Line |
Branch |
Exec |
Source |
1 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
2 |
|
|
// BSD 3-Clause License |
3 |
|
|
// |
4 |
|
|
// Copyright (C) 2019-2025, LAAS-CNRS, New York University, |
5 |
|
|
// Max Planck Gesellschaft, University of Edinburgh, |
6 |
|
|
// INRIA, Heriot-Watt University |
7 |
|
|
// Copyright note valid unless otherwise stated in individual files. |
8 |
|
|
// All rights reserved. |
9 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
10 |
|
|
|
11 |
|
|
#define BOOST_TEST_NO_MAIN |
12 |
|
|
#define BOOST_TEST_ALTERNATIVE_INIT_API |
13 |
|
|
|
14 |
|
|
#include "factory/action.hpp" |
15 |
|
|
#include "factory/control.hpp" |
16 |
|
|
#include "factory/diff_action.hpp" |
17 |
|
|
#include "factory/integrator.hpp" |
18 |
|
|
#include "unittest_common.hpp" |
19 |
|
|
|
20 |
|
|
using namespace boost::unit_test; |
21 |
|
|
using namespace crocoddyl::unittest; |
22 |
|
|
|
23 |
|
|
//----------------------------------------------------------------------------// |
24 |
|
|
|
25 |
|
✗ |
void test_check_data( |
26 |
|
|
const std::shared_ptr<crocoddyl::ActionModelAbstract>& model) { |
27 |
|
|
// Run the print function |
28 |
|
✗ |
std::ostringstream tmp; |
29 |
|
✗ |
tmp << *model; |
30 |
|
|
|
31 |
|
|
// create the corresponding data object |
32 |
|
|
const std::shared_ptr<crocoddyl::ActionDataAbstract>& data = |
33 |
|
✗ |
model->createData(); |
34 |
|
✗ |
BOOST_CHECK(model->checkData(data)); |
35 |
|
|
|
36 |
|
|
// Checking that casted computation is the same |
37 |
|
|
#ifdef NDEBUG // Run only in release mode |
38 |
|
|
std::shared_ptr<crocoddyl::ActionModelAbstractTpl<float>> casted_model = |
39 |
|
|
model->cast<float>(); |
40 |
|
|
std::shared_ptr<crocoddyl::ActionDataAbstractTpl<float>> casted_data = |
41 |
|
|
casted_model->createData(); |
42 |
|
|
BOOST_CHECK(casted_model->checkData(casted_data)); |
43 |
|
|
#endif |
44 |
|
|
} |
45 |
|
|
|
46 |
|
✗ |
void test_calc(const std::shared_ptr<crocoddyl::ActionModelAbstract>& model) { |
47 |
|
|
// create the corresponding data object |
48 |
|
|
const std::shared_ptr<crocoddyl::ActionDataAbstract>& data = |
49 |
|
✗ |
model->createData(); |
50 |
|
✗ |
data->cost = nan(""); |
51 |
|
|
|
52 |
|
|
// Generating random state and control vectors |
53 |
|
✗ |
const Eigen::VectorXd x = model->get_state()->rand(); |
54 |
|
✗ |
const Eigen::VectorXd u = Eigen::VectorXd::Random(model->get_nu()); |
55 |
|
|
|
56 |
|
|
// Getting the state dimension from calc() call |
57 |
|
✗ |
model->calc(data, x, u); |
58 |
|
✗ |
BOOST_CHECK(static_cast<std::size_t>(data->xnext.size()) == |
59 |
|
|
model->get_state()->get_nx()); |
60 |
|
|
|
61 |
|
|
// Checking that calc returns a cost value |
62 |
|
✗ |
BOOST_CHECK(!std::isnan(data->cost)); |
63 |
|
|
|
64 |
|
|
// Checking the termninal state |
65 |
|
✗ |
double tol = std::sqrt(2.0 * std::numeric_limits<double>::epsilon()); |
66 |
|
✗ |
model->calc(data, x); |
67 |
|
✗ |
BOOST_CHECK((data->xnext - x).head(model->get_state()->get_nq()).isZero(tol)); |
68 |
|
|
|
69 |
|
|
// Checking that casted computation is the same |
70 |
|
|
#ifdef NDEBUG // Run only in release mode |
71 |
|
|
std::shared_ptr<crocoddyl::ActionModelAbstractTpl<float>> casted_model = |
72 |
|
|
model->cast<float>(); |
73 |
|
|
std::shared_ptr<crocoddyl::ActionDataAbstractTpl<float>> casted_data = |
74 |
|
|
casted_model->createData(); |
75 |
|
|
const Eigen::VectorXf x_f = x.cast<float>(); |
76 |
|
|
const Eigen::VectorXf u_f = u.cast<float>(); |
77 |
|
|
model->calc(data, x, u); |
78 |
|
|
casted_model->calc(casted_data, x_f, u_f); |
79 |
|
|
BOOST_CHECK(static_cast<std::size_t>(casted_data->xnext.size()) == |
80 |
|
|
casted_model->get_state()->get_nx()); |
81 |
|
|
float tol_f = 10.f * std::sqrt(2.0f * std::numeric_limits<float>::epsilon()); |
82 |
|
|
BOOST_CHECK(std::abs(float(data->cost) - casted_data->cost) <= tol_f); |
83 |
|
|
#endif |
84 |
|
|
} |
85 |
|
|
|
86 |
|
✗ |
void test_partial_derivatives_against_numdiff( |
87 |
|
|
const std::shared_ptr<crocoddyl::ActionModelAbstract>& model) { |
88 |
|
|
// create the corresponding data object and set the cost to nan |
89 |
|
|
const std::shared_ptr<crocoddyl::ActionDataAbstract>& data = |
90 |
|
✗ |
model->createData(); |
91 |
|
|
|
92 |
|
✗ |
crocoddyl::ActionModelNumDiff model_num_diff(model); |
93 |
|
|
const std::shared_ptr<crocoddyl::ActionDataAbstract>& data_num_diff = |
94 |
|
✗ |
model_num_diff.createData(); |
95 |
|
|
|
96 |
|
|
// Generating random values for the state and control |
97 |
|
✗ |
Eigen::VectorXd x = model->get_state()->rand(); |
98 |
|
✗ |
const Eigen::VectorXd u = Eigen::VectorXd::Random(model->get_nu()); |
99 |
|
|
|
100 |
|
|
// Computing the action derivatives |
101 |
|
✗ |
model->calc(data, x, u); |
102 |
|
✗ |
model->calcDiff(data, x, u); |
103 |
|
✗ |
model_num_diff.calc(data_num_diff, x, u); |
104 |
|
✗ |
model_num_diff.calcDiff(data_num_diff, x, u); |
105 |
|
|
// Tolerance defined as in |
106 |
|
|
// http://www.it.uom.gr/teaching/linearalgebra/NumericalRecipiesInC/c5-7.pdf |
107 |
|
✗ |
double tol = std::pow(model_num_diff.get_disturbance(), 1. / 3.); |
108 |
|
✗ |
BOOST_CHECK((data->h - data_num_diff->h).isZero(tol)); |
109 |
|
✗ |
BOOST_CHECK((data->g - data_num_diff->g).isZero(tol)); |
110 |
|
✗ |
BOOST_CHECK((data->Fx - data_num_diff->Fx).isZero(tol)); |
111 |
|
✗ |
BOOST_CHECK((data->Fu - data_num_diff->Fu).isZero(tol)); |
112 |
|
✗ |
BOOST_CHECK((data->Lx - data_num_diff->Lx).isZero(tol)); |
113 |
|
✗ |
BOOST_CHECK((data->Lu - data_num_diff->Lu).isZero(tol)); |
114 |
|
✗ |
if (model_num_diff.get_with_gauss_approx()) { |
115 |
|
✗ |
BOOST_CHECK((data->Lxx - data_num_diff->Lxx).isZero(tol)); |
116 |
|
✗ |
BOOST_CHECK((data->Lxu - data_num_diff->Lxu).isZero(tol)); |
117 |
|
✗ |
BOOST_CHECK((data->Luu - data_num_diff->Luu).isZero(tol)); |
118 |
|
|
} |
119 |
|
✗ |
BOOST_CHECK((data->Hx - data_num_diff->Hx).isZero(tol)); |
120 |
|
✗ |
BOOST_CHECK((data->Hu - data_num_diff->Hu).isZero(tol)); |
121 |
|
✗ |
BOOST_CHECK((data->Gx - data_num_diff->Gx).isZero(tol)); |
122 |
|
✗ |
BOOST_CHECK((data->Gu - data_num_diff->Gu).isZero(tol)); |
123 |
|
|
|
124 |
|
|
// Computing the action derivatives |
125 |
|
✗ |
x = model->get_state()->rand(); |
126 |
|
✗ |
model->calc(data, x); |
127 |
|
✗ |
model->calcDiff(data, x); |
128 |
|
✗ |
model_num_diff.calc(data_num_diff, x); |
129 |
|
✗ |
model_num_diff.calcDiff(data_num_diff, x); |
130 |
|
✗ |
BOOST_CHECK((data->h - data_num_diff->h).isZero(tol)); |
131 |
|
✗ |
BOOST_CHECK((data->g - data_num_diff->g).isZero(tol)); |
132 |
|
✗ |
BOOST_CHECK((data->Lx - data_num_diff->Lx).isZero(tol)); |
133 |
|
✗ |
if (model_num_diff.get_with_gauss_approx()) { |
134 |
|
✗ |
BOOST_CHECK((data->Lxx - data_num_diff->Lxx).isZero(tol)); |
135 |
|
|
} |
136 |
|
✗ |
BOOST_CHECK((data->Hx - data_num_diff->Hx).isZero(tol)); |
137 |
|
✗ |
BOOST_CHECK((data->Gx - data_num_diff->Gx).isZero(tol)); |
138 |
|
|
|
139 |
|
|
// Checking that casted computation is the same |
140 |
|
|
#ifdef NDEBUG // Run only in release mode |
141 |
|
|
std::shared_ptr<crocoddyl::ActionModelAbstractTpl<float>> casted_model = |
142 |
|
|
model->cast<float>(); |
143 |
|
|
std::shared_ptr<crocoddyl::ActionDataAbstractTpl<float>> casted_data = |
144 |
|
|
casted_model->createData(); |
145 |
|
|
const Eigen::VectorXf x_f = x.cast<float>(); |
146 |
|
|
const Eigen::VectorXf u_f = u.cast<float>(); |
147 |
|
|
model->calc(data, x, u); |
148 |
|
|
model->calcDiff(data, x, u); |
149 |
|
|
casted_model->calc(casted_data, x_f, u_f); |
150 |
|
|
casted_model->calcDiff(casted_data, x_f, u_f); |
151 |
|
|
float tol_f = 80.f * std::sqrt(2.0f * std::numeric_limits<float>::epsilon()); |
152 |
|
|
BOOST_CHECK((data->h.cast<float>() - casted_data->h).isZero(tol_f)); |
153 |
|
|
BOOST_CHECK((data->g.cast<float>() - casted_data->g).isZero(tol_f)); |
154 |
|
|
BOOST_CHECK((data->Fx.cast<float>() - casted_data->Fx).isZero(tol_f)); |
155 |
|
|
BOOST_CHECK((data->Fu.cast<float>() - casted_data->Fu).isZero(tol_f)); |
156 |
|
|
BOOST_CHECK((data->Lx.cast<float>() - casted_data->Lx).isZero(tol_f)); |
157 |
|
|
BOOST_CHECK((data->Lu.cast<float>() - casted_data->Lu).isZero(tol_f)); |
158 |
|
|
BOOST_CHECK((data->Gx.cast<float>() - casted_data->Gx).isZero(tol_f)); |
159 |
|
|
BOOST_CHECK((data->Gu.cast<float>() - casted_data->Gu).isZero(tol_f)); |
160 |
|
|
BOOST_CHECK((data->Hx.cast<float>() - casted_data->Hx).isZero(tol_f)); |
161 |
|
|
BOOST_CHECK((data->Hu.cast<float>() - casted_data->Hu).isZero(tol_f)); |
162 |
|
|
crocoddyl::ActionModelNumDiffTpl<float> casted_model_num_diff = |
163 |
|
|
model_num_diff.cast<float>(); |
164 |
|
|
std::shared_ptr<crocoddyl::ActionDataAbstractTpl<float>> |
165 |
|
|
casted_data_num_diff = casted_model_num_diff.createData(); |
166 |
|
|
casted_model_num_diff.calc(casted_data_num_diff, x_f, u_f); |
167 |
|
|
casted_model_num_diff.calcDiff(casted_data_num_diff, x_f, u_f); |
168 |
|
|
tol_f = 80.0f * sqrt(casted_model_num_diff.get_disturbance()); |
169 |
|
|
BOOST_CHECK((casted_data->Gx - casted_data_num_diff->Gx).isZero(tol_f)); |
170 |
|
|
BOOST_CHECK((casted_data->Gu - casted_data_num_diff->Gu).isZero(tol_f)); |
171 |
|
|
BOOST_CHECK((casted_data->Hx - casted_data_num_diff->Hx).isZero(tol_f)); |
172 |
|
|
BOOST_CHECK((casted_data->Hu - casted_data_num_diff->Hu).isZero(tol_f)); |
173 |
|
|
#endif |
174 |
|
|
} |
175 |
|
|
|
176 |
|
✗ |
void test_check_action_data(ActionModelTypes::Type action_model_type) { |
177 |
|
|
// create the model |
178 |
|
✗ |
ActionModelFactory factory; |
179 |
|
|
const std::shared_ptr<crocoddyl::ActionModelAbstract>& model = |
180 |
|
✗ |
factory.create(action_model_type); |
181 |
|
✗ |
test_check_data(model); |
182 |
|
|
} |
183 |
|
|
|
184 |
|
✗ |
void test_check_integrated_action_data( |
185 |
|
|
DifferentialActionModelTypes::Type dam_type, |
186 |
|
|
IntegratorTypes::Type integrator_type, ControlTypes::Type control_type) { |
187 |
|
|
// create the differential action model |
188 |
|
✗ |
DifferentialActionModelFactory factory_dam; |
189 |
|
|
const std::shared_ptr<crocoddyl::DifferentialActionModelAbstract>& dam = |
190 |
|
✗ |
factory_dam.create(dam_type); |
191 |
|
|
// create the control discretization |
192 |
|
✗ |
ControlFactory factory_ctrl; |
193 |
|
|
const std::shared_ptr<crocoddyl::ControlParametrizationModelAbstract>& ctrl = |
194 |
|
✗ |
factory_ctrl.create(control_type, dam->get_nu()); |
195 |
|
|
// create the integrator |
196 |
|
✗ |
IntegratorFactory factory_int; |
197 |
|
|
const std::shared_ptr<crocoddyl::IntegratedActionModelAbstract>& model = |
198 |
|
✗ |
factory_int.create(integrator_type, dam, ctrl); |
199 |
|
✗ |
test_check_data(model); |
200 |
|
|
} |
201 |
|
|
|
202 |
|
✗ |
void test_calc_action_model(ActionModelTypes::Type action_model_type) { |
203 |
|
|
// create the model |
204 |
|
✗ |
ActionModelFactory factory; |
205 |
|
|
const std::shared_ptr<crocoddyl::ActionModelAbstract>& model = |
206 |
|
✗ |
factory.create(action_model_type); |
207 |
|
✗ |
test_calc(model); |
208 |
|
|
} |
209 |
|
|
|
210 |
|
✗ |
void test_calc_integrated_action_model( |
211 |
|
|
DifferentialActionModelTypes::Type dam_type, |
212 |
|
|
IntegratorTypes::Type integrator_type, ControlTypes::Type control_type) { |
213 |
|
|
// create the differential action model |
214 |
|
✗ |
DifferentialActionModelFactory factory_dam; |
215 |
|
|
const std::shared_ptr<crocoddyl::DifferentialActionModelAbstract>& dam = |
216 |
|
✗ |
factory_dam.create(dam_type); |
217 |
|
|
// create the control discretization |
218 |
|
✗ |
ControlFactory factory_ctrl; |
219 |
|
|
const std::shared_ptr<crocoddyl::ControlParametrizationModelAbstract>& ctrl = |
220 |
|
✗ |
factory_ctrl.create(control_type, dam->get_nu()); |
221 |
|
|
// create the integrator |
222 |
|
✗ |
IntegratorFactory factory_int; |
223 |
|
|
const std::shared_ptr<crocoddyl::IntegratedActionModelAbstract>& model = |
224 |
|
✗ |
factory_int.create(integrator_type, dam, ctrl); |
225 |
|
✗ |
test_calc(model); |
226 |
|
|
} |
227 |
|
|
|
228 |
|
✗ |
void test_partial_derivatives_action_model( |
229 |
|
|
ActionModelTypes::Type action_model_type) { |
230 |
|
|
// create the model |
231 |
|
✗ |
ActionModelFactory factory; |
232 |
|
|
const std::shared_ptr<crocoddyl::ActionModelAbstract>& model = |
233 |
|
✗ |
factory.create(action_model_type); |
234 |
|
✗ |
test_partial_derivatives_against_numdiff(model); |
235 |
|
|
} |
236 |
|
|
|
237 |
|
✗ |
void test_partial_derivatives_integrated_action_model( |
238 |
|
|
DifferentialActionModelTypes::Type dam_type, |
239 |
|
|
IntegratorTypes::Type integrator_type, ControlTypes::Type control_type) { |
240 |
|
|
// create the differential action model |
241 |
|
✗ |
DifferentialActionModelFactory factory_dam; |
242 |
|
|
const std::shared_ptr<crocoddyl::DifferentialActionModelAbstract>& dam = |
243 |
|
✗ |
factory_dam.create(dam_type); |
244 |
|
|
// create the control discretization |
245 |
|
✗ |
ControlFactory factory_ctrl; |
246 |
|
|
const std::shared_ptr<crocoddyl::ControlParametrizationModelAbstract>& ctrl = |
247 |
|
✗ |
factory_ctrl.create(control_type, dam->get_nu()); |
248 |
|
|
// create the integrator |
249 |
|
✗ |
IntegratorFactory factory_int; |
250 |
|
|
const std::shared_ptr<crocoddyl::IntegratedActionModelAbstract>& model = |
251 |
|
✗ |
factory_int.create(integrator_type, dam, ctrl); |
252 |
|
✗ |
test_partial_derivatives_against_numdiff(model); |
253 |
|
|
} |
254 |
|
|
|
255 |
|
|
/** |
256 |
|
|
* Test two action models that should provide the same result when calling calc |
257 |
|
|
* if the first part of the control input u of model2 is equal to the control |
258 |
|
|
* input of model1. A typical case would be an integrated action model using an |
259 |
|
|
* Euler integration scheme, which can be coupled either with a constant control |
260 |
|
|
* parametrization (model1) or a linear control parametrization (model2), and |
261 |
|
|
* should thus provide the same result as long as the control input at the |
262 |
|
|
* beginning of the step has the same value. |
263 |
|
|
*/ |
264 |
|
✗ |
void test_calc_against_calc( |
265 |
|
|
const std::shared_ptr<crocoddyl::ActionModelAbstract>& model1, |
266 |
|
|
const std::shared_ptr<crocoddyl::ActionModelAbstract>& model2) { |
267 |
|
|
// create the corresponding data object and set the cost to nan |
268 |
|
|
const std::shared_ptr<crocoddyl::ActionDataAbstract>& data1 = |
269 |
|
✗ |
model1->createData(); |
270 |
|
|
const std::shared_ptr<crocoddyl::ActionDataAbstract>& data2 = |
271 |
|
✗ |
model2->createData(); |
272 |
|
|
|
273 |
|
|
// Generating random values for the state and control |
274 |
|
✗ |
const Eigen::VectorXd x = model1->get_state()->rand(); |
275 |
|
✗ |
Eigen::VectorXd u1 = Eigen::VectorXd::Random(model1->get_nu()); |
276 |
|
✗ |
Eigen::VectorXd u2 = Eigen::VectorXd::Random(model2->get_nu()); |
277 |
|
|
// copy u1 to the first part of u2 (assuming u2 is larger than u1) |
278 |
|
✗ |
u2.head(u1.size()) = u1; |
279 |
|
|
|
280 |
|
|
// Computing the action |
281 |
|
✗ |
model1->calc(data1, x, u1); |
282 |
|
✗ |
model2->calc(data2, x, u2); |
283 |
|
|
|
284 |
|
|
// Checking the state and cost integration |
285 |
|
✗ |
BOOST_CHECK((data1->xnext - data2->xnext).isZero(1e-9)); |
286 |
|
✗ |
BOOST_CHECK(abs(data1->cost - data2->cost) < 1e-9); |
287 |
|
|
} |
288 |
|
|
|
289 |
|
✗ |
void register_test_calc_integrated_action_model( |
290 |
|
|
DifferentialActionModelTypes::Type dam_type, |
291 |
|
|
IntegratorTypes::Type integrator_type, ControlTypes::Type control_type1, |
292 |
|
|
ControlTypes::Type control_type2) { |
293 |
|
|
// create the differential action model |
294 |
|
✗ |
DifferentialActionModelFactory factory_dam; |
295 |
|
|
const std::shared_ptr<crocoddyl::DifferentialActionModelAbstract>& dam = |
296 |
|
✗ |
factory_dam.create(dam_type); |
297 |
|
|
// create the control discretization |
298 |
|
✗ |
ControlFactory factory_ctrl; |
299 |
|
|
const std::shared_ptr<crocoddyl::ControlParametrizationModelAbstract>& ctrl1 = |
300 |
|
✗ |
factory_ctrl.create(control_type1, dam->get_nu()); |
301 |
|
|
const std::shared_ptr<crocoddyl::ControlParametrizationModelAbstract>& ctrl2 = |
302 |
|
✗ |
factory_ctrl.create(control_type2, dam->get_nu()); |
303 |
|
|
// create the integrator |
304 |
|
✗ |
IntegratorFactory factory_int; |
305 |
|
|
const std::shared_ptr<crocoddyl::IntegratedActionModelAbstract>& model1 = |
306 |
|
✗ |
factory_int.create(integrator_type, dam, ctrl1); |
307 |
|
|
const std::shared_ptr<crocoddyl::IntegratedActionModelAbstract>& model2 = |
308 |
|
✗ |
factory_int.create(integrator_type, dam, ctrl2); |
309 |
|
|
|
310 |
|
✗ |
boost::test_tools::output_test_stream test_name; |
311 |
|
✗ |
test_name << "test_calc_integrated_action_model_" << dam_type << "_" |
312 |
|
✗ |
<< integrator_type << "_" << control_type1 << "_" << control_type2; |
313 |
|
✗ |
std::cout << "Running " << test_name.str() << std::endl; |
314 |
|
✗ |
test_suite* ts = BOOST_TEST_SUITE(test_name.str()); |
315 |
|
✗ |
ts->add( |
316 |
|
✗ |
BOOST_TEST_CASE(boost::bind(&test_calc_against_calc, model1, model2))); |
317 |
|
✗ |
framework::master_test_suite().add(ts); |
318 |
|
|
} |
319 |
|
|
|
320 |
|
|
//----------------------------------------------------------------------------// |
321 |
|
|
|
322 |
|
✗ |
void register_action_model_unit_tests( |
323 |
|
|
ActionModelTypes::Type action_model_type) { |
324 |
|
✗ |
boost::test_tools::output_test_stream test_name; |
325 |
|
✗ |
test_name << "test_" << action_model_type; |
326 |
|
✗ |
std::cout << "Running " << test_name.str() << std::endl; |
327 |
|
✗ |
test_suite* ts = BOOST_TEST_SUITE(test_name.str()); |
328 |
|
✗ |
ts->add( |
329 |
|
✗ |
BOOST_TEST_CASE(boost::bind(&test_check_action_data, action_model_type))); |
330 |
|
✗ |
ts->add( |
331 |
|
✗ |
BOOST_TEST_CASE(boost::bind(&test_calc_action_model, action_model_type))); |
332 |
|
✗ |
ts->add(BOOST_TEST_CASE( |
333 |
|
|
boost::bind(&test_partial_derivatives_action_model, action_model_type))); |
334 |
|
✗ |
framework::master_test_suite().add(ts); |
335 |
|
|
} |
336 |
|
|
|
337 |
|
✗ |
void register_integrated_action_model_unit_tests( |
338 |
|
|
DifferentialActionModelTypes::Type dam_type, |
339 |
|
|
IntegratorTypes::Type integrator_type, ControlTypes::Type control_type) { |
340 |
|
✗ |
boost::test_tools::output_test_stream test_name; |
341 |
|
✗ |
test_name << "test_" << dam_type << "_" << integrator_type << "_" |
342 |
|
✗ |
<< control_type; |
343 |
|
✗ |
std::cout << "Running " << test_name.str() << std::endl; |
344 |
|
✗ |
test_suite* ts = BOOST_TEST_SUITE(test_name.str()); |
345 |
|
✗ |
ts->add( |
346 |
|
✗ |
BOOST_TEST_CASE(boost::bind(&test_check_integrated_action_data, dam_type, |
347 |
|
|
integrator_type, control_type))); |
348 |
|
✗ |
ts->add( |
349 |
|
✗ |
BOOST_TEST_CASE(boost::bind(&test_calc_integrated_action_model, dam_type, |
350 |
|
|
integrator_type, control_type))); |
351 |
|
✗ |
ts->add(BOOST_TEST_CASE( |
352 |
|
|
boost::bind(&test_partial_derivatives_integrated_action_model, dam_type, |
353 |
|
|
integrator_type, control_type))); |
354 |
|
✗ |
framework::master_test_suite().add(ts); |
355 |
|
|
} |
356 |
|
|
|
357 |
|
✗ |
bool init_function() { |
358 |
|
✗ |
for (size_t i = 0; i < ActionModelTypes::all.size(); ++i) { |
359 |
|
✗ |
register_action_model_unit_tests(ActionModelTypes::all[i]); |
360 |
|
|
} |
361 |
|
|
|
362 |
|
✗ |
for (size_t i = 0; i < DifferentialActionModelTypes::all.size(); ++i) { |
363 |
|
✗ |
register_integrated_action_model_unit_tests( |
364 |
|
✗ |
DifferentialActionModelTypes::all[i], IntegratorTypes::IntegratorEuler, |
365 |
|
|
ControlTypes::PolyZero); |
366 |
|
✗ |
register_integrated_action_model_unit_tests( |
367 |
|
✗ |
DifferentialActionModelTypes::all[i], IntegratorTypes::IntegratorRK2, |
368 |
|
|
ControlTypes::PolyZero); |
369 |
|
✗ |
register_integrated_action_model_unit_tests( |
370 |
|
✗ |
DifferentialActionModelTypes::all[i], IntegratorTypes::IntegratorRK2, |
371 |
|
|
ControlTypes::PolyOne); |
372 |
|
✗ |
register_integrated_action_model_unit_tests( |
373 |
|
✗ |
DifferentialActionModelTypes::all[i], IntegratorTypes::IntegratorRK3, |
374 |
|
|
ControlTypes::PolyZero); |
375 |
|
✗ |
register_integrated_action_model_unit_tests( |
376 |
|
✗ |
DifferentialActionModelTypes::all[i], IntegratorTypes::IntegratorRK3, |
377 |
|
|
ControlTypes::PolyOne); |
378 |
|
✗ |
register_integrated_action_model_unit_tests( |
379 |
|
✗ |
DifferentialActionModelTypes::all[i], IntegratorTypes::IntegratorRK3, |
380 |
|
|
ControlTypes::PolyTwoRK3); |
381 |
|
✗ |
register_integrated_action_model_unit_tests( |
382 |
|
✗ |
DifferentialActionModelTypes::all[i], IntegratorTypes::IntegratorRK4, |
383 |
|
|
ControlTypes::PolyZero); |
384 |
|
✗ |
register_integrated_action_model_unit_tests( |
385 |
|
✗ |
DifferentialActionModelTypes::all[i], IntegratorTypes::IntegratorRK4, |
386 |
|
|
ControlTypes::PolyOne); |
387 |
|
✗ |
register_integrated_action_model_unit_tests( |
388 |
|
✗ |
DifferentialActionModelTypes::all[i], IntegratorTypes::IntegratorRK4, |
389 |
|
|
ControlTypes::PolyTwoRK4); |
390 |
|
|
} |
391 |
|
|
|
392 |
|
✗ |
for (size_t i = 0; i < DifferentialActionModelTypes::all.size(); ++i) { |
393 |
|
✗ |
register_test_calc_integrated_action_model( |
394 |
|
✗ |
DifferentialActionModelTypes::all[i], IntegratorTypes::IntegratorEuler, |
395 |
|
|
ControlTypes::PolyZero, ControlTypes::PolyOne); |
396 |
|
✗ |
register_test_calc_integrated_action_model( |
397 |
|
✗ |
DifferentialActionModelTypes::all[i], IntegratorTypes::IntegratorEuler, |
398 |
|
|
ControlTypes::PolyOne, ControlTypes::PolyTwoRK4); |
399 |
|
|
} |
400 |
|
✗ |
return true; |
401 |
|
|
} |
402 |
|
|
|
403 |
|
✗ |
int main(int argc, char** argv) { |
404 |
|
✗ |
return ::boost::unit_test::unit_test_main(&init_function, argc, argv); |
405 |
|
|
} |
406 |
|
|
|