Line |
Branch |
Exec |
Source |
1 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
2 |
|
|
// BSD 3-Clause License |
3 |
|
|
// |
4 |
|
|
// Copyright (C) 2019-2022, LAAS-CNRS, IRI: CSIC-UPC, University of Edinburgh |
5 |
|
|
// Heriot-Watt University |
6 |
|
|
// Copyright note valid unless otherwise stated in individual files. |
7 |
|
|
// All rights reserved. |
8 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
9 |
|
|
|
10 |
|
|
#include <iostream> |
11 |
|
|
|
12 |
|
|
#include "crocoddyl/core/integrator/rk4.hpp" |
13 |
|
|
#include "crocoddyl/core/utils/exception.hpp" |
14 |
|
|
|
15 |
|
|
namespace crocoddyl { |
16 |
|
|
|
17 |
|
|
template <typename Scalar> |
18 |
|
✗ |
IntegratedActionModelRK4Tpl<Scalar>::IntegratedActionModelRK4Tpl( |
19 |
|
|
boost::shared_ptr<DifferentialActionModelAbstract> model, |
20 |
|
|
boost::shared_ptr<ControlParametrizationModelAbstract> control, |
21 |
|
|
const Scalar time_step, const bool with_cost_residual) |
22 |
|
✗ |
: Base(model, control, time_step, with_cost_residual) { |
23 |
|
✗ |
rk4_c_ = {Scalar(0.), Scalar(0.5), Scalar(0.5), Scalar(1.)}; |
24 |
|
|
std::cerr |
25 |
|
✗ |
<< "Deprecated IntegratedActionModelRK4: Use IntegratedActionModelRK" |
26 |
|
✗ |
<< std::endl; |
27 |
|
|
} |
28 |
|
|
|
29 |
|
|
template <typename Scalar> |
30 |
|
✗ |
IntegratedActionModelRK4Tpl<Scalar>::IntegratedActionModelRK4Tpl( |
31 |
|
|
boost::shared_ptr<DifferentialActionModelAbstract> model, |
32 |
|
|
const Scalar time_step, const bool with_cost_residual) |
33 |
|
✗ |
: Base(model, time_step, with_cost_residual) { |
34 |
|
✗ |
rk4_c_ = {Scalar(0.), Scalar(0.5), Scalar(0.5), Scalar(1.)}; |
35 |
|
|
std::cerr |
36 |
|
✗ |
<< "Deprecated IntegratedActionModelRK4: Use IntegratedActionModelRK" |
37 |
|
✗ |
<< std::endl; |
38 |
|
|
} |
39 |
|
|
|
40 |
|
|
template <typename Scalar> |
41 |
|
✗ |
IntegratedActionModelRK4Tpl<Scalar>::~IntegratedActionModelRK4Tpl() {} |
42 |
|
|
|
43 |
|
|
template <typename Scalar> |
44 |
|
✗ |
void IntegratedActionModelRK4Tpl<Scalar>::calc( |
45 |
|
|
const boost::shared_ptr<ActionDataAbstract>& data, |
46 |
|
|
const Eigen::Ref<const VectorXs>& x, const Eigen::Ref<const VectorXs>& u) { |
47 |
|
✗ |
if (static_cast<std::size_t>(x.size()) != state_->get_nx()) { |
48 |
|
✗ |
throw_pretty( |
49 |
|
|
"Invalid argument: " << "x has wrong dimension (it should be " + |
50 |
|
|
std::to_string(state_->get_nx()) + ")"); |
51 |
|
|
} |
52 |
|
✗ |
if (static_cast<std::size_t>(u.size()) != nu_) { |
53 |
|
✗ |
throw_pretty( |
54 |
|
|
"Invalid argument: " << "u has wrong dimension (it should be " + |
55 |
|
|
std::to_string(nu_) + ")"); |
56 |
|
|
} |
57 |
|
✗ |
const std::size_t nv = state_->get_nv(); |
58 |
|
✗ |
Data* d = static_cast<Data*>(data.get()); |
59 |
|
|
|
60 |
|
|
const boost::shared_ptr<DifferentialActionDataAbstract>& k0_data = |
61 |
|
✗ |
d->differential[0]; |
62 |
|
|
const boost::shared_ptr<ControlParametrizationDataAbstract>& u0_data = |
63 |
|
✗ |
d->control[0]; |
64 |
|
✗ |
control_->calc(u0_data, rk4_c_[0], u); |
65 |
|
✗ |
d->ws[0] = u0_data->w; |
66 |
|
✗ |
differential_->calc(k0_data, x, d->ws[0]); |
67 |
|
✗ |
d->y[0] = x; |
68 |
|
✗ |
d->ki[0].head(nv) = d->y[0].tail(nv); |
69 |
|
✗ |
d->ki[0].tail(nv) = k0_data->xout; |
70 |
|
✗ |
d->integral[0] = k0_data->cost; |
71 |
|
✗ |
for (std::size_t i = 1; i < 4; ++i) { |
72 |
|
|
const boost::shared_ptr<DifferentialActionDataAbstract>& ki_data = |
73 |
|
✗ |
d->differential[i]; |
74 |
|
|
const boost::shared_ptr<ControlParametrizationDataAbstract>& ui_data = |
75 |
|
✗ |
d->control[i]; |
76 |
|
✗ |
d->dx_rk4[i].noalias() = time_step_ * rk4_c_[i] * d->ki[i - 1]; |
77 |
|
✗ |
state_->integrate(x, d->dx_rk4[i], d->y[i]); |
78 |
|
✗ |
control_->calc(ui_data, rk4_c_[i], u); |
79 |
|
✗ |
d->ws[i] = ui_data->w; |
80 |
|
✗ |
differential_->calc(ki_data, d->y[i], d->ws[i]); |
81 |
|
✗ |
d->ki[i].head(nv) = d->y[i].tail(nv); |
82 |
|
✗ |
d->ki[i].tail(nv) = ki_data->xout; |
83 |
|
✗ |
d->integral[i] = ki_data->cost; |
84 |
|
|
} |
85 |
|
✗ |
d->dx = |
86 |
|
✗ |
(d->ki[0] + Scalar(2.) * d->ki[1] + Scalar(2.) * d->ki[2] + d->ki[3]) * |
87 |
|
✗ |
time_step_ / Scalar(6.); |
88 |
|
✗ |
state_->integrate(x, d->dx, d->xnext); |
89 |
|
✗ |
d->cost = (d->integral[0] + Scalar(2.) * d->integral[1] + |
90 |
|
✗ |
Scalar(2.) * d->integral[2] + d->integral[3]) * |
91 |
|
✗ |
time_step_ / Scalar(6.); |
92 |
|
✗ |
d->g = k0_data->g; |
93 |
|
✗ |
d->h = k0_data->h; |
94 |
|
✗ |
if (with_cost_residual_) { |
95 |
|
✗ |
d->r = k0_data->r; |
96 |
|
|
} |
97 |
|
|
} |
98 |
|
|
|
99 |
|
|
template <typename Scalar> |
100 |
|
✗ |
void IntegratedActionModelRK4Tpl<Scalar>::calc( |
101 |
|
|
const boost::shared_ptr<ActionDataAbstract>& data, |
102 |
|
|
const Eigen::Ref<const VectorXs>& x) { |
103 |
|
✗ |
if (static_cast<std::size_t>(x.size()) != state_->get_nx()) { |
104 |
|
✗ |
throw_pretty( |
105 |
|
|
"Invalid argument: " << "x has wrong dimension (it should be " + |
106 |
|
|
std::to_string(state_->get_nx()) + ")"); |
107 |
|
|
} |
108 |
|
✗ |
Data* d = static_cast<Data*>(data.get()); |
109 |
|
|
|
110 |
|
|
const boost::shared_ptr<DifferentialActionDataAbstract>& k0_data = |
111 |
|
✗ |
d->differential[0]; |
112 |
|
✗ |
differential_->calc(k0_data, x); |
113 |
|
✗ |
d->dx.setZero(); |
114 |
|
✗ |
d->xnext = x; |
115 |
|
✗ |
d->cost = k0_data->cost; |
116 |
|
✗ |
d->g = k0_data->g; |
117 |
|
✗ |
d->h = k0_data->h; |
118 |
|
✗ |
if (with_cost_residual_) { |
119 |
|
✗ |
d->r = k0_data->r; |
120 |
|
|
} |
121 |
|
|
} |
122 |
|
|
|
123 |
|
|
template <typename Scalar> |
124 |
|
✗ |
void IntegratedActionModelRK4Tpl<Scalar>::calcDiff( |
125 |
|
|
const boost::shared_ptr<ActionDataAbstract>& data, |
126 |
|
|
const Eigen::Ref<const VectorXs>& x, const Eigen::Ref<const VectorXs>& u) { |
127 |
|
✗ |
if (static_cast<std::size_t>(x.size()) != state_->get_nx()) { |
128 |
|
✗ |
throw_pretty( |
129 |
|
|
"Invalid argument: " << "x has wrong dimension (it should be " + |
130 |
|
|
std::to_string(state_->get_nx()) + ")"); |
131 |
|
|
} |
132 |
|
✗ |
if (static_cast<std::size_t>(u.size()) != nu_) { |
133 |
|
✗ |
throw_pretty( |
134 |
|
|
"Invalid argument: " << "u has wrong dimension (it should be " + |
135 |
|
|
std::to_string(nu_) + ")"); |
136 |
|
|
} |
137 |
|
✗ |
const std::size_t nv = state_->get_nv(); |
138 |
|
✗ |
const std::size_t nu = control_->get_nu(); |
139 |
|
✗ |
Data* d = static_cast<Data*>(data.get()); |
140 |
|
✗ |
assert_pretty( |
141 |
|
|
MatrixXs(d->dyi_dx[0]) |
142 |
|
|
.isApprox(MatrixXs::Identity(state_->get_ndx(), state_->get_ndx())), |
143 |
|
|
"you have changed dyi_dx[0] values that supposed to be constant."); |
144 |
|
✗ |
assert_pretty( |
145 |
|
|
MatrixXs(d->dki_dx[0]) |
146 |
|
|
.topRightCorner(nv, nv) |
147 |
|
|
.isApprox(MatrixXs::Identity(nv, nv)), |
148 |
|
|
"you have changed dki_dx[0] values that supposed to be constant."); |
149 |
|
|
|
150 |
|
✗ |
for (std::size_t i = 0; i < 4; ++i) { |
151 |
|
✗ |
differential_->calcDiff(d->differential[i], d->y[i], d->ws[i]); |
152 |
|
|
} |
153 |
|
|
|
154 |
|
|
const boost::shared_ptr<DifferentialActionDataAbstract>& k0_data = |
155 |
|
✗ |
d->differential[0]; |
156 |
|
|
const boost::shared_ptr<ControlParametrizationDataAbstract>& u0_data = |
157 |
|
✗ |
d->control[0]; |
158 |
|
✗ |
d->dki_dx[0].bottomRows(nv) = k0_data->Fx; |
159 |
|
✗ |
control_->multiplyByJacobian( |
160 |
|
✗ |
u0_data, k0_data->Fu, |
161 |
|
✗ |
d->dki_du[0].bottomRows(nv)); // dki_du = dki_dw * dw_du |
162 |
|
|
|
163 |
|
✗ |
d->dli_dx[0] = k0_data->Lx; |
164 |
|
✗ |
control_->multiplyJacobianTransposeBy( |
165 |
|
✗ |
u0_data, k0_data->Lu, |
166 |
|
✗ |
d->dli_du[0]); // dli_du = dli_dw * dw_du |
167 |
|
|
|
168 |
|
✗ |
d->ddli_ddx[0] = k0_data->Lxx; |
169 |
|
✗ |
d->ddli_ddw[0] = k0_data->Luu; |
170 |
|
✗ |
control_->multiplyByJacobian( |
171 |
|
✗ |
u0_data, d->ddli_ddw[0], |
172 |
|
✗ |
d->ddli_dwdu[0]); // ddli_dwdu = ddli_ddw * dw_du |
173 |
|
✗ |
control_->multiplyJacobianTransposeBy( |
174 |
|
✗ |
u0_data, d->ddli_dwdu[0], |
175 |
|
✗ |
d->ddli_ddu[0]); // ddli_ddu = dw_du.T * ddli_dwdu |
176 |
|
✗ |
d->ddli_dxdw[0] = k0_data->Lxu; |
177 |
|
✗ |
control_->multiplyByJacobian( |
178 |
|
✗ |
u0_data, d->ddli_dxdw[0], |
179 |
|
✗ |
d->ddli_dxdu[0]); // ddli_dxdu = ddli_dxdw * dw_du |
180 |
|
|
|
181 |
|
✗ |
for (std::size_t i = 1; i < 4; ++i) { |
182 |
|
|
const boost::shared_ptr<DifferentialActionDataAbstract>& ki_data = |
183 |
|
✗ |
d->differential[i]; |
184 |
|
|
const boost::shared_ptr<ControlParametrizationDataAbstract>& ui_data = |
185 |
|
✗ |
d->control[i]; |
186 |
|
✗ |
d->dyi_dx[i].noalias() = d->dki_dx[i - 1] * rk4_c_[i] * time_step_; |
187 |
|
✗ |
d->dyi_du[i].noalias() = d->dki_du[i - 1] * rk4_c_[i] * time_step_; |
188 |
|
✗ |
state_->JintegrateTransport(x, d->dx_rk4[i], d->dyi_dx[i], second); |
189 |
|
✗ |
state_->Jintegrate(x, d->dx_rk4[i], d->dyi_dx[i], d->dyi_dx[i], first, |
190 |
|
|
addto); |
191 |
|
✗ |
state_->JintegrateTransport(x, d->dx_rk4[i], d->dyi_du[i], |
192 |
|
|
second); // dyi_du = Jintegrate * dyi_du |
193 |
|
|
|
194 |
|
|
// Sparse matrix-matrix multiplication for computing: |
195 |
|
✗ |
Eigen::Block<MatrixXs> dkvi_dq = d->dki_dx[i].bottomLeftCorner(nv, nv); |
196 |
|
✗ |
Eigen::Block<MatrixXs> dkvi_dv = d->dki_dx[i].bottomRightCorner(nv, nv); |
197 |
|
✗ |
Eigen::Block<MatrixXs> dkqi_du = d->dki_du[i].topLeftCorner(nv, nu); |
198 |
|
✗ |
Eigen::Block<MatrixXs> dkvi_du = d->dki_du[i].bottomLeftCorner(nv, nu); |
199 |
|
✗ |
const Eigen::Block<MatrixXs> dki_dqi = ki_data->Fx.bottomLeftCorner(nv, nv); |
200 |
|
|
const Eigen::Block<MatrixXs> dki_dvi = |
201 |
|
✗ |
ki_data->Fx.bottomRightCorner(nv, nv); |
202 |
|
✗ |
const Eigen::Block<MatrixXs> dqi_dq = d->dyi_dx[i].topLeftCorner(nv, nv); |
203 |
|
✗ |
const Eigen::Block<MatrixXs> dqi_dv = d->dyi_dx[i].topRightCorner(nv, nv); |
204 |
|
✗ |
const Eigen::Block<MatrixXs> dvi_dq = d->dyi_dx[i].bottomLeftCorner(nv, nv); |
205 |
|
|
const Eigen::Block<MatrixXs> dvi_dv = |
206 |
|
✗ |
d->dyi_dx[i].bottomRightCorner(nv, nv); |
207 |
|
✗ |
const Eigen::Block<MatrixXs> dqi_du = d->dyi_du[i].topLeftCorner(nv, nu); |
208 |
|
✗ |
const Eigen::Block<MatrixXs> dvi_du = d->dyi_du[i].bottomLeftCorner(nv, nu); |
209 |
|
|
// i. d->dki_dx[i].noalias() = d->dki_dy[i] * d->dyi_dx[i], where dki_dy |
210 |
|
|
// is ki_data.Fx |
211 |
|
✗ |
d->dki_dx[i].topRows(nv) = d->dyi_dx[i].bottomRows(nv); |
212 |
|
✗ |
dkvi_dq.noalias() = dki_dqi * dqi_dq; |
213 |
|
✗ |
if (i == 1) { |
214 |
|
✗ |
dkvi_dv = time_step_ / Scalar(2.) * dki_dqi; |
215 |
|
|
} else { |
216 |
|
✗ |
dkvi_dv.noalias() = dki_dqi * dqi_dv; |
217 |
|
|
} |
218 |
|
✗ |
dkvi_dq.noalias() += dki_dvi * dvi_dq; |
219 |
|
✗ |
dkvi_dv.noalias() += dki_dvi * dvi_dv; |
220 |
|
|
// ii. d->dki_du[i].noalias() = d->dki_dy[i] * d->dyi_du[i], where dki_dy |
221 |
|
|
// is ki_data.Fx |
222 |
|
✗ |
dkqi_du = dvi_du; |
223 |
|
✗ |
dkvi_du.noalias() = dki_dqi * dqi_du; |
224 |
|
✗ |
dkvi_du.noalias() += dki_dvi * dvi_du; |
225 |
|
|
|
226 |
|
✗ |
control_->multiplyByJacobian(ui_data, ki_data->Fu, |
227 |
|
✗ |
d->dki_du[i].bottomRows(nv), |
228 |
|
|
addto); // dfi_du = dki_dw * dw_du |
229 |
|
|
|
230 |
|
✗ |
d->dli_dx[i].noalias() = ki_data->Lx.transpose() * d->dyi_dx[i]; |
231 |
|
✗ |
control_->multiplyJacobianTransposeBy(ui_data, ki_data->Lu, |
232 |
|
✗ |
d->dli_du[i]); // dli_du = Lu * dw_du |
233 |
|
✗ |
d->dli_du[i].noalias() += ki_data->Lx.transpose() * d->dyi_du[i]; |
234 |
|
|
|
235 |
|
✗ |
d->Lxx_partialx[i].noalias() = ki_data->Lxx * d->dyi_dx[i]; |
236 |
|
✗ |
d->ddli_ddx[i].noalias() = d->dyi_dx[i].transpose() * d->Lxx_partialx[i]; |
237 |
|
|
|
238 |
|
✗ |
control_->multiplyByJacobian(ui_data, ki_data->Lxu, |
239 |
|
✗ |
d->Lxu_i[i]); // Lxu = Lxw * dw_du |
240 |
|
✗ |
d->Luu_partialx[i].noalias() = d->Lxu_i[i].transpose() * d->dyi_du[i]; |
241 |
|
✗ |
d->Lxx_partialu[i].noalias() = ki_data->Lxx * d->dyi_du[i]; |
242 |
|
✗ |
control_->multiplyByJacobian( |
243 |
|
✗ |
ui_data, ki_data->Luu, |
244 |
|
✗ |
d->ddli_dwdu[i]); // ddli_dwdu = ddli_ddw * dw_du |
245 |
|
✗ |
control_->multiplyJacobianTransposeBy( |
246 |
|
✗ |
ui_data, d->ddli_dwdu[i], |
247 |
|
✗ |
d->ddli_ddu[i]); // ddli_ddu = dw_du.T * ddli_dwdu |
248 |
|
✗ |
d->ddli_ddu[i].noalias() += d->Luu_partialx[i].transpose() + |
249 |
|
✗ |
d->Luu_partialx[i] + |
250 |
|
✗ |
d->dyi_du[i].transpose() * d->Lxx_partialu[i]; |
251 |
|
|
|
252 |
|
✗ |
d->ddli_dxdw[i].noalias() = d->dyi_dx[i].transpose() * ki_data->Lxu; |
253 |
|
✗ |
control_->multiplyByJacobian( |
254 |
|
✗ |
ui_data, d->ddli_dxdw[i], |
255 |
|
✗ |
d->ddli_dxdu[i]); // ddli_dxdu = ddli_dxdw * dw_du |
256 |
|
✗ |
d->ddli_dxdu[i].noalias() += d->dyi_dx[i].transpose() * d->Lxx_partialu[i]; |
257 |
|
|
} |
258 |
|
|
|
259 |
|
✗ |
d->Fx.noalias() = time_step_ / Scalar(6.) * |
260 |
|
✗ |
(d->dki_dx[0] + Scalar(2.) * d->dki_dx[1] + |
261 |
|
✗ |
Scalar(2.) * d->dki_dx[2] + d->dki_dx[3]); |
262 |
|
✗ |
state_->JintegrateTransport(x, d->dx, d->Fx, second); |
263 |
|
✗ |
state_->Jintegrate(x, d->dx, d->Fx, d->Fx, first, addto); |
264 |
|
|
|
265 |
|
✗ |
d->Fu.noalias() = time_step_ / Scalar(6.) * |
266 |
|
✗ |
(d->dki_du[0] + Scalar(2.) * d->dki_du[1] + |
267 |
|
✗ |
Scalar(2.) * d->dki_du[2] + d->dki_du[3]); |
268 |
|
✗ |
state_->JintegrateTransport(x, d->dx, d->Fu, second); |
269 |
|
|
|
270 |
|
✗ |
d->Lx.noalias() = time_step_ / Scalar(6.) * |
271 |
|
✗ |
(d->dli_dx[0] + Scalar(2.) * d->dli_dx[1] + |
272 |
|
✗ |
Scalar(2.) * d->dli_dx[2] + d->dli_dx[3]); |
273 |
|
✗ |
d->Lu.noalias() = time_step_ / Scalar(6.) * |
274 |
|
✗ |
(d->dli_du[0] + Scalar(2.) * d->dli_du[1] + |
275 |
|
✗ |
Scalar(2.) * d->dli_du[2] + d->dli_du[3]); |
276 |
|
|
|
277 |
|
✗ |
d->Lxx.noalias() = time_step_ / Scalar(6.) * |
278 |
|
✗ |
(d->ddli_ddx[0] + Scalar(2.) * d->ddli_ddx[1] + |
279 |
|
✗ |
Scalar(2.) * d->ddli_ddx[2] + d->ddli_ddx[3]); |
280 |
|
✗ |
d->Luu.noalias() = time_step_ / Scalar(6.) * |
281 |
|
✗ |
(d->ddli_ddu[0] + Scalar(2.) * d->ddli_ddu[1] + |
282 |
|
✗ |
Scalar(2.) * d->ddli_ddu[2] + d->ddli_ddu[3]); |
283 |
|
✗ |
d->Lxu.noalias() = time_step_ / Scalar(6.) * |
284 |
|
✗ |
(d->ddli_dxdu[0] + Scalar(2.) * d->ddli_dxdu[1] + |
285 |
|
✗ |
Scalar(2.) * d->ddli_dxdu[2] + d->ddli_dxdu[3]); |
286 |
|
✗ |
d->Gx = k0_data->Gx; |
287 |
|
✗ |
d->Hx = k0_data->Hx; |
288 |
|
✗ |
d->Gu.resize(differential_->get_ng(), nu_); |
289 |
|
✗ |
d->Hu.resize(differential_->get_nh(), nu_); |
290 |
|
✗ |
control_->multiplyByJacobian(u0_data, k0_data->Gu, d->Gu); |
291 |
|
✗ |
control_->multiplyByJacobian(u0_data, k0_data->Hu, d->Hu); |
292 |
|
|
} |
293 |
|
|
|
294 |
|
|
template <typename Scalar> |
295 |
|
✗ |
void IntegratedActionModelRK4Tpl<Scalar>::calcDiff( |
296 |
|
|
const boost::shared_ptr<ActionDataAbstract>& data, |
297 |
|
|
const Eigen::Ref<const VectorXs>& x) { |
298 |
|
✗ |
if (static_cast<std::size_t>(x.size()) != state_->get_nx()) { |
299 |
|
✗ |
throw_pretty( |
300 |
|
|
"Invalid argument: " << "x has wrong dimension (it should be " + |
301 |
|
|
std::to_string(state_->get_nx()) + ")"); |
302 |
|
|
} |
303 |
|
✗ |
Data* d = static_cast<Data*>(data.get()); |
304 |
|
|
|
305 |
|
|
const boost::shared_ptr<DifferentialActionDataAbstract>& k0_data = |
306 |
|
✗ |
d->differential[0]; |
307 |
|
✗ |
differential_->calcDiff(k0_data, x); |
308 |
|
✗ |
d->Lx = k0_data->Lx; |
309 |
|
✗ |
d->Lxx = k0_data->Lxx; |
310 |
|
✗ |
d->Gx = k0_data->Gx; |
311 |
|
✗ |
d->Hx = k0_data->Hx; |
312 |
|
|
} |
313 |
|
|
|
314 |
|
|
template <typename Scalar> |
315 |
|
|
boost::shared_ptr<ActionDataAbstractTpl<Scalar> > |
316 |
|
✗ |
IntegratedActionModelRK4Tpl<Scalar>::createData() { |
317 |
|
✗ |
return boost::allocate_shared<Data>(Eigen::aligned_allocator<Data>(), this); |
318 |
|
|
} |
319 |
|
|
|
320 |
|
|
template <typename Scalar> |
321 |
|
✗ |
bool IntegratedActionModelRK4Tpl<Scalar>::checkData( |
322 |
|
|
const boost::shared_ptr<ActionDataAbstract>& data) { |
323 |
|
✗ |
boost::shared_ptr<Data> d = boost::dynamic_pointer_cast<Data>(data); |
324 |
|
✗ |
if (data != NULL) { |
325 |
|
✗ |
return differential_->checkData(d->differential[0]) && |
326 |
|
✗ |
differential_->checkData(d->differential[2]) && |
327 |
|
✗ |
differential_->checkData(d->differential[1]) && |
328 |
|
✗ |
differential_->checkData(d->differential[3]); |
329 |
|
|
} else { |
330 |
|
✗ |
return false; |
331 |
|
|
} |
332 |
|
|
} |
333 |
|
|
|
334 |
|
|
template <typename Scalar> |
335 |
|
✗ |
void IntegratedActionModelRK4Tpl<Scalar>::quasiStatic( |
336 |
|
|
const boost::shared_ptr<ActionDataAbstract>& data, Eigen::Ref<VectorXs> u, |
337 |
|
|
const Eigen::Ref<const VectorXs>& x, const std::size_t maxiter, |
338 |
|
|
const Scalar tol) { |
339 |
|
✗ |
if (static_cast<std::size_t>(u.size()) != nu_) { |
340 |
|
✗ |
throw_pretty( |
341 |
|
|
"Invalid argument: " << "u has wrong dimension (it should be " + |
342 |
|
|
std::to_string(nu_) + ")"); |
343 |
|
|
} |
344 |
|
✗ |
if (static_cast<std::size_t>(x.size()) != state_->get_nx()) { |
345 |
|
✗ |
throw_pretty( |
346 |
|
|
"Invalid argument: " << "x has wrong dimension (it should be " + |
347 |
|
|
std::to_string(state_->get_nx()) + ")"); |
348 |
|
|
} |
349 |
|
|
|
350 |
|
✗ |
Data* d = static_cast<Data*>(data.get()); |
351 |
|
|
const boost::shared_ptr<ControlParametrizationDataAbstract>& u0_data = |
352 |
|
✗ |
d->control[0]; |
353 |
|
✗ |
u0_data->w *= 0.; |
354 |
|
✗ |
differential_->quasiStatic(d->differential[0], u0_data->w, x, maxiter, tol); |
355 |
|
✗ |
control_->params(u0_data, 0., u0_data->w); |
356 |
|
✗ |
u = u0_data->u; |
357 |
|
|
} |
358 |
|
|
|
359 |
|
|
template <typename Scalar> |
360 |
|
✗ |
void IntegratedActionModelRK4Tpl<Scalar>::print(std::ostream& os) const { |
361 |
|
✗ |
os << "IntegratedActionModelRK4 {dt=" << time_step_ << ", " << *differential_ |
362 |
|
✗ |
<< "}"; |
363 |
|
|
} |
364 |
|
|
|
365 |
|
|
} // namespace crocoddyl |
366 |
|
|
|