Line |
Branch |
Exec |
Source |
1 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
2 |
|
|
// BSD 3-Clause License |
3 |
|
|
// |
4 |
|
|
// Copyright (C) 2019-2025, LAAS-CNRS, University of Edinburgh, |
5 |
|
|
// Heriot-Watt University |
6 |
|
|
// Copyright note valid unless otherwise stated in individual files. |
7 |
|
|
// All rights reserved. |
8 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
9 |
|
|
|
10 |
|
|
#ifndef CROCODDYL_CORE_SOLVER_BASE_HPP_ |
11 |
|
|
#define CROCODDYL_CORE_SOLVER_BASE_HPP_ |
12 |
|
|
|
13 |
|
|
#include <vector> |
14 |
|
|
|
15 |
|
|
#include "crocoddyl/core/fwd.hpp" |
16 |
|
|
#include "crocoddyl/core/optctrl/shooting.hpp" |
17 |
|
|
#include "crocoddyl/core/utils/stop-watch.hpp" |
18 |
|
|
|
19 |
|
|
namespace crocoddyl { |
20 |
|
|
|
21 |
|
|
class CallbackAbstract; // forward declaration |
22 |
|
|
static std::vector<Eigen::VectorXd> DEFAULT_VECTOR; |
23 |
|
|
|
24 |
|
|
enum FeasibilityNorm { LInf = 0, L1 }; |
25 |
|
|
|
26 |
|
|
/** |
27 |
|
|
* @brief Abstract class for optimal control solvers |
28 |
|
|
* |
29 |
|
|
* A solver resolves an optimal control solver of the form |
30 |
|
|
* \f{eqnarray*}{ |
31 |
|
|
* \begin{Bmatrix} |
32 |
|
|
* \mathbf{x}^*_0,\cdots,\mathbf{x}^*_{T} \\ |
33 |
|
|
* \mathbf{u}^*_0,\cdots,\mathbf{u}^*_{T-1} |
34 |
|
|
* \end{Bmatrix} = |
35 |
|
|
* \arg\min_{\mathbf{x}_s,\mathbf{u}_s} && l_T (\mathbf{x}_T) + \sum_{k=0}^{T-1} |
36 |
|
|
* l_k(\mathbf{x}_t,\mathbf{u}_t) \\ |
37 |
|
|
* \operatorname{subject}\,\operatorname{to} && \mathbf{x}_0 = |
38 |
|
|
* \mathbf{\tilde{x}}_0\\ |
39 |
|
|
* && \mathbf{x}_{k+1} = \mathbf{f}_k(\mathbf{x}_k,\mathbf{u}_k)\\ |
40 |
|
|
* && \mathbf{x}_k\in\mathcal{X}, \mathbf{u}_k\in\mathcal{U} |
41 |
|
|
* \f} |
42 |
|
|
* where \f$l_T(\mathbf{x}_T)\f$, \f$l_k(\mathbf{x}_t,\mathbf{u}_t)\f$ are the |
43 |
|
|
* terminal and running cost functions, respectively, |
44 |
|
|
* \f$\mathbf{f}_k(\mathbf{x}_k,\mathbf{u}_k)\f$ describes evolution of the |
45 |
|
|
* system, and state and control admissible sets are defined by |
46 |
|
|
* \f$\mathbf{x}_k\in\mathcal{X}\f$, \f$\mathbf{u}_k\in\mathcal{U}\f$. An action |
47 |
|
|
* model, defined in the shooting problem, describes each node \f$k\f$. Inside |
48 |
|
|
* the action model, we specialize the cost functions, the system evolution and |
49 |
|
|
* the admissible sets. |
50 |
|
|
* |
51 |
|
|
* The main routines are `computeDirection()` and `tryStep()`. The former finds |
52 |
|
|
* a search direction and typically computes the derivatives of each action |
53 |
|
|
* model. The latter rollout the dynamics and cost (i.e., the action) to try the |
54 |
|
|
* search direction found by `computeDirection`. Both functions used the current |
55 |
|
|
* guess defined by `setCandidate()`. Finally, `solve()` function is used to |
56 |
|
|
* define when the search direction and length are computed in each iterate. It |
57 |
|
|
* also describes the globalization strategy (i.e., regularization) of the |
58 |
|
|
* numerical optimization. |
59 |
|
|
* |
60 |
|
|
* \sa `solve()`, `computeDirection()`, `tryStep()`, `stoppingCriteria()` |
61 |
|
|
*/ |
62 |
|
|
class SolverAbstract { |
63 |
|
|
public: |
64 |
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW |
65 |
|
|
|
66 |
|
|
/** |
67 |
|
|
* @brief Initialize the solver |
68 |
|
|
* |
69 |
|
|
* @param[in] problem shooting problem |
70 |
|
|
*/ |
71 |
|
|
explicit SolverAbstract(std::shared_ptr<ShootingProblem> problem); |
72 |
|
|
virtual ~SolverAbstract(); |
73 |
|
|
|
74 |
|
|
/** |
75 |
|
|
* @brief Compute the optimal trajectory \f$\mathbf{x}^*_s,\mathbf{u}^*_s\f$ |
76 |
|
|
* as lists of \f$T+1\f$ and \f$T\f$ terms |
77 |
|
|
* |
78 |
|
|
* From an initial guess \p init_xs, \p init_us (feasible or not), iterate |
79 |
|
|
* over `computeDirection()` and `tryStep()` until `stoppingCriteria()` is |
80 |
|
|
* below threshold. It also describes the globalization strategy used during |
81 |
|
|
* the numerical optimization. |
82 |
|
|
* |
83 |
|
|
* @param[in] init_xs initial guess for state trajectory with \f$T+1\f$ |
84 |
|
|
* elements (default []) |
85 |
|
|
* @param[in] init_us initial guess for control trajectory with \f$T\f$ |
86 |
|
|
* elements (default []) |
87 |
|
|
* @param[in] maxiter maximum allowed number of iterations (default 100) |
88 |
|
|
* @param[in] is_feasible true if the \p init_xs are obtained from |
89 |
|
|
* integrating the \p init_us (rollout) (default false) |
90 |
|
|
* @param[in] init_reg initial guess for the regularization value. Very |
91 |
|
|
* low values are typical used with very good guess points (default 1e-9). |
92 |
|
|
* @return A boolean that describes if convergence was reached. |
93 |
|
|
*/ |
94 |
|
|
virtual bool solve( |
95 |
|
|
const std::vector<Eigen::VectorXd>& init_xs = DEFAULT_VECTOR, |
96 |
|
|
const std::vector<Eigen::VectorXd>& init_us = DEFAULT_VECTOR, |
97 |
|
|
const std::size_t maxiter = 100, const bool is_feasible = false, |
98 |
|
|
const double reg_init = NAN) = 0; |
99 |
|
|
|
100 |
|
|
/** |
101 |
|
|
* @brief Compute the search direction |
102 |
|
|
* \f$(\delta\mathbf{x}^k,\delta\mathbf{u}^k)\f$ for the current guess |
103 |
|
|
* \f$(\mathbf{x}^k_s,\mathbf{u}^k_s)\f$. |
104 |
|
|
* |
105 |
|
|
* You must call `setCandidate()` first in order to define the current guess. |
106 |
|
|
* A current guess defines a state and control trajectory |
107 |
|
|
* \f$(\mathbf{x}^k_s,\mathbf{u}^k_s)\f$ of \f$T+1\f$ and \f$T\f$ elements, |
108 |
|
|
* respectively. |
109 |
|
|
* |
110 |
|
|
* @param[in] recalc true for recalculating the derivatives at current state |
111 |
|
|
* and control |
112 |
|
|
* @return The search direction \f$(\delta\mathbf{x},\delta\mathbf{u})\f$ and |
113 |
|
|
* the dual lambdas as lists of \f$T+1\f$, \f$T\f$ and \f$T+1\f$ lengths, |
114 |
|
|
* respectively |
115 |
|
|
*/ |
116 |
|
|
virtual void computeDirection(const bool recalc) = 0; |
117 |
|
|
|
118 |
|
|
/** |
119 |
|
|
* @brief Try a predefined step length \f$\alpha\f$ and compute its cost |
120 |
|
|
* improvement \f$dV\f$. |
121 |
|
|
* |
122 |
|
|
* It uses the search direction found by `computeDirection()` to try a |
123 |
|
|
* determined step length \f$\alpha\f$. Therefore, it assumes that we have run |
124 |
|
|
* `computeDirection()` first. Additionally, it returns the cost improvement |
125 |
|
|
* \f$dV\f$ along the predefined step length \f$\alpha\f$. |
126 |
|
|
* |
127 |
|
|
* @param[in] steplength applied step length (\f$0\leq\alpha\leq1\f$) |
128 |
|
|
* @return the cost improvement |
129 |
|
|
*/ |
130 |
|
|
virtual double tryStep(const double steplength = 1) = 0; |
131 |
|
|
|
132 |
|
|
/** |
133 |
|
|
* @brief Return a positive value that quantifies the algorithm termination |
134 |
|
|
* |
135 |
|
|
* These values typically represents the gradient norm which tell us that it's |
136 |
|
|
* been reached the local minima. The stopping criteria strictly speaking |
137 |
|
|
* depends on the search direction (calculated by `computeDirection()`) but |
138 |
|
|
* it could also depend on the chosen step length, tested by `tryStep()`. |
139 |
|
|
*/ |
140 |
|
|
virtual double stoppingCriteria() = 0; |
141 |
|
|
|
142 |
|
|
/** |
143 |
|
|
* @brief Return the expected improvement \f$dV_{exp}\f$ from a given current |
144 |
|
|
* search direction \f$(\delta\mathbf{x}^k,\delta\mathbf{u}^k)\f$ |
145 |
|
|
* |
146 |
|
|
* For computing the expected improvement, you need to compute the search |
147 |
|
|
* direction first via `computeDirection()`. |
148 |
|
|
*/ |
149 |
|
|
virtual const Eigen::Vector2d& expectedImprovement() = 0; |
150 |
|
|
|
151 |
|
|
/** |
152 |
|
|
* @brief Resizing the solver data |
153 |
|
|
* |
154 |
|
|
* If the shooting problem has changed after construction, then this function |
155 |
|
|
* resizes all the data before starting resolve the problem. |
156 |
|
|
*/ |
157 |
|
|
virtual void resizeData(); |
158 |
|
|
|
159 |
|
|
/** |
160 |
|
|
* @brief Compute the dynamic feasibility |
161 |
|
|
* \f$\|\mathbf{f}_{\mathbf{s}}\|_{\infty,1}\f$ for the current guess |
162 |
|
|
* \f$(\mathbf{x}^k,\mathbf{u}^k)\f$ |
163 |
|
|
* |
164 |
|
|
* The feasibility can be computed using different norms (e.g, |
165 |
|
|
* \f$\ell_\infty\f$ or \f$\ell_1\f$ norms). By default we use the |
166 |
|
|
* \f$\ell_\infty\f$ norm, however, we can change the type of norm using |
167 |
|
|
* `set_feasnorm`. Note that \f$\mathbf{f}_{\mathbf{s}}\f$ are the gaps on the |
168 |
|
|
* dynamics, which are computed at each node as |
169 |
|
|
* \f$\mathbf{x}^{'}-\mathbf{f}(\mathbf{x},\mathbf{u})\f$. |
170 |
|
|
*/ |
171 |
|
|
double computeDynamicFeasibility(); |
172 |
|
|
|
173 |
|
|
/** |
174 |
|
|
* @brief Compute the feasibility of the inequality constraints for the |
175 |
|
|
* current guess |
176 |
|
|
* |
177 |
|
|
* The feasibility can be computed using different norms (e.g, |
178 |
|
|
* \f$\ell_\infty\f$ or \f$\ell_1\f$ norms). By default we use the |
179 |
|
|
* \f$\ell_\infty\f$ norm, however, we can change the type of norm using |
180 |
|
|
* `set_feasnorm`. |
181 |
|
|
*/ |
182 |
|
|
double computeInequalityFeasibility(); |
183 |
|
|
|
184 |
|
|
/** |
185 |
|
|
* @brief Compute the feasibility of the equality constraints for the current |
186 |
|
|
* guess |
187 |
|
|
* |
188 |
|
|
* The feasibility can be computed using different norms (e.g, |
189 |
|
|
* \f$\ell_\infty\f$ or \f$\ell_1\f$ norms). By default we use the |
190 |
|
|
* \f$\ell_\infty\f$ norm, however, we can change the type of norm using |
191 |
|
|
* `set_feasnorm`. |
192 |
|
|
*/ |
193 |
|
|
double computeEqualityFeasibility(); |
194 |
|
|
|
195 |
|
|
/** |
196 |
|
|
* @brief Set the solver candidate trajectories |
197 |
|
|
* \f$(\mathbf{x}_s,\mathbf{u}_s)\f$ |
198 |
|
|
* |
199 |
|
|
* The solver candidates are defined as a state and control trajectories |
200 |
|
|
* \f$(\mathbf{x}_s,\mathbf{u}_s)\f$ of \f$T+1\f$ and \f$T\f$ elements, |
201 |
|
|
* respectively. Additionally, we need to define the dynamic feasibility of |
202 |
|
|
* the \f$(\mathbf{x}_s,\mathbf{u}_s)\f$ pair. Note that the trajectories are |
203 |
|
|
* feasible if \f$\mathbf{x}_s\f$ is the resulting trajectory from the system |
204 |
|
|
* rollout with \f$\mathbf{u}_s\f$ inputs. |
205 |
|
|
* |
206 |
|
|
* @param[in] xs state trajectory of \f$T+1\f$ elements (default []) |
207 |
|
|
* @param[in] us control trajectory of \f$T\f$ elements (default []) |
208 |
|
|
* @param[in] isFeasible true if the \p xs are obtained from integrating the |
209 |
|
|
* \p us (rollout) |
210 |
|
|
*/ |
211 |
|
|
void setCandidate( |
212 |
|
|
const std::vector<Eigen::VectorXd>& xs_warm = DEFAULT_VECTOR, |
213 |
|
|
const std::vector<Eigen::VectorXd>& us_warm = DEFAULT_VECTOR, |
214 |
|
|
const bool is_feasible = false); |
215 |
|
|
|
216 |
|
|
/** |
217 |
|
|
* @brief Set a list of callback functions using for the solver diagnostic |
218 |
|
|
* |
219 |
|
|
* Each iteration, the solver calls these set of functions in order to allowed |
220 |
|
|
* user the diagnostic of its performance. |
221 |
|
|
* |
222 |
|
|
* @param callbacks set of callback functions |
223 |
|
|
*/ |
224 |
|
|
void setCallbacks( |
225 |
|
|
const std::vector<std::shared_ptr<CallbackAbstract> >& callbacks); |
226 |
|
|
|
227 |
|
|
/** |
228 |
|
|
* @brief Return the list of callback functions using for diagnostic |
229 |
|
|
*/ |
230 |
|
|
const std::vector<std::shared_ptr<CallbackAbstract> >& getCallbacks() const; |
231 |
|
|
|
232 |
|
|
/** |
233 |
|
|
* @brief Return the shooting problem |
234 |
|
|
*/ |
235 |
|
|
const std::shared_ptr<ShootingProblem>& get_problem() const; |
236 |
|
|
|
237 |
|
|
/** |
238 |
|
|
* @brief Return the state trajectory \f$\mathbf{x}_s\f$ |
239 |
|
|
*/ |
240 |
|
|
const std::vector<Eigen::VectorXd>& get_xs() const; |
241 |
|
|
|
242 |
|
|
/** |
243 |
|
|
* @brief Return the control trajectory \f$\mathbf{u}_s\f$ |
244 |
|
|
*/ |
245 |
|
|
const std::vector<Eigen::VectorXd>& get_us() const; |
246 |
|
|
|
247 |
|
|
/** |
248 |
|
|
* @brief Return the dynamic infeasibility \f$\mathbf{f}_{s}\f$ |
249 |
|
|
*/ |
250 |
|
|
const std::vector<Eigen::VectorXd>& get_fs() const; |
251 |
|
|
|
252 |
|
|
/** |
253 |
|
|
* @brief Return the feasibility status of the |
254 |
|
|
* \f$(\mathbf{x}_s,\mathbf{u}_s)\f$ trajectory |
255 |
|
|
*/ |
256 |
|
|
bool get_is_feasible() const; |
257 |
|
|
|
258 |
|
|
/** |
259 |
|
|
* @brief Return the cost for the current guess |
260 |
|
|
*/ |
261 |
|
|
double get_cost() const; |
262 |
|
|
|
263 |
|
|
/** |
264 |
|
|
* @brief Return the merit for the current guess |
265 |
|
|
*/ |
266 |
|
|
double get_merit() const; |
267 |
|
|
|
268 |
|
|
/** |
269 |
|
|
* @brief Return the stopping-criteria value computed by `stoppingCriteria()` |
270 |
|
|
*/ |
271 |
|
|
double get_stop() const; |
272 |
|
|
|
273 |
|
|
/** |
274 |
|
|
* @brief Return the linear and quadratic terms of the expected improvement |
275 |
|
|
*/ |
276 |
|
|
const Eigen::Vector2d& get_d() const; |
277 |
|
|
|
278 |
|
|
/** |
279 |
|
|
* @brief Return the reduction in the cost function \f$\Delta V\f$ |
280 |
|
|
*/ |
281 |
|
|
double get_dV() const; |
282 |
|
|
|
283 |
|
|
/** |
284 |
|
|
* @brief Return the reduction in the merit function \f$\Delta\Phi\f$ |
285 |
|
|
*/ |
286 |
|
|
double get_dPhi() const; |
287 |
|
|
|
288 |
|
|
/** |
289 |
|
|
* @brief Return the expected reduction in the cost function \f$\Delta |
290 |
|
|
* V_{exp}\f$ |
291 |
|
|
*/ |
292 |
|
|
double get_dVexp() const; |
293 |
|
|
|
294 |
|
|
/** |
295 |
|
|
* @brief Return the expected reduction in the merit function |
296 |
|
|
* \f$\Delta\Phi_{exp}\f$ |
297 |
|
|
*/ |
298 |
|
|
double get_dPhiexp() const; |
299 |
|
|
|
300 |
|
|
/** |
301 |
|
|
* @brief Return the reduction in the feasibility |
302 |
|
|
*/ |
303 |
|
|
double get_dfeas() const; |
304 |
|
|
|
305 |
|
|
/** |
306 |
|
|
* @brief Return the total feasibility for the current guess |
307 |
|
|
*/ |
308 |
|
|
double get_feas() const; |
309 |
|
|
|
310 |
|
|
/** |
311 |
|
|
* @brief Return the dynamic feasibility for the current guess |
312 |
|
|
*/ |
313 |
|
|
double get_ffeas() const; |
314 |
|
|
|
315 |
|
|
/** |
316 |
|
|
* @brief Return the inequality feasibility for the current guess |
317 |
|
|
*/ |
318 |
|
|
double get_gfeas() const; |
319 |
|
|
|
320 |
|
|
/** |
321 |
|
|
* @brief Return the equality feasibility for the current guess |
322 |
|
|
*/ |
323 |
|
|
double get_hfeas() const; |
324 |
|
|
|
325 |
|
|
/** |
326 |
|
|
* @brief Return the dynamic feasibility for the current step length |
327 |
|
|
*/ |
328 |
|
|
double get_ffeas_try() const; |
329 |
|
|
|
330 |
|
|
/** |
331 |
|
|
* @brief Return the inequality feasibility for the current step length |
332 |
|
|
*/ |
333 |
|
|
double get_gfeas_try() const; |
334 |
|
|
|
335 |
|
|
/** |
336 |
|
|
* @brief Return the equality feasibility for the current step length |
337 |
|
|
*/ |
338 |
|
|
double get_hfeas_try() const; |
339 |
|
|
|
340 |
|
|
/** |
341 |
|
|
* @brief Return the primal-variable regularization |
342 |
|
|
*/ |
343 |
|
|
double get_preg() const; |
344 |
|
|
|
345 |
|
|
/** |
346 |
|
|
* @brief Return the dual-variable regularization |
347 |
|
|
*/ |
348 |
|
|
double get_dreg() const; |
349 |
|
|
|
350 |
|
|
DEPRECATED("Use get_preg for primal-variable regularization", |
351 |
|
|
double get_xreg() const;) |
352 |
|
|
DEPRECATED("Use get_preg for primal-variable regularization", |
353 |
|
|
double get_ureg() const;) |
354 |
|
|
|
355 |
|
|
/** |
356 |
|
|
* @brief Return the step length \f$\alpha\f$ |
357 |
|
|
*/ |
358 |
|
|
double get_steplength() const; |
359 |
|
|
|
360 |
|
|
/** |
361 |
|
|
* @brief Return the threshold used for accepting a step |
362 |
|
|
*/ |
363 |
|
|
double get_th_acceptstep() const; |
364 |
|
|
|
365 |
|
|
/** |
366 |
|
|
* @brief Return the tolerance for stopping the algorithm |
367 |
|
|
*/ |
368 |
|
|
double get_th_stop() const; |
369 |
|
|
|
370 |
|
|
/** |
371 |
|
|
* @brief Return the threshold for accepting a gap as non-zero |
372 |
|
|
*/ |
373 |
|
|
double get_th_gaptol() const; |
374 |
|
|
|
375 |
|
|
/** |
376 |
|
|
* @brief Return the type of norm used to evaluate the dynamic and constraints |
377 |
|
|
* feasibility |
378 |
|
|
*/ |
379 |
|
|
FeasibilityNorm get_feasnorm() const; |
380 |
|
|
|
381 |
|
|
/** |
382 |
|
|
* @brief Return the number of iterations performed by the solver |
383 |
|
|
*/ |
384 |
|
|
std::size_t get_iter() const; |
385 |
|
|
|
386 |
|
|
/** |
387 |
|
|
* @brief Modify the state trajectory \f$\mathbf{x}_s\f$ |
388 |
|
|
*/ |
389 |
|
|
void set_xs(const std::vector<Eigen::VectorXd>& xs); |
390 |
|
|
|
391 |
|
|
/** |
392 |
|
|
* @brief Modify the control trajectory \f$\mathbf{u}_s\f$ |
393 |
|
|
*/ |
394 |
|
|
void set_us(const std::vector<Eigen::VectorXd>& us); |
395 |
|
|
|
396 |
|
|
/** |
397 |
|
|
* @brief Modify the primal-variable regularization value |
398 |
|
|
*/ |
399 |
|
|
void set_preg(const double preg); |
400 |
|
|
|
401 |
|
|
/** |
402 |
|
|
* @brief Modify the dual-variable regularization value |
403 |
|
|
*/ |
404 |
|
|
void set_dreg(const double dreg); |
405 |
|
|
|
406 |
|
|
DEPRECATED("Use set_preg for primal-variable regularization", |
407 |
|
|
void set_xreg(const double xreg);) |
408 |
|
|
DEPRECATED("Use set_preg for primal-variable regularization", |
409 |
|
|
void set_ureg(const double ureg);) |
410 |
|
|
|
411 |
|
|
/** |
412 |
|
|
* @brief Modify the threshold used for accepting step |
413 |
|
|
*/ |
414 |
|
|
void set_th_acceptstep(const double th_acceptstep); |
415 |
|
|
|
416 |
|
|
/** |
417 |
|
|
* @brief Modify the tolerance for stopping the algorithm |
418 |
|
|
*/ |
419 |
|
|
void set_th_stop(const double th_stop); |
420 |
|
|
|
421 |
|
|
/** |
422 |
|
|
* @brief Modify the threshold for accepting a gap as non-zero |
423 |
|
|
*/ |
424 |
|
|
void set_th_gaptol(const double th_gaptol); |
425 |
|
|
|
426 |
|
|
/** |
427 |
|
|
* @brief Modify the current norm used for computed the dynamic and constraint |
428 |
|
|
* feasibility |
429 |
|
|
*/ |
430 |
|
|
void set_feasnorm(const FeasibilityNorm feas_norm); |
431 |
|
|
|
432 |
|
|
protected: |
433 |
|
|
std::shared_ptr<ShootingProblem> problem_; //!< optimal control problem |
434 |
|
|
std::vector<Eigen::VectorXd> xs_; //!< State trajectory |
435 |
|
|
std::vector<Eigen::VectorXd> us_; //!< Control trajectory |
436 |
|
|
std::vector<Eigen::VectorXd> fs_; //!< Gaps/defects between shooting nodes |
437 |
|
|
std::vector<std::shared_ptr<CallbackAbstract> > |
438 |
|
|
callbacks_; //!< Callback functions |
439 |
|
|
bool is_feasible_; //!< Label that indicates is the iteration is feasible |
440 |
|
|
bool was_feasible_; //!< Label that indicates in the previous iterate was |
441 |
|
|
//!< feasible |
442 |
|
|
double cost_; //!< Cost for the current guess |
443 |
|
|
double merit_; //!< Merit for the current guess |
444 |
|
|
double stop_; //!< Value computed by `stoppingCriteria()` |
445 |
|
|
Eigen::Vector2d d_; //!< LQ approximation of the expected improvement |
446 |
|
|
double dV_; //!< Reduction in the cost function computed by `tryStep()` |
447 |
|
|
double dPhi_; //!< Reduction in the merit function computed by `tryStep()` |
448 |
|
|
double dVexp_; //!< Expected reduction in the cost function |
449 |
|
|
double dPhiexp_; //!< Expected reduction in the merit function |
450 |
|
|
double dfeas_; //!< Reduction in the feasibility |
451 |
|
|
double feas_; //!< Total feasibility for the current guess |
452 |
|
|
double |
453 |
|
|
ffeas_; //!< Feasibility of the dynamic constraints for the current guess |
454 |
|
|
double gfeas_; //!< Feasibility of the inequality constraints for the current |
455 |
|
|
//!< guess |
456 |
|
|
double hfeas_; //!< Feasibility of the equality constraints for the current |
457 |
|
|
//!< guess |
458 |
|
|
double ffeas_try_; //!< Feasibility of the dynamic constraints evaluated for |
459 |
|
|
//!< the current step length |
460 |
|
|
double gfeas_try_; //!< Feasibility of the inequality constraints evaluated |
461 |
|
|
//!< for the current step length |
462 |
|
|
double hfeas_try_; //!< Feasibility of the equality constraints evaluated for |
463 |
|
|
//!< the current step length |
464 |
|
|
double preg_; //!< Current primal-variable regularization value |
465 |
|
|
double dreg_; //!< Current dual-variable regularization value |
466 |
|
|
DEPRECATED("Use preg_ for primal-variable regularization", |
467 |
|
|
double xreg_;) //!< Current state regularization value |
468 |
|
|
DEPRECATED("Use dreg_ for primal-variable regularization", |
469 |
|
|
double ureg_;) //!< Current control regularization values |
470 |
|
|
double steplength_; //!< Current applied step length |
471 |
|
|
double th_acceptstep_; //!< Threshold used for accepting step |
472 |
|
|
double th_stop_; //!< Tolerance for stopping the algorithm |
473 |
|
|
double th_gaptol_; //!< Threshold limit to check non-zero gaps |
474 |
|
|
enum FeasibilityNorm feasnorm_; //!< Type of norm used to evaluate the |
475 |
|
|
//!< dynamics and constraints feasibility |
476 |
|
|
std::size_t iter_; //!< Number of iteration performed by the solver |
477 |
|
|
double tmp_feas_; //!< Temporal variables used for computed the feasibility |
478 |
|
|
std::vector<Eigen::VectorXd> g_adj_; //!< Adjusted inequality bound |
479 |
|
|
}; |
480 |
|
|
|
481 |
|
|
/** |
482 |
|
|
* @brief Abstract class for solver callbacks |
483 |
|
|
* |
484 |
|
|
* A callback is used to diagnostic the behaviour of our solver in each |
485 |
|
|
* iteration of it. For instance, it can be used to print values, record data or |
486 |
|
|
* display motions. |
487 |
|
|
*/ |
488 |
|
|
class CallbackAbstract { |
489 |
|
|
public: |
490 |
|
|
/** |
491 |
|
|
* @brief Initialize the callback function |
492 |
|
|
*/ |
493 |
|
26 |
CallbackAbstract() {} |
494 |
|
56 |
virtual ~CallbackAbstract() {} |
495 |
|
|
|
496 |
|
|
/** |
497 |
|
|
* @brief Run the callback function given a solver |
498 |
|
|
* |
499 |
|
|
* @param[in] solver solver to be diagnostic |
500 |
|
|
*/ |
501 |
|
|
virtual void operator()(SolverAbstract& solver) = 0; |
502 |
|
|
}; |
503 |
|
|
|
504 |
|
|
bool raiseIfNaN(const double value); |
505 |
|
|
|
506 |
|
|
} // namespace crocoddyl |
507 |
|
|
|
508 |
|
|
#endif // CROCODDYL_CORE_SOLVER_BASE_HPP_ |
509 |
|
|
|