| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | /////////////////////////////////////////////////////////////////////////////// | ||
| 2 | // BSD 3-Clause License | ||
| 3 | // | ||
| 4 | // Copyright (C) 2019-2024, LAAS-CNRS, University of Edinburgh, | ||
| 5 | // Heriot-Watt University, University of Oxford | ||
| 6 | // Copyright note valid unless otherwise stated in individual files. | ||
| 7 | // All rights reserved. | ||
| 8 | /////////////////////////////////////////////////////////////////////////////// | ||
| 9 | |||
| 10 | #ifdef CROCODDYL_WITH_MULTITHREADING | ||
| 11 | #include <omp.h> | ||
| 12 | #endif // CROCODDYL_WITH_MULTITHREADING | ||
| 13 | |||
| 14 | #include "crocoddyl/core/solver-base.hpp" | ||
| 15 | |||
| 16 | namespace crocoddyl { | ||
| 17 | |||
| 18 | ✗ | SolverAbstract::SolverAbstract(std::shared_ptr<ShootingProblem> problem) | |
| 19 | ✗ | : problem_(problem), | |
| 20 | ✗ | is_feasible_(false), | |
| 21 | ✗ | was_feasible_(false), | |
| 22 | ✗ | cost_(0.), | |
| 23 | ✗ | merit_(0.), | |
| 24 | ✗ | stop_(0.), | |
| 25 | ✗ | dV_(0.), | |
| 26 | ✗ | dPhi_(0.), | |
| 27 | ✗ | dVexp_(0.), | |
| 28 | ✗ | dPhiexp_(0.), | |
| 29 | ✗ | dfeas_(0.), | |
| 30 | ✗ | feas_(0.), | |
| 31 | ✗ | ffeas_(0.), | |
| 32 | ✗ | gfeas_(0.), | |
| 33 | ✗ | hfeas_(0.), | |
| 34 | ✗ | ffeas_try_(0.), | |
| 35 | ✗ | gfeas_try_(0.), | |
| 36 | ✗ | hfeas_try_(0.), | |
| 37 | ✗ | preg_(0.), | |
| 38 | ✗ | dreg_(0.), | |
| 39 | ✗ | steplength_(1.), | |
| 40 | ✗ | th_acceptstep_(0.1), | |
| 41 | ✗ | th_stop_(1e-9), | |
| 42 | ✗ | th_gaptol_(1e-16), | |
| 43 | ✗ | feasnorm_(LInf), | |
| 44 | ✗ | iter_(0), | |
| 45 | ✗ | tmp_feas_(0.) { | |
| 46 | // Allocate common data | ||
| 47 | ✗ | const std::size_t ndx = problem_->get_ndx(); | |
| 48 | ✗ | const std::size_t T = problem_->get_T(); | |
| 49 | ✗ | const std::size_t ng_T = problem_->get_terminalModel()->get_ng_T(); | |
| 50 | ✗ | xs_.resize(T + 1); | |
| 51 | ✗ | us_.resize(T); | |
| 52 | ✗ | fs_.resize(T + 1); | |
| 53 | ✗ | g_adj_.resize(T + 1); | |
| 54 | const std::vector<std::shared_ptr<ActionModelAbstract> >& models = | ||
| 55 | ✗ | problem_->get_runningModels(); | |
| 56 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
| 57 | ✗ | const std::shared_ptr<ActionModelAbstract>& model = models[t]; | |
| 58 | ✗ | const std::size_t nu = model->get_nu(); | |
| 59 | ✗ | const std::size_t ng = model->get_ng(); | |
| 60 | ✗ | xs_[t] = model->get_state()->zero(); | |
| 61 | ✗ | us_[t] = Eigen::VectorXd::Zero(nu); | |
| 62 | ✗ | fs_[t] = Eigen::VectorXd::Zero(ndx); | |
| 63 | ✗ | g_adj_[t] = Eigen::VectorXd::Zero(ng); | |
| 64 | } | ||
| 65 | ✗ | xs_.back() = problem_->get_terminalModel()->get_state()->zero(); | |
| 66 | ✗ | fs_.back() = Eigen::VectorXd::Zero(ndx); | |
| 67 | ✗ | g_adj_.back() = Eigen::VectorXd::Zero(ng_T); | |
| 68 | ✗ | } | |
| 69 | |||
| 70 | ✗ | SolverAbstract::~SolverAbstract() {} | |
| 71 | |||
| 72 | ✗ | void SolverAbstract::resizeData() { | |
| 73 | ✗ | START_PROFILER("SolverAbstract::resizeData"); | |
| 74 | ✗ | const std::size_t T = problem_->get_T(); | |
| 75 | ✗ | const std::size_t ng_T = problem_->get_terminalModel()->get_ng_T(); | |
| 76 | const std::vector<std::shared_ptr<ActionModelAbstract> >& models = | ||
| 77 | ✗ | problem_->get_runningModels(); | |
| 78 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
| 79 | ✗ | const std::shared_ptr<ActionModelAbstract>& model = models[t]; | |
| 80 | ✗ | const std::size_t nu = model->get_nu(); | |
| 81 | ✗ | const std::size_t ng = model->get_ng(); | |
| 82 | ✗ | us_[t].conservativeResize(nu); | |
| 83 | ✗ | g_adj_[t].conservativeResize(ng); | |
| 84 | } | ||
| 85 | |||
| 86 | ✗ | g_adj_.back().conservativeResize(ng_T); | |
| 87 | |||
| 88 | ✗ | STOP_PROFILER("SolverAbstract::resizeData"); | |
| 89 | ✗ | } | |
| 90 | |||
| 91 | ✗ | double SolverAbstract::computeDynamicFeasibility() { | |
| 92 | ✗ | tmp_feas_ = 0.; | |
| 93 | ✗ | const std::size_t T = problem_->get_T(); | |
| 94 | ✗ | const Eigen::VectorXd& x0 = problem_->get_x0(); | |
| 95 | const std::vector<std::shared_ptr<ActionModelAbstract> >& models = | ||
| 96 | ✗ | problem_->get_runningModels(); | |
| 97 | const std::vector<std::shared_ptr<ActionDataAbstract> >& datas = | ||
| 98 | ✗ | problem_->get_runningDatas(); | |
| 99 | |||
| 100 | ✗ | models[0]->get_state()->diff(xs_[0], x0, fs_[0]); | |
| 101 | #ifdef CROCODDYL_WITH_MULTITHREADING | ||
| 102 | #pragma omp parallel for num_threads(problem_->get_nthreads()) | ||
| 103 | #endif | ||
| 104 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
| 105 | ✗ | const std::shared_ptr<ActionModelAbstract>& m = models[t]; | |
| 106 | ✗ | const std::shared_ptr<ActionDataAbstract>& d = datas[t]; | |
| 107 | ✗ | m->get_state()->diff(xs_[t + 1], d->xnext, fs_[t + 1]); | |
| 108 | } | ||
| 109 | ✗ | switch (feasnorm_) { | |
| 110 | ✗ | case LInf: | |
| 111 | ✗ | tmp_feas_ = std::max(tmp_feas_, fs_[0].lpNorm<Eigen::Infinity>()); | |
| 112 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
| 113 | ✗ | tmp_feas_ = std::max(tmp_feas_, fs_[t + 1].lpNorm<Eigen::Infinity>()); | |
| 114 | } | ||
| 115 | ✗ | break; | |
| 116 | ✗ | case L1: | |
| 117 | ✗ | tmp_feas_ = fs_[0].lpNorm<1>(); | |
| 118 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
| 119 | ✗ | tmp_feas_ += fs_[t + 1].lpNorm<1>(); | |
| 120 | } | ||
| 121 | ✗ | break; | |
| 122 | } | ||
| 123 | ✗ | return tmp_feas_; | |
| 124 | } | ||
| 125 | |||
| 126 | ✗ | double SolverAbstract::computeInequalityFeasibility() { | |
| 127 | ✗ | tmp_feas_ = 0.; | |
| 128 | ✗ | const std::size_t T = problem_->get_T(); | |
| 129 | const std::vector<std::shared_ptr<ActionModelAbstract> >& models = | ||
| 130 | ✗ | problem_->get_runningModels(); | |
| 131 | const std::vector<std::shared_ptr<ActionDataAbstract> >& datas = | ||
| 132 | ✗ | problem_->get_runningDatas(); | |
| 133 | |||
| 134 | ✗ | switch (feasnorm_) { | |
| 135 | ✗ | case LInf: | |
| 136 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
| 137 | ✗ | if (models[t]->get_ng() > 0) { | |
| 138 | ✗ | g_adj_[t] = datas[t] | |
| 139 | ✗ | ->g.cwiseMax(models[t]->get_g_lb()) | |
| 140 | ✗ | .cwiseMin(models[t]->get_g_ub()); | |
| 141 | ✗ | tmp_feas_ = std::max( | |
| 142 | ✗ | tmp_feas_, (datas[t]->g - g_adj_[t]).lpNorm<Eigen::Infinity>()); | |
| 143 | } | ||
| 144 | } | ||
| 145 | ✗ | if (problem_->get_terminalModel()->get_ng_T() > 0) { | |
| 146 | ✗ | g_adj_.back() = | |
| 147 | ✗ | problem_->get_terminalData() | |
| 148 | ✗ | ->g.cwiseMax(problem_->get_terminalModel()->get_g_lb()) | |
| 149 | ✗ | .cwiseMin(problem_->get_terminalModel()->get_g_ub()); | |
| 150 | ✗ | tmp_feas_ += (problem_->get_terminalData()->g - g_adj_.back()) | |
| 151 | ✗ | .lpNorm<Eigen::Infinity>(); | |
| 152 | } | ||
| 153 | ✗ | break; | |
| 154 | ✗ | case L1: | |
| 155 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
| 156 | ✗ | if (models[t]->get_ng() > 0) { | |
| 157 | ✗ | g_adj_[t] = datas[t] | |
| 158 | ✗ | ->g.cwiseMax(models[t]->get_g_lb()) | |
| 159 | ✗ | .cwiseMin(models[t]->get_g_ub()); | |
| 160 | ✗ | tmp_feas_ = | |
| 161 | ✗ | std::max(tmp_feas_, (datas[t]->g - g_adj_[t]).lpNorm<1>()); | |
| 162 | } | ||
| 163 | } | ||
| 164 | ✗ | if (problem_->get_terminalModel()->get_ng_T() > 0) { | |
| 165 | ✗ | g_adj_.back() = | |
| 166 | ✗ | problem_->get_terminalData() | |
| 167 | ✗ | ->g.cwiseMax(problem_->get_terminalModel()->get_g_lb()) | |
| 168 | ✗ | .cwiseMin(problem_->get_terminalModel()->get_g_ub()); | |
| 169 | ✗ | tmp_feas_ += | |
| 170 | ✗ | (problem_->get_terminalData()->g - g_adj_.back()).lpNorm<1>(); | |
| 171 | } | ||
| 172 | ✗ | break; | |
| 173 | } | ||
| 174 | ✗ | return tmp_feas_; | |
| 175 | } | ||
| 176 | |||
| 177 | ✗ | double SolverAbstract::computeEqualityFeasibility() { | |
| 178 | ✗ | tmp_feas_ = 0.; | |
| 179 | ✗ | const std::size_t T = problem_->get_T(); | |
| 180 | const std::vector<std::shared_ptr<ActionModelAbstract> >& models = | ||
| 181 | ✗ | problem_->get_runningModels(); | |
| 182 | const std::vector<std::shared_ptr<ActionDataAbstract> >& datas = | ||
| 183 | ✗ | problem_->get_runningDatas(); | |
| 184 | ✗ | switch (feasnorm_) { | |
| 185 | ✗ | case LInf: | |
| 186 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
| 187 | ✗ | if (models[t]->get_nh() > 0) { | |
| 188 | ✗ | tmp_feas_ = | |
| 189 | ✗ | std::max(tmp_feas_, datas[t]->h.lpNorm<Eigen::Infinity>()); | |
| 190 | } | ||
| 191 | } | ||
| 192 | ✗ | if (problem_->get_terminalModel()->get_nh_T() > 0) { | |
| 193 | ✗ | tmp_feas_ = | |
| 194 | ✗ | std::max(tmp_feas_, | |
| 195 | ✗ | problem_->get_terminalData()->h.lpNorm<Eigen::Infinity>()); | |
| 196 | } | ||
| 197 | ✗ | break; | |
| 198 | ✗ | case L1: | |
| 199 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
| 200 | ✗ | if (models[t]->get_nh() > 0) { | |
| 201 | ✗ | tmp_feas_ += datas[t]->h.lpNorm<1>(); | |
| 202 | } | ||
| 203 | } | ||
| 204 | ✗ | if (problem_->get_terminalModel()->get_nh_T() > 0) { | |
| 205 | ✗ | tmp_feas_ += problem_->get_terminalData()->h.lpNorm<1>(); | |
| 206 | } | ||
| 207 | ✗ | break; | |
| 208 | } | ||
| 209 | ✗ | return tmp_feas_; | |
| 210 | } | ||
| 211 | |||
| 212 | ✗ | void SolverAbstract::setCandidate(const std::vector<Eigen::VectorXd>& xs_warm, | |
| 213 | const std::vector<Eigen::VectorXd>& us_warm, | ||
| 214 | bool is_feasible) { | ||
| 215 | ✗ | const std::size_t T = problem_->get_T(); | |
| 216 | |||
| 217 | const std::vector<std::shared_ptr<ActionModelAbstract> >& models = | ||
| 218 | ✗ | problem_->get_runningModels(); | |
| 219 | ✗ | if (xs_warm.size() == 0) { | |
| 220 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
| 221 | ✗ | const std::shared_ptr<ActionModelAbstract>& model = models[t]; | |
| 222 | ✗ | xs_[t] = model->get_state()->zero(); | |
| 223 | } | ||
| 224 | ✗ | xs_.back() = problem_->get_terminalModel()->get_state()->zero(); | |
| 225 | } else { | ||
| 226 | ✗ | if (xs_warm.size() != T + 1) { | |
| 227 | ✗ | throw_pretty("Warm start state vector has wrong dimension, got " | |
| 228 | << xs_warm.size() << " expecting " << (T + 1)); | ||
| 229 | } | ||
| 230 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
| 231 | ✗ | const std::size_t nx = models[t]->get_state()->get_nx(); | |
| 232 | ✗ | if (static_cast<std::size_t>(xs_warm[t].size()) != nx) { | |
| 233 | ✗ | throw_pretty("Invalid argument: " | |
| 234 | << "xs_init[" + std::to_string(t) + | ||
| 235 | "] has wrong dimension (" | ||
| 236 | << xs_warm[t].size() | ||
| 237 | << " provided - it should be equal to " + | ||
| 238 | std::to_string(nx) + "). ActionModel: " | ||
| 239 | << *models[t]); | ||
| 240 | } | ||
| 241 | } | ||
| 242 | ✗ | const std::size_t nx = problem_->get_terminalModel()->get_state()->get_nx(); | |
| 243 | ✗ | if (static_cast<std::size_t>(xs_warm[T].size()) != nx) { | |
| 244 | ✗ | throw_pretty("Invalid argument: " | |
| 245 | << "xs_init[" + std::to_string(T) + | ||
| 246 | "] (terminal state) has wrong dimension (" | ||
| 247 | << xs_warm[T].size() | ||
| 248 | << " provided - it should be equal to " + | ||
| 249 | std::to_string(nx) + "). ActionModel: " | ||
| 250 | << *problem_->get_terminalModel()); | ||
| 251 | } | ||
| 252 | ✗ | std::copy(xs_warm.begin(), xs_warm.end(), xs_.begin()); | |
| 253 | } | ||
| 254 | |||
| 255 | ✗ | if (us_warm.size() == 0) { | |
| 256 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
| 257 | ✗ | const std::shared_ptr<ActionModelAbstract>& model = models[t]; | |
| 258 | ✗ | const std::size_t nu = model->get_nu(); | |
| 259 | ✗ | us_[t] = Eigen::VectorXd::Zero(nu); | |
| 260 | } | ||
| 261 | } else { | ||
| 262 | ✗ | if (us_warm.size() != T) { | |
| 263 | ✗ | throw_pretty("Warm start control has wrong dimension, got " | |
| 264 | << us_warm.size() << " expecting " << T); | ||
| 265 | } | ||
| 266 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
| 267 | ✗ | const std::shared_ptr<ActionModelAbstract>& model = models[t]; | |
| 268 | ✗ | const std::size_t nu = model->get_nu(); | |
| 269 | ✗ | if (static_cast<std::size_t>(us_warm[t].size()) != nu) { | |
| 270 | ✗ | throw_pretty("Invalid argument: " | |
| 271 | << "us_init[" + std::to_string(t) + | ||
| 272 | "] has wrong dimension (" | ||
| 273 | << us_warm[t].size() | ||
| 274 | << " provided - it should be equal to " + | ||
| 275 | std::to_string(nu) + "). ActionModel: " | ||
| 276 | << *model); | ||
| 277 | } | ||
| 278 | } | ||
| 279 | ✗ | std::copy(us_warm.begin(), us_warm.end(), us_.begin()); | |
| 280 | } | ||
| 281 | ✗ | is_feasible_ = is_feasible; | |
| 282 | ✗ | } | |
| 283 | |||
| 284 | ✗ | void SolverAbstract::setCallbacks( | |
| 285 | const std::vector<std::shared_ptr<CallbackAbstract> >& callbacks) { | ||
| 286 | ✗ | callbacks_ = callbacks; | |
| 287 | ✗ | } | |
| 288 | |||
| 289 | const std::vector<std::shared_ptr<CallbackAbstract> >& | ||
| 290 | ✗ | SolverAbstract::getCallbacks() const { | |
| 291 | ✗ | return callbacks_; | |
| 292 | } | ||
| 293 | |||
| 294 | ✗ | const std::shared_ptr<ShootingProblem>& SolverAbstract::get_problem() const { | |
| 295 | ✗ | return problem_; | |
| 296 | } | ||
| 297 | |||
| 298 | ✗ | const std::vector<Eigen::VectorXd>& SolverAbstract::get_xs() const { | |
| 299 | ✗ | return xs_; | |
| 300 | } | ||
| 301 | |||
| 302 | ✗ | const std::vector<Eigen::VectorXd>& SolverAbstract::get_us() const { | |
| 303 | ✗ | return us_; | |
| 304 | } | ||
| 305 | |||
| 306 | ✗ | const std::vector<Eigen::VectorXd>& SolverAbstract::get_fs() const { | |
| 307 | ✗ | return fs_; | |
| 308 | } | ||
| 309 | |||
| 310 | ✗ | bool SolverAbstract::get_is_feasible() const { return is_feasible_; } | |
| 311 | |||
| 312 | ✗ | double SolverAbstract::get_cost() const { return cost_; } | |
| 313 | |||
| 314 | ✗ | double SolverAbstract::get_merit() const { return merit_; } | |
| 315 | |||
| 316 | ✗ | double SolverAbstract::get_stop() const { return stop_; } | |
| 317 | |||
| 318 | ✗ | const Eigen::Vector2d& SolverAbstract::get_d() const { return d_; } | |
| 319 | |||
| 320 | ✗ | double SolverAbstract::get_dV() const { return dV_; } | |
| 321 | |||
| 322 | ✗ | double SolverAbstract::get_dPhi() const { return dPhi_; } | |
| 323 | |||
| 324 | ✗ | double SolverAbstract::get_dVexp() const { return dVexp_; } | |
| 325 | |||
| 326 | ✗ | double SolverAbstract::get_dPhiexp() const { return dPhiexp_; } | |
| 327 | |||
| 328 | ✗ | double SolverAbstract::get_dfeas() const { return dfeas_; } | |
| 329 | |||
| 330 | ✗ | double SolverAbstract::get_feas() const { return feas_; } | |
| 331 | |||
| 332 | ✗ | double SolverAbstract::get_ffeas() const { return ffeas_; } | |
| 333 | |||
| 334 | ✗ | double SolverAbstract::get_gfeas() const { return gfeas_; } | |
| 335 | |||
| 336 | ✗ | double SolverAbstract::get_hfeas() const { return hfeas_; } | |
| 337 | |||
| 338 | ✗ | double SolverAbstract::get_ffeas_try() const { return ffeas_try_; } | |
| 339 | |||
| 340 | ✗ | double SolverAbstract::get_gfeas_try() const { return gfeas_try_; } | |
| 341 | |||
| 342 | ✗ | double SolverAbstract::get_hfeas_try() const { return hfeas_try_; } | |
| 343 | |||
| 344 | ✗ | double SolverAbstract::get_preg() const { return preg_; } | |
| 345 | |||
| 346 | ✗ | double SolverAbstract::get_dreg() const { return dreg_; } | |
| 347 | |||
| 348 | ✗ | DEPRECATED( | |
| 349 | "Use get_preg for gettting the primal-dual regularization", | ||
| 350 | double SolverAbstract::get_xreg() const { return preg_; }) | ||
| 351 | |||
| 352 | ✗ | DEPRECATED( | |
| 353 | "Use get_preg for gettting the primal-dual regularization", | ||
| 354 | double SolverAbstract::get_ureg() const { return preg_; }) | ||
| 355 | |||
| 356 | ✗ | double SolverAbstract::get_steplength() const { return steplength_; } | |
| 357 | |||
| 358 | ✗ | double SolverAbstract::get_th_acceptstep() const { return th_acceptstep_; } | |
| 359 | |||
| 360 | ✗ | double SolverAbstract::get_th_stop() const { return th_stop_; } | |
| 361 | |||
| 362 | ✗ | double SolverAbstract::get_th_gaptol() const { return th_gaptol_; } | |
| 363 | |||
| 364 | ✗ | FeasibilityNorm SolverAbstract::get_feasnorm() const { return feasnorm_; } | |
| 365 | |||
| 366 | ✗ | std::size_t SolverAbstract::get_iter() const { return iter_; } | |
| 367 | |||
| 368 | ✗ | void SolverAbstract::set_xs(const std::vector<Eigen::VectorXd>& xs) { | |
| 369 | ✗ | const std::size_t T = problem_->get_T(); | |
| 370 | ✗ | if (xs.size() != T + 1) { | |
| 371 | ✗ | throw_pretty("Invalid argument: " << "xs list has to be of length " + | |
| 372 | std::to_string(T + 1)); | ||
| 373 | } | ||
| 374 | |||
| 375 | ✗ | const std::size_t nx = problem_->get_nx(); | |
| 376 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
| 377 | ✗ | if (static_cast<std::size_t>(xs[t].size()) != nx) { | |
| 378 | ✗ | throw_pretty("Invalid argument: " | |
| 379 | << "xs[" + std::to_string(t) + "] has wrong dimension (" | ||
| 380 | << xs[t].size() | ||
| 381 | << " provided - it should be " + std::to_string(nx) + ")") | ||
| 382 | } | ||
| 383 | } | ||
| 384 | ✗ | if (static_cast<std::size_t>(xs[T].size()) != nx) { | |
| 385 | ✗ | throw_pretty("Invalid argument: " | |
| 386 | << "xs[" + std::to_string(T) + | ||
| 387 | "] (terminal state) has wrong dimension (" | ||
| 388 | << xs[T].size() | ||
| 389 | << " provided - it should be " + std::to_string(nx) + ")") | ||
| 390 | } | ||
| 391 | ✗ | xs_ = xs; | |
| 392 | ✗ | } | |
| 393 | |||
| 394 | ✗ | void SolverAbstract::set_us(const std::vector<Eigen::VectorXd>& us) { | |
| 395 | ✗ | const std::size_t T = problem_->get_T(); | |
| 396 | ✗ | if (us.size() != T) { | |
| 397 | ✗ | throw_pretty("Invalid argument: " << "us list has to be of length " + | |
| 398 | std::to_string(T)); | ||
| 399 | } | ||
| 400 | |||
| 401 | const std::vector<std::shared_ptr<ActionModelAbstract> >& models = | ||
| 402 | ✗ | problem_->get_runningModels(); | |
| 403 | ✗ | for (std::size_t t = 0; t < T; ++t) { | |
| 404 | ✗ | const std::shared_ptr<ActionModelAbstract>& model = models[t]; | |
| 405 | ✗ | const std::size_t nu = model->get_nu(); | |
| 406 | ✗ | if (static_cast<std::size_t>(us[t].size()) != nu) { | |
| 407 | ✗ | throw_pretty("Invalid argument: " | |
| 408 | << "us[" + std::to_string(t) + "] has wrong dimension (" | ||
| 409 | << us[t].size() | ||
| 410 | << " provided - it should be " + std::to_string(nu) + ")") | ||
| 411 | } | ||
| 412 | } | ||
| 413 | ✗ | us_ = us; | |
| 414 | ✗ | } | |
| 415 | |||
| 416 | ✗ | void SolverAbstract::set_preg(const double preg) { | |
| 417 | ✗ | if (preg < 0.) { | |
| 418 | ✗ | throw_pretty("Invalid argument: " << "preg value has to be positive."); | |
| 419 | } | ||
| 420 | ✗ | preg_ = preg; | |
| 421 | ✗ | } | |
| 422 | |||
| 423 | ✗ | void SolverAbstract::set_dreg(const double dreg) { | |
| 424 | ✗ | if (dreg < 0.) { | |
| 425 | ✗ | throw_pretty("Invalid argument: " << "dreg value has to be positive."); | |
| 426 | } | ||
| 427 | ✗ | dreg_ = dreg; | |
| 428 | ✗ | } | |
| 429 | |||
| 430 | ✗ | DEPRECATED( | |
| 431 | "Use set_preg for gettting the primal-variable regularization", | ||
| 432 | void SolverAbstract::set_xreg(const double xreg) { | ||
| 433 | if (xreg < 0.) { | ||
| 434 | throw_pretty("Invalid argument: " << "xreg value has to be positive."); | ||
| 435 | } | ||
| 436 | xreg_ = xreg; | ||
| 437 | preg_ = xreg; | ||
| 438 | }) | ||
| 439 | |||
| 440 | ✗ | DEPRECATED( | |
| 441 | "Use set_preg for gettting the primal-variable regularization", | ||
| 442 | void SolverAbstract::set_ureg(const double ureg) { | ||
| 443 | if (ureg < 0.) { | ||
| 444 | throw_pretty("Invalid argument: " << "ureg value has to be positive."); | ||
| 445 | } | ||
| 446 | ureg_ = ureg; | ||
| 447 | preg_ = ureg; | ||
| 448 | }) | ||
| 449 | |||
| 450 | ✗ | void SolverAbstract::set_th_acceptstep(const double th_acceptstep) { | |
| 451 | ✗ | if (0. >= th_acceptstep || th_acceptstep > 1) { | |
| 452 | ✗ | throw_pretty( | |
| 453 | "Invalid argument: " << "th_acceptstep value should between 0 and 1."); | ||
| 454 | } | ||
| 455 | ✗ | th_acceptstep_ = th_acceptstep; | |
| 456 | ✗ | } | |
| 457 | |||
| 458 | ✗ | void SolverAbstract::set_th_stop(const double th_stop) { | |
| 459 | ✗ | if (th_stop <= 0.) { | |
| 460 | ✗ | throw_pretty("Invalid argument: " << "th_stop value has to higher than 0."); | |
| 461 | } | ||
| 462 | ✗ | th_stop_ = th_stop; | |
| 463 | ✗ | } | |
| 464 | |||
| 465 | ✗ | void SolverAbstract::set_th_gaptol(const double th_gaptol) { | |
| 466 | ✗ | if (0. > th_gaptol) { | |
| 467 | ✗ | throw_pretty("Invalid argument: " << "th_gaptol value has to be positive."); | |
| 468 | } | ||
| 469 | ✗ | th_gaptol_ = th_gaptol; | |
| 470 | ✗ | } | |
| 471 | |||
| 472 | ✗ | void SolverAbstract::set_feasnorm(const FeasibilityNorm feasnorm) { | |
| 473 | ✗ | feasnorm_ = feasnorm; | |
| 474 | ✗ | } | |
| 475 | |||
| 476 | ✗ | bool raiseIfNaN(const double value) { | |
| 477 | ✗ | if (std::isnan(value) || std::isinf(value) || value >= 1e30) { | |
| 478 | ✗ | return true; | |
| 479 | } else { | ||
| 480 | ✗ | return false; | |
| 481 | } | ||
| 482 | } | ||
| 483 | |||
| 484 | } // namespace crocoddyl | ||
| 485 |