 9 | #ifndef CROCODDYL_CORE_RESIDUAL_BASE_HPP_ | ||
| 10 | #define CROCODDYL_CORE_RESIDUAL_BASE_HPP_ | ||
| 11 | |||
| 12 | #include "crocoddyl/core/activation-base.hpp" | ||
| 13 | #include "crocoddyl/core/cost-base.hpp" | ||
| 14 | #include "crocoddyl/core/data-collector-base.hpp" | ||
| 15 | #include "crocoddyl/core/fwd.hpp" | ||
| 16 | #include "crocoddyl/core/state-base.hpp" | ||
| 17 | |||
| 18 | namespace crocoddyl { | ||
| 19 | |||
| 20 | class ResidualModelBase { | ||
| 21 | public: | ||
| 22 | ✗ | virtual ~ResidualModelBase() = default; | |
| 23 | |||
| 24 | ✗ | CROCODDYL_BASE_CAST(ResidualModelBase, ResidualModelAbstractTpl) | |
| 25 | }; | ||
| 26 | |||
| 27 | /** | ||
| 28 | * @brief Abstract class for residual models | ||
| 29 | * | ||
| 30 | * A residual model defines a vector function \f$\mathbf{r}(\mathbf{x}, | ||
| 31 | * \mathbf{u})\mathbb{R}^{nr}\f$ where `nr` describes its dimension in the | ||
| 32 | * Euclidean space. This function depends on the state point | ||
| 33 | * \f$\mathbf{x}\in\mathcal{X}\f$, which lies in the state manifold described | ||
| 34 | * with a `nq`-tuple, its velocity \f$\dot{\mathbf{x}}\in | ||
| 35 | * T_{\mathbf{x}}\mathcal{X}\f$ that belongs to the tangent space with `nv` | ||
| 36 | * dimension, and the control input \f$\mathbf{u}\in\mathbb{R}^{nu}\f$. The | ||
| 37 | * residual function can used across cost and constraint models. | ||
| 38 | * | ||
| 39 | * The main computations are carring out in `calc` and `calcDiff` routines. | ||
| 40 | * `calc` computes the residual vector and `calcDiff` computes the Jacobians of | ||
| 41 | * the residual function. Additionally, it is important to note that | ||
| 42 | * `calcDiff()` computes the Jacobians using the latest stored values by | ||
| 43 | * `calc()`. Thus, we need to first run `calc()`. | ||
| 44 | * | ||
| 45 | * \sa `StateAbstractTpl`, `calc()`, `calcDiff()`, `createData()` | ||
| 46 | */ | ||
| 47 | template <typename _Scalar> | ||
| 48 | class ResidualModelAbstractTpl : public ResidualModelBase { | ||
| 49 | public: | ||
| 50 | EIGEN_MAKE_ALIGNED_OPERATOR_NEW | ||
| 51 | ✗ | CROCODDYL_BASE_DERIVED_CAST(ResidualModelBase, ResidualModelAbstractTpl) | |
| 52 | |||
| 53 | typedef _Scalar Scalar; | ||
| 54 | typedef MathBaseTpl<Scalar> MathBase; | ||
| 55 | typedef ResidualDataAbstractTpl<Scalar> ResidualDataAbstract; | ||
| 56 | typedef CostDataAbstractTpl<Scalar> CostDataAbstract; | ||
| 57 | typedef ActivationDataAbstractTpl<Scalar> ActivationDataAbstract; | ||
| 58 | typedef StateAbstractTpl<Scalar> StateAbstract; | ||
| 59 | typedef DataCollectorAbstractTpl<Scalar> DataCollectorAbstract; | ||
| 60 | typedef typename MathBase::VectorXs VectorXs; | ||
| 61 | typedef typename MathBase::MatrixXs MatrixXs; | ||
| 62 | typedef typename MathBase::DiagonalMatrixXs DiagonalMatrixXs; | ||
| 63 | |||
| 64 | /** | ||
| 65 | * @brief Initialize the residual model | ||
| 66 | * | ||
| 67 | * @param[in] state State of the system | ||
| 68 | * @param[in] nr Dimension of residual vector | ||
| 69 | * @param[in] nu Dimension of control vector | ||
| 70 | * @param[in] q_dependent Define if the residual function depends on q | ||
| 71 | * (default true) | ||
| 72 | * @param[in] v_dependent Define if the residual function depends on v | ||
| 73 | * (default true) | ||
| 74 | * @param[in] u_dependent Define if the residual function depends on u | ||
| 75 | * (default true) | ||
| 76 | */ | ||
| 77 | ResidualModelAbstractTpl(std::shared_ptr<StateAbstract> state, | ||
| 78 | const std::size_t nr, const std::size_t nu, | ||
| 79 | const bool q_dependent = true, | ||
| 80 | const bool v_dependent = true, | ||
| 81 | const bool u_dependent = true); | ||
| 82 | |||
| 83 | /** | ||
| 84 | * @copybrief ResidualModelAbstractTpl() | ||
| 85 | * | ||
| 86 | * The default `nu` value is obtained from `StateAbstractTpl::get_nv()`. | ||
| 87 | * | ||
| 88 | * @param[in] state State of the system | ||
| 89 | * @param[in] nr Dimension of residual vector | ||
| 90 | * @param[in] q_dependent Define if the residual function depends on q | ||
| 91 | * (default true) | ||
| 92 | * @param[in] v_dependent Define if the residual function depends on v | ||
| 93 | * (default true) | ||
| 94 | * @param[in] u_dependent Define if the residual function depends on u | ||
| 95 | * (default true) | ||
| 96 | */ | ||
| 97 | ResidualModelAbstractTpl(std::shared_ptr<StateAbstract> state, | ||
| 98 | const std::size_t nr, const bool q_dependent = true, | ||
| 99 | const bool v_dependent = true, | ||
| 100 | const bool u_dependent = true); | ||
| 101 | ✗ | virtual ~ResidualModelAbstractTpl() = default; | |
| 102 | |||
| 103 | /** | ||
| 104 | * @brief Compute the residual vector | ||
| 105 | * | ||
| 106 | * @param[in] data Residual data | ||
| 107 | * @param[in] x State point \f$\mathbf{x}\in\mathbb{R}^{ndx}\f$ | ||
| 108 | * @param[in] u Control input \f$\mathbf{u}\in\mathbb{R}^{nu}\f$ | ||
| 109 | */ | ||
| 110 | virtual void calc(const std::shared_ptr<ResidualDataAbstract>& data, | ||
| 111 | const Eigen::Ref<const VectorXs>& x, | ||
| 112 | const Eigen::Ref<const VectorXs>& u); | ||
| 113 | |||
| 114 | /** | ||
| 115 | * @brief Compute the residual vector for nodes that depends only on the state | ||
| 116 | * | ||
| 117 | * It updates the residual vector based on the state only. This function is | ||
| 118 | * used in the terminal nodes of an optimal control problem. | ||
| 119 | * | ||
| 120 | * @param[in] data Residual data | ||
| 121 | * @param[in] x State point \f$\mathbf{x}\in\mathbb{R}^{ndx}\f$ | ||
| 122 | */ | ||
| 123 | virtual void calc(const std::shared_ptr<ResidualDataAbstract>& data, | ||
| 124 | const Eigen::Ref<const VectorXs>& x); | ||
| 125 | |||
| 126 | /** | ||
| 127 | * @brief Compute the Jacobian of the residual vector | ||
| 128 | * | ||
| 129 | * It computes the Jacobian the residual function. It assumes that `calc()` | ||
| 130 | * has been run first. | ||
| 131 | * | ||
| 132 | * @param[in] data Residual data | ||
| 133 | * @param[in] x State point \f$\mathbf{x}\in\mathbb{R}^{ndx}\f$ | ||
| 134 | * @param[in] u Control input \f$\mathbf{u}\in\mathbb{R}^{nu}\f$ | ||
| 135 | */ | ||
| 136 | virtual void calcDiff(const std::shared_ptr<ResidualDataAbstract>& data, | ||
| 137 | const Eigen::Ref<const VectorXs>& x, | ||
| 138 | const Eigen::Ref<const VectorXs>& u); | ||
| 139 | |||
| 140 | /** | ||
| 141 | * @brief Compute the Jacobian of the residual functions with respect to the | ||
| 142 | * state only | ||
| 143 | * | ||
| 144 | * It updates the Jacobian of the residual function based on the state only. | ||
| 145 | * This function is used in the terminal nodes of an optimal control problem. | ||
| 146 | * | ||
| 147 | * @param[in] data Residual data | ||
| 148 | * @param[in] x State point \f$\mathbf{x}\in\mathbb{R}^{ndx}\f$ | ||
| 149 | */ | ||
| 150 | virtual void calcDiff(const std::shared_ptr<ResidualDataAbstract>& data, | ||
| 151 | const Eigen::Ref<const VectorXs>& x); | ||
| 152 | |||
| 153 | /** | ||
| 154 | * @brief Create the residual data | ||
| 155 | * | ||
| 156 | * The default data contains objects to store the values of the residual | ||
| 157 | * vector and their Jacobians. However, it is possible to specialize this | ||
| 158 | * function if we need to create additional data, for instance, to avoid | ||
| 159 | * dynamic memory allocation. | ||
| 160 | * | ||
| 161 | * @param data Data collector | ||
| 162 | * @return the residual data | ||
| 163 | */ | ||
| 164 | virtual std::shared_ptr<ResidualDataAbstract> createData( | ||
| 165 | DataCollectorAbstract* const data); | ||
| 166 | |||
| 167 | /** | ||
| 168 | * @brief Compute the derivative of the cost function | ||
| 169 | * | ||
| 170 | * This function assumes that the derivatives of the activation and residual | ||
| 171 | * are computed via calcDiff functions. | ||
| 172 | * | ||
| 173 | * @param cdata Cost data | ||
| 174 | * @param rdata Residual data | ||
| 175 | * @param adata Activation data | ||
| 176 | * @param update_u Update the derivative of the cost function w.r.t. to the | ||
| 177 | * control if True. | ||
| 178 | */ | ||
| 179 | virtual void calcCostDiff( | ||
| 180 | const std::shared_ptr<CostDataAbstract>& cdata, | ||
| 181 | const std::shared_ptr<ResidualDataAbstract>& rdata, | ||
| 182 | const std::shared_ptr<ActivationDataAbstract>& adata, | ||
| 183 | const bool update_u = true); | ||
| 184 | |||
| 185 | /** | ||
| 186 | * @brief Return the state | ||
| 187 | */ | ||
| 188 | const std::shared_ptr<StateAbstract>& get_state() const; | ||
| 189 | |||
| 190 | /** | ||
| 191 | * @brief Return the dimension of the residual vector | ||
| 192 | */ | ||
| 193 | std::size_t get_nr() const; | ||
| 194 | |||
| 195 | /** | ||
| 196 | * @brief Return the dimension of the control input | ||
| 197 | */ | ||
| 198 | std::size_t get_nu() const; | ||
| 199 | |||
| 200 | /** | ||
| 201 | * @brief Return true if the residual function depends on q | ||
| 202 | */ | ||
| 203 | bool get_q_dependent() const; | ||
| 204 | |||
| 205 | /** | ||
| 206 | * @brief Return true if the residual function depends on v | ||
| 207 | */ | ||
| 208 | bool get_v_dependent() const; | ||
| 209 | |||
| 210 | /** | ||
| 211 | * @brief Return true if the residual function depends on u | ||
| 212 | */ | ||
| 213 | bool get_u_dependent() const; | ||
| 214 | |||
| 215 | /** | ||
| 216 | * @brief Print information on the residual model | ||
| 217 | */ | ||
| 218 | template <class Scalar> | ||
| 219 | friend std::ostream& operator<<( | ||
| 220 | std::ostream& os, const ResidualModelAbstractTpl<Scalar>& model); | ||
| 221 | |||
| 222 | /** | ||
| 223 | * @brief Print relevant information of the residual model | ||
| 224 | * | ||
| 225 | * @param[out] os Output stream object | ||
| 226 | */ | ||
| 227 | virtual void print(std::ostream& os) const; | ||
| 228 | |||
| 229 | protected: | ||
| 230 | std::shared_ptr<StateAbstract> state_; //!< State description | ||
| 231 | std::size_t nr_; //!< Residual vector dimension | ||
| 232 | std::size_t nu_; //!< Control dimension | ||
| 233 | VectorXs unone_; //!< No control vector | ||
| 234 | bool q_dependent_; //!< Label that indicates if the residual function depends | ||
| 235 | //!< on q | ||
| 236 | bool v_dependent_; //!< Label that indicates if the residual function depends | ||
| 237 | //!< on v | ||
| 238 | bool u_dependent_; //!< Label that indicates if the residual function depends | ||
| 239 | //!< on u | ||
| 240 | ✗ | ResidualModelAbstractTpl() | |
| 241 | ✗ | : state_(nullptr), | |
| 242 | ✗ | nr_(0), | |
| 243 | ✗ | nu_(0), | |
| 244 | ✗ | q_dependent_(false), | |
| 245 | ✗ | v_dependent_(false), | |
| 246 | ✗ | u_dependent_(false) {}; | |
| 247 | }; | ||
| 248 | |||
| 249 | template <typename _Scalar> | ||
| 250 | struct ResidualDataAbstractTpl { | ||
| 251 | EIGEN_MAKE_ALIGNED_OPERATOR_NEW | ||
| 252 | |||
| 253 | typedef _Scalar Scalar; | ||
| 254 | typedef MathBaseTpl<Scalar> MathBase; | ||
| 255 | typedef DataCollectorAbstractTpl<Scalar> DataCollectorAbstract; | ||
| 256 | typedef typename MathBase::VectorXs VectorXs; | ||
| 257 | typedef typename MathBase::MatrixXs MatrixXs; | ||
| 258 | |||
| 259 | template <template <typename Scalar> class Model> | ||
| 260 | ✗ | ResidualDataAbstractTpl(Model<Scalar>* const model, | |
| 261 | DataCollectorAbstract* const data) | ||
| 262 | ✗ | : shared(data), | |
| 263 | ✗ | r(model->get_nr()), | |
| 264 | ✗ | Rx(model->get_nr(), model->get_state()->get_ndx()), | |
| 265 | ✗ | Ru(model->get_nr(), model->get_nu()), | |
| 266 | ✗ | Arr_Rx(model->get_nr(), model->get_state()->get_ndx()), | |
| 267 | ✗ | Arr_Ru(model->get_nr(), model->get_nu()) { | |
| 268 | ✗ | r.setZero(); | |
| 269 | ✗ | Rx.setZero(); | |
| 270 | ✗ | Ru.setZero(); | |
| 271 | ✗ | Arr_Rx.setZero(); | |
| 272 | ✗ | Arr_Ru.setZero(); | |
| 273 | ✗ | } | |
| 274 | ✗ | virtual ~ResidualDataAbstractTpl() = default; | |
| 275 | |||
| 276 | DataCollectorAbstract* shared; //!< Shared data allocated by the action model | ||
| 277 | VectorXs r; //!< Residual vector | ||
| 278 | MatrixXs Rx; //!< Jacobian of the residual vector with respect the state | ||
| 279 | MatrixXs Ru; //!< Jacobian of the residual vector with respect the control | ||
| 280 | MatrixXs Arr_Rx; | ||
| 281 | MatrixXs Arr_Ru; | ||
| 282 | }; | ||
| 283 | |||
| 284 | } // namespace crocoddyl | ||
| 285 | |||
| 286 | /* --- Details -------------------------------------------------------------- */ | ||
| 287 | /* --- Details -------------------------------------------------------------- */ | ||
| 288 | /* --- Details -------------------------------------------------------------- */ | ||
| 289 | #include "crocoddyl/core/residual-base.hxx" | ||
| 290 | |||
| 291 | CROCODDYL_DECLARE_EXTERN_TEMPLATE_CLASS(crocoddyl::ResidualModelAbstractTpl) | ||
| 292 | CROCODDYL_DECLARE_EXTERN_TEMPLATE_STRUCT(crocoddyl::ResidualDataAbstractTpl) | ||
| 293 | |||
| 294 | #endif // CROCODDYL_CORE_RESIDUAL_BASE_HPP_ | ||
| 295 |