| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | /////////////////////////////////////////////////////////////////////////////// | ||
| 2 | // BSD 3-Clause License | ||
| 3 | // | ||
| 4 | // Copyright (C) 2019-2025, LAAS-CNRS, New York University, | ||
| 5 | // Max Planck Gesellschaft, University of Edinburgh, | ||
| 6 | // INRIA, Heriot-Watt University | ||
| 7 | // Copyright note valid unless otherwise stated in individual files. | ||
| 8 | // All rights reserved. | ||
| 9 | /////////////////////////////////////////////////////////////////////////////// | ||
| 10 | |||
| 11 | #define BOOST_TEST_NO_MAIN | ||
| 12 | #define BOOST_TEST_ALTERNATIVE_INIT_API | ||
| 13 | |||
| 14 | #include "crocoddyl/core/activations/quadratic-barrier.hpp" | ||
| 15 | #include "factory/activation.hpp" | ||
| 16 | #include "unittest_common.hpp" | ||
| 17 | |||
| 18 | using namespace boost::unit_test; | ||
| 19 | using namespace crocoddyl::unittest; | ||
| 20 | |||
| 21 | //----------------------------------------------------------------------------// | ||
| 22 | |||
| 23 | ✗ | void test_construct_data(ActivationModelTypes::Type activation_type) { | |
| 24 | // create the model | ||
| 25 | ✗ | ActivationModelFactory factory; | |
| 26 | const std::shared_ptr<crocoddyl::ActivationModelAbstract>& model = | ||
| 27 | ✗ | factory.create(activation_type); | |
| 28 | |||
| 29 | // Run the print function | ||
| 30 | ✗ | std::ostringstream tmp; | |
| 31 | ✗ | tmp << *model; | |
| 32 | |||
| 33 | // create the corresponding data object | ||
| 34 | const std::shared_ptr<crocoddyl::ActivationDataAbstract>& data = | ||
| 35 | ✗ | model->createData(); | |
| 36 | const std::shared_ptr<crocoddyl::ActivationDataAbstractTpl<float>>& | ||
| 37 | ✗ | casted_data = model->cast<float>()->createData(); | |
| 38 | ✗ | } | |
| 39 | |||
| 40 | ✗ | void test_calc_returns_a_value(ActivationModelTypes::Type activation_type) { | |
| 41 | // create the model | ||
| 42 | ✗ | ActivationModelFactory factory; | |
| 43 | const std::shared_ptr<crocoddyl::ActivationModelAbstract>& model = | ||
| 44 | ✗ | factory.create(activation_type); | |
| 45 | |||
| 46 | // create the corresponding data object | ||
| 47 | const std::shared_ptr<crocoddyl::ActivationDataAbstract>& data = | ||
| 48 | ✗ | model->createData(); | |
| 49 | |||
| 50 | // Generating random input vector | ||
| 51 | ✗ | const Eigen::VectorXd r = Eigen::VectorXd::Random(model->get_nr()); | |
| 52 | ✗ | data->a_value = nan(""); | |
| 53 | |||
| 54 | // Getting the state dimension from calc() call | ||
| 55 | ✗ | model->calc(data, r); | |
| 56 | |||
| 57 | // Checking that calc returns a value | ||
| 58 | ✗ | BOOST_CHECK(!std::isnan(data->a_value)); | |
| 59 | |||
| 60 | // Checking that casted computation is the same | ||
| 61 | const std::shared_ptr<crocoddyl::ActivationModelAbstractTpl<float>>& | ||
| 62 | ✗ | casted_model = model->cast<float>(); | |
| 63 | const std::shared_ptr<crocoddyl::ActivationDataAbstractTpl<float>>& | ||
| 64 | ✗ | casted_data = casted_model->createData(); | |
| 65 | ✗ | const Eigen::VectorXf r_f = r.cast<float>(); | |
| 66 | ✗ | casted_data->a_value = float(nan("")); | |
| 67 | ✗ | casted_model->calc(casted_data, r_f); | |
| 68 | ✗ | BOOST_CHECK(!std::isnan(casted_data->a_value)); | |
| 69 | ✗ | BOOST_CHECK(std::abs(data->a_value - casted_data->a_value) < 1e-6); | |
| 70 | ✗ | } | |
| 71 | |||
| 72 | ✗ | void test_partial_derivatives_against_numdiff( | |
| 73 | ActivationModelTypes::Type activation_type) { | ||
| 74 | // create the model | ||
| 75 | ✗ | ActivationModelFactory factory; | |
| 76 | const std::shared_ptr<crocoddyl::ActivationModelAbstract>& model = | ||
| 77 | ✗ | factory.create(activation_type); | |
| 78 | |||
| 79 | // create the corresponding data object and set the cost to nan | ||
| 80 | const std::shared_ptr<crocoddyl::ActivationDataAbstract>& data = | ||
| 81 | ✗ | model->createData(); | |
| 82 | |||
| 83 | ✗ | crocoddyl::ActivationModelNumDiff model_num_diff(model); | |
| 84 | std::shared_ptr<crocoddyl::ActivationDataAbstract> data_num_diff = | ||
| 85 | ✗ | model_num_diff.createData(); | |
| 86 | |||
| 87 | // Generating random values for the state and control | ||
| 88 | ✗ | const Eigen::VectorXd r = Eigen::VectorXd::Random(model->get_nr()); | |
| 89 | |||
| 90 | // Computing the activation derivatives | ||
| 91 | ✗ | model->calc(data, r); | |
| 92 | ✗ | model->calcDiff(data, r); | |
| 93 | ✗ | model_num_diff.calc(data_num_diff, r); | |
| 94 | ✗ | model_num_diff.calcDiff(data_num_diff, r); | |
| 95 | |||
| 96 | // Tolerance defined as in | ||
| 97 | // http://www.it.uom.gr/teaching/linearalgebra/NumericalRecipiesInC/c5-7.pdf | ||
| 98 | ✗ | double tol = std::pow(model_num_diff.get_disturbance(), 1. / 3.); | |
| 99 | ✗ | BOOST_CHECK(std::abs(data->a_value - data_num_diff->a_value) < tol); | |
| 100 | ✗ | BOOST_CHECK((data->Ar - data_num_diff->Ar).isZero(tol)); | |
| 101 | |||
| 102 | // numerical differentiation of the Hessian is not good enough to be tested. | ||
| 103 | // BOOST_CHECK((data->Arr - data_num_diff->Arr).isMuchSmallerThan(1.0, tol)); | ||
| 104 | |||
| 105 | // Checking that casted computation is the same | ||
| 106 | const std::shared_ptr<crocoddyl::ActivationModelAbstractTpl<float>>& | ||
| 107 | ✗ | casted_model = model->cast<float>(); | |
| 108 | const std::shared_ptr<crocoddyl::ActivationDataAbstractTpl<float>>& | ||
| 109 | ✗ | casted_data = casted_model->createData(); | |
| 110 | ✗ | const Eigen::VectorXf r_f = r.cast<float>(); | |
| 111 | ✗ | casted_model->calc(casted_data, r_f); | |
| 112 | ✗ | casted_model->calcDiff(casted_data, r_f); | |
| 113 | float tol_f = | ||
| 114 | ✗ | std::pow(model_num_diff.cast<float>().get_disturbance(), float(1. / 3.)); | |
| 115 | ✗ | BOOST_CHECK(std::abs(data->a_value - casted_data->a_value) < tol_f); | |
| 116 | ✗ | BOOST_CHECK((data->Ar.cast<float>() - casted_data->Ar).isZero(tol_f)); | |
| 117 | ✗ | } | |
| 118 | |||
| 119 | ✗ | void test_activation_bounds_with_infinity() { | |
| 120 | ✗ | Eigen::VectorXd lb(1); | |
| 121 | ✗ | Eigen::VectorXd ub(1); | |
| 122 | double beta; | ||
| 123 | ✗ | beta = 0.1; | |
| 124 | ✗ | lb[0] = 0; | |
| 125 | ✗ | ub[0] = std::numeric_limits<double>::infinity(); | |
| 126 | |||
| 127 | Eigen::VectorXd m = | ||
| 128 | ✗ | 0.5 * (lb + Eigen::VectorXd::Constant( | |
| 129 | ✗ | lb.size(), std::numeric_limits<double>::max())); | |
| 130 | Eigen::VectorXd d = | ||
| 131 | ✗ | 0.5 * (Eigen::VectorXd::Constant(lb.size(), | |
| 132 | ✗ | std::numeric_limits<double>::max()) - | |
| 133 | ✗ | lb); | |
| 134 | ✗ | crocoddyl::ActivationBounds bounds(lb, ub, beta); | |
| 135 | ✗ | BOOST_CHECK(bounds.lb != m - beta * d); | |
| 136 | |||
| 137 | // Checking that casted computation is the same | ||
| 138 | ✗ | crocoddyl::ActivationBoundsTpl<float> casted_bounds = bounds.cast<float>(); | |
| 139 | ✗ | BOOST_CHECK(bounds.lb.cast<float>() == casted_bounds.lb); | |
| 140 | ✗ | } | |
| 141 | |||
| 142 | //----------------------------------------------------------------------------// | ||
| 143 | |||
| 144 | ✗ | void register_unit_tests(ActivationModelTypes::Type activation_type) { | |
| 145 | ✗ | boost::test_tools::output_test_stream test_name; | |
| 146 | ✗ | test_name << "test_" << activation_type; | |
| 147 | ✗ | std::cout << "Running " << test_name.str() << std::endl; | |
| 148 | ✗ | test_suite* ts = BOOST_TEST_SUITE(test_name.str()); | |
| 149 | ✗ | ts->add(BOOST_TEST_CASE(boost::bind(&test_construct_data, activation_type))); | |
| 150 | ✗ | ts->add(BOOST_TEST_CASE( | |
| 151 | boost::bind(&test_calc_returns_a_value, activation_type))); | ||
| 152 | ✗ | ts->add(BOOST_TEST_CASE( | |
| 153 | boost::bind(&test_partial_derivatives_against_numdiff, activation_type))); | ||
| 154 | ✗ | framework::master_test_suite().add(ts); | |
| 155 | ✗ | } | |
| 156 | |||
| 157 | ✗ | bool register_bounds_unit_test() { | |
| 158 | ✗ | boost::test_tools::output_test_stream test_name; | |
| 159 | test_name << "test_" | ||
| 160 | ✗ | << "ActivationBoundsInfinity"; | |
| 161 | ✗ | std::cout << "Running " << test_name.str() << std::endl; | |
| 162 | ✗ | test_suite* ts = BOOST_TEST_SUITE(test_name.str()); | |
| 163 | ✗ | ts->add(BOOST_TEST_CASE(boost::bind(&test_activation_bounds_with_infinity))); | |
| 164 | ✗ | framework::master_test_suite().add(ts); | |
| 165 | ✗ | return true; | |
| 166 | ✗ | } | |
| 167 | |||
| 168 | ✗ | bool init_function() { | |
| 169 | ✗ | for (size_t i = 0; i < ActivationModelTypes::all.size(); ++i) { | |
| 170 | ✗ | register_unit_tests(ActivationModelTypes::all[i]); | |
| 171 | } | ||
| 172 | ✗ | register_bounds_unit_test(); | |
| 173 | ✗ | return true; | |
| 174 | } | ||
| 175 | |||
| 176 | ✗ | int main(int argc, char** argv) { | |
| 177 | ✗ | return ::boost::unit_test::unit_test_main(&init_function, argc, argv); | |
| 178 | } | ||
| 179 |