GCC Code Coverage Report


Directory: ./
File: bindings/python/crocoddyl/core/state-base-float.cpp
Date: 2025-04-18 16:41:15
Exec Total Coverage
Lines: 0 24 0.0%
Branches: 0 88 0.0%

Line Branch Exec Source
1 ///////////////////////////////////////////////////////////////////////////////
2 // BSD 3-Clause License
3 //
4 // Copyright (C) 2019-2025, LAAS-CNRS, University of Edinburgh,
5 // Heriot-Watt University
6 // Copyright note valid unless otherwise stated in individual files.
7 // All rights reserved.
8 ///////////////////////////////////////////////////////////////////////////////
9
10 // Auto-generated file for float
11 #include "python/crocoddyl/core/state-base.hpp"
12
13 #include "python/crocoddyl/core/core.hpp"
14
15 #define SCALAR_float32
16
17 namespace crocoddyl {
18 namespace python {
19
20 template <typename State>
21 struct StateAbstractVisitor
22 : public bp::def_visitor<StateAbstractVisitor<State>> {
23 typedef typename State::Scalar Scalar;
24 template <class PyClass>
25 void visit(PyClass& cl) const {
26 cl.def(bp::init<std::size_t, std::size_t>(
27 bp::args("self", "nx", "ndx"),
28 "Initialize the state dimensions.\n\n"
29 ":param nx: dimension of state configuration tuple\n"
30 ":param ndx: dimension of state tangent vector"))
31 .def("zero", pure_virtual(&State::zero), bp::args("self"),
32 "Generate a zero reference state.\n\n"
33 ":return zero reference state")
34 .def("rand", pure_virtual(&State::rand), bp::args("self"),
35 "Generate a random reference state.\n\n"
36 ":return random reference state")
37 .def("diff", pure_virtual(&State::diff_wrap),
38 bp::args("self", "x0", "x1"),
39 "Compute the state manifold differentiation.\n\n"
40 "It returns the value of x1 [-] x0 operation. Note tha x0 and x1 "
41 "are points in the state manifold (in M). Instead the operator "
42 "result lies in the tangent-space of M.\n"
43 ":param x0: previous state point (dim state.nx).\n"
44 ":param x1: current state point (dim state.nx).\n"
45 ":return x1 [-] x0 value (dim state.ndx).")
46 .def("integrate", pure_virtual(&State::integrate_wrap),
47 bp::args("self", "x", "dx"),
48 "Compute the state manifold integration.\n\n"
49 "It returns the value of x [+] dx operation. x and dx are points "
50 "in the state.diff(x0,x1) (in M) and its tangent, respectively. "
51 "Note that the operator result lies on M too.\n"
52 ":param x: state point (dim. state.nx).\n"
53 ":param dx: velocity vector (dim state.ndx).\n"
54 ":return x [+] dx value (dim state.nx).")
55 .def("Jdiff", pure_virtual(&State::Jdiff_wrap),
56 bp::args("self", "x0", "x1", "firstsecond"),
57 "Compute the partial derivatives of difference operator.\n\n"
58 "The difference operator (x1 [-] x0) is defined by diff(x0, x1). "
59 "Instead Jdiff computes its partial derivatives, i.e. "
60 "\\partial{diff(x0, x1)}{x0} and \\partial{diff(x0, x1)}{x1}. By "
61 "default, this function returns the derivatives of the first and "
62 "second argument (i.e. firstsecond='both'). However we can also "
63 "specific the partial derivative for the first and second "
64 "variables by setting firstsecond='first' or "
65 "firstsecond='second', respectively.\n"
66 ":param x0: previous state point (dim state.nx).\n"
67 ":param x1: current state point (dim state.nx).\n"
68 ":param firstsecond: derivative w.r.t x0 or x1 or both\n"
69 ":return the partial derivative(s) of the diff(x0, x1) function")
70 .def("Jintegrate", pure_virtual(&State::Jintegrate_wrap),
71 bp::args("self", "x", "dx", "firstsecond"),
72 "Compute the partial derivatives of integrate operator.\n\n"
73 "The integrate operator (x [+] dx) is defined by integrate(x, "
74 "dx). Instead Jintegrate computes its partial derivatives, i.e. "
75 "\\partial{integrate(x, dx)}{x} and \\partial{integrate(x, "
76 "dx)}{dx}. By default, this function returns the derivatives of "
77 "the first and second argument (i.e. firstsecond='both'), partial "
78 "derivative by setting firstsecond='first' or "
79 "firstsecond='second'.\n"
80 ":param x: state point (dim. state.nx).\n"
81 ":param dx: velocity vector (dim state.ndx).\n"
82 ":param firstsecond: derivative w.r.t x or dx or both\n"
83 ":return the partial derivative(s) of the integrate(x, dx) "
84 "function")
85 .def("JintegrateTransport",
86 pure_virtual(&State::JintegrateTransport_wrap),
87 bp::args("self", "x", "dx", "Jin", "firstsecond"),
88 "Parallel transport from integrate(x, dx) to x.\n\n"
89 "This function performs the parallel transportation of an input "
90 "matrix whose columns are expressed in the tangent space at "
91 "integrate(x, dx) to the tangent space at x point\n"
92 ":param x: state point (dim. state.nx).\n"
93 ":param dx: velocity vector (dim state.ndx).\n"
94 ":param Jin: input matrix (number of rows = state.nv).\n"
95 ":param firstsecond: derivative w.r.t x or dx")
96 .add_property(
97 "nx", bp::make_function(&State::get_nx),
98 bp::make_setter(&State::nx_, bp::return_internal_reference<>()),
99 "dimension of state tuple")
100 .add_property(
101 "ndx", bp::make_function(&State::get_ndx),
102 bp::make_setter(&State::ndx_, bp::return_internal_reference<>()),
103 "dimension of the tangent space of the state manifold")
104 .add_property(
105 "nq", bp::make_function(&State::get_nq),
106 bp::make_setter(&State::nq_, bp::return_internal_reference<>()),
107 "dimension of the configuration tuple")
108 .add_property(
109 "nv", bp::make_function(&State::get_nv),
110 bp::make_setter(&State::nv_, bp::return_internal_reference<>()),
111 "dimension of tangent space of the configuration manifold")
112 .add_property("has_limits", bp::make_function(&State::get_has_limits),
113 "indicates whether problem has finite state limits")
114 .add_property(
115 "lb",
116 bp::make_getter(&State::lb_, bp::return_internal_reference<>()),
117 &State::set_lb, "lower state limits")
118 .add_property(
119 "ub",
120 bp::make_getter(&State::ub_, bp::return_internal_reference<>()),
121 &State::set_ub, "upper state limits");
122 }
123 };
124
125 #define CROCODDYL_STATE_ABSTRACT_PYTHON_BINDINGS(Scalar) \
126 typedef StateAbstractTpl<Scalar> State; \
127 typedef StateAbstractTpl_wrap<Scalar> State_wrap; \
128 bp::register_ptr_to_python<std::shared_ptr<State>>(); \
129 bp::class_<State_wrap, boost::noncopyable>( \
130 "StateAbstract", \
131 "Abstract class for the state representation.\n\n" \
132 "A state is represented by its operators: difference, integrates and " \
133 "their derivatives. The difference operator returns the value of x1 " \
134 "[-] x0 operation. Instead the integrate operator returns the value of " \
135 "x [+] dx. These operators are used to compared two points on the " \
136 "state manifold M or to advance the state given a tangential velocity " \
137 "(Tx M). Therefore the points x, x0 and x1 belong to the manifold M; " \
138 "and dx or x1 [-] x0 lie on its tangential space") \
139 .def(StateAbstractVisitor<State_wrap>()) \
140 .def(PrintableVisitor<State_wrap>()) \
141 .def(CopyableVisitor<State_wrap>());
142
143 void exposeStateAbstract() {
144 #ifdef SCALAR_float64
145 bp::enum_<Jcomponent>("Jcomponent")
146 .value("both", both)
147 .value("first", first)
148 .export_values()
149 .value("second", second);
150
151 bp::enum_<AssignmentOp>("AssignmentOp")
152 .value("setto", setto)
153 .value("addto", addto)
154 .value("rmfrom", rmfrom)
155 .export_values();
156 #endif
157
158 CROCODDYL_STATE_ABSTRACT_PYTHON_BINDINGS(float)
159 }
160
161 } // namespace python
162 } // namespace crocoddyl
163