Line |
Branch |
Exec |
Source |
1 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
2 |
|
|
// BSD 3-Clause License |
3 |
|
|
// |
4 |
|
|
// Copyright (C) 2021-2023, University of Edinburgh, University of Pisa, |
5 |
|
|
// Heriot-Watt University |
6 |
|
|
// Copyright note valid unless otherwise stated in individual files. |
7 |
|
|
// All rights reserved. |
8 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
9 |
|
|
|
10 |
|
|
// Auto-generated file for double |
11 |
|
|
#include "crocoddyl/core/numdiff/state.hpp" |
12 |
|
|
|
13 |
|
|
#include "python/crocoddyl/core/core.hpp" |
14 |
|
|
#include "python/crocoddyl/core/state-base.hpp" |
15 |
|
|
#include "python/crocoddyl/utils/copyable.hpp" |
16 |
|
|
|
17 |
|
|
namespace crocoddyl { |
18 |
|
|
namespace python { |
19 |
|
|
|
20 |
|
|
template <typename State> |
21 |
|
|
struct StateNumDiffVisitor |
22 |
|
|
: public bp::def_visitor<StateNumDiffVisitor<State>> { |
23 |
|
|
typedef typename State::Scalar Scalar; |
24 |
|
✗ |
BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS(Jdiffs, |
25 |
|
|
StateAbstractTpl<Scalar>::Jdiff_Js, 2, |
26 |
|
|
3) |
27 |
|
✗ |
BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS( |
28 |
|
|
Jintegrates, StateAbstractTpl<Scalar>::Jintegrate_Js, 2, 3) |
29 |
|
|
template <class PyClass> |
30 |
|
✗ |
void visit(PyClass& cl) const { |
31 |
|
✗ |
cl.def("zero", &State::zero, bp::args("self"), |
32 |
|
|
"Return a zero reference state.\n\n" |
33 |
|
|
":return zero reference state") |
34 |
|
✗ |
.def("rand", &State::rand, bp::args("self"), |
35 |
|
|
"Return a random reference state.\n\n" |
36 |
|
|
":return random reference state") |
37 |
|
✗ |
.def("diff", &State::diff_dx, bp::args("self", "x0", "x1"), |
38 |
|
|
"Operator that differentiates the two state points.\n\n" |
39 |
|
|
"It returns the value of x1 [-] x0 operation. Due to a state " |
40 |
|
|
"vector lies in the Euclidean space, this operator is defined " |
41 |
|
|
"with arithmetic subtraction.\n" |
42 |
|
|
":param x0: current state (dim state.nx).\n" |
43 |
|
|
":param x1: next state (dim state.nx).\n" |
44 |
|
|
":return x1 - x0 value (dim state.nx).") |
45 |
|
✗ |
.def("integrate", &State::integrate_x, bp::args("self", "x", "dx"), |
46 |
|
|
"Operator that integrates the current state.\n\n" |
47 |
|
|
"It returns the value of x [+] dx operation. Due to a state " |
48 |
|
|
"vector lies in the Euclidean space, this operator is defined " |
49 |
|
|
"with arithmetic addition. Futhermore there is no timestep here " |
50 |
|
|
"(i.e. dx = v*dt), note this if you're integrating a velocity v " |
51 |
|
|
"during an interval dt.\n" |
52 |
|
|
":param x: current state (dim state.nx).\n" |
53 |
|
|
":param dx: displacement of the state (dim state.nx).\n" |
54 |
|
|
":return x + dx value (dim state.nx).") |
55 |
|
✗ |
.def("Jdiff", &State::Jdiff_Js, |
56 |
|
✗ |
Jdiffs(bp::args("self", "x0", "x1", "firstsecond"), |
57 |
|
|
"Compute the partial derivatives of arithmetic " |
58 |
|
|
"substraction.\n\n" |
59 |
|
|
"Both Jacobian matrices are represented throught an " |
60 |
|
|
"identity matrix, with the exception that the first " |
61 |
|
|
"partial derivatives (w.r.t. x0) has negative signed. By " |
62 |
|
|
"default, this function returns the derivatives of the " |
63 |
|
|
"first and second argument (i.e., firstsecond='both'). " |
64 |
|
|
"However we ask for a specific partial derivative by " |
65 |
|
|
"setting firstsecond='first' or firstsecond='second'.\n" |
66 |
|
|
":param x0: current state (dim state.nx).\n" |
67 |
|
|
":param x1: next state (dim state.nx).\n" |
68 |
|
|
":param firstsecond: derivative w.r.t x0 or x1 or both\n" |
69 |
|
|
":return the partial derivative(s) of the diff(x0, x1) " |
70 |
|
|
"function")) |
71 |
|
✗ |
.def("Jintegrate", &State::Jintegrate_Js, |
72 |
|
✗ |
Jintegrates( |
73 |
|
|
bp::args("self", "x", "dx", "firstsecond"), |
74 |
|
|
"Compute the partial derivatives of arithmetic addition.\n\n" |
75 |
|
|
"Both Jacobian matrices are represented throught an identity " |
76 |
|
|
"matrix. By default, this function returns the derivatives of " |
77 |
|
|
"the first and second argument (i.e., firstsecond='both'). " |
78 |
|
|
"However we ask for a specific partial derivative by setting " |
79 |
|
|
"firstsecond='first' or firstsecond='second'.\n" |
80 |
|
|
":param x: current state (dim state.nx).\n" |
81 |
|
|
":param dx: displacement of the state (dim state.nx).\n" |
82 |
|
|
":param firstsecond: derivative w.r.t x or dx or both\n" |
83 |
|
|
":return the partial derivative(s) of the integrate(x, dx) " |
84 |
|
|
"function")) |
85 |
|
✗ |
.def("JintegrateTransport", &State::JintegrateTransport, |
86 |
|
|
bp::args("self", "x", "dx", "Jin", "firstsecond"), |
87 |
|
|
"Parallel transport from integrate(x, dx) to x.\n\n" |
88 |
|
|
"This function performs the parallel transportation of an input " |
89 |
|
|
"matrix whose columns are expressed in the tangent space at " |
90 |
|
|
"integrate(x, dx) to the tangent space at x point.\n" |
91 |
|
|
":param x: state point (dim. state.nx).\n" |
92 |
|
|
":param dx: velocity vector (dim state.ndx).\n" |
93 |
|
|
":param Jin: input matrix (number of rows = state.nv).\n" |
94 |
|
|
":param firstsecond: derivative w.r.t x or dx") |
95 |
|
✗ |
.add_property( |
96 |
|
|
"disturbance", bp::make_function(&State::get_disturbance), |
97 |
|
|
&State::set_disturbance, |
98 |
|
|
"disturbance constant used in the numerical differentiation"); |
99 |
|
|
} |
100 |
|
|
}; |
101 |
|
|
|
102 |
|
|
#define CROCODDYL_STATE_NUMDIFF_PYTHON_BINDINGS(Scalar) \ |
103 |
|
|
typedef StateNumDiffTpl<Scalar> State; \ |
104 |
|
|
typedef StateAbstractTpl<Scalar> StateBase; \ |
105 |
|
|
bp::register_ptr_to_python<std::shared_ptr<State>>(); \ |
106 |
|
|
bp::class_<State, bp::bases<StateBase>>( \ |
107 |
|
|
"StateNumDiff", \ |
108 |
|
|
"Abstract class for computing Jdiff and Jintegrate by using numerical " \ |
109 |
|
|
"differentiation.\n\n", \ |
110 |
|
|
bp::init<std::shared_ptr<StateBase>>( \ |
111 |
|
|
bp::args("self", "state"), \ |
112 |
|
|
"Initialize the state numdiff.\n\n" \ |
113 |
|
|
":param model: state where we compute the derivatives through " \ |
114 |
|
|
"numerial differentiation")) \ |
115 |
|
|
.def(StateNumDiffVisitor<State>()) \ |
116 |
|
|
.def(CastVisitor<State>()) \ |
117 |
|
|
.def(PrintableVisitor<State>()) \ |
118 |
|
|
.def(CopyableVisitor<State>()); |
119 |
|
|
|
120 |
|
✗ |
void exposeStateNumDiff() { |
121 |
|
✗ |
CROCODDYL_STATE_NUMDIFF_PYTHON_BINDINGS(double) |
122 |
|
|
} |
123 |
|
|
|
124 |
|
|
} // namespace python |
125 |
|
|
} // namespace crocoddyl |
126 |
|
|
|