Line |
Branch |
Exec |
Source |
1 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
2 |
|
|
// BSD 3-Clause License |
3 |
|
|
// |
4 |
|
|
// Copyright (C) 2019-2025, University of Edinburgh, Heriot-Watt University |
5 |
|
|
// Copyright note valid unless otherwise stated in individual files. |
6 |
|
|
// All rights reserved. |
7 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
8 |
|
|
|
9 |
|
|
#define BOOST_TEST_NO_MAIN |
10 |
|
|
#define BOOST_TEST_ALTERNATIVE_INIT_API |
11 |
|
|
|
12 |
|
|
#include "factory/actuation.hpp" |
13 |
|
|
#include "unittest_common.hpp" |
14 |
|
|
|
15 |
|
|
using namespace boost::unit_test; |
16 |
|
|
using namespace crocoddyl::unittest; |
17 |
|
|
|
18 |
|
|
//----------------------------------------------------------------------------// |
19 |
|
|
|
20 |
|
✗ |
void test_construct_data(ActuationModelTypes::Type actuation_type, |
21 |
|
|
StateModelTypes::Type state_type) { |
22 |
|
|
// create the model |
23 |
|
✗ |
ActuationModelFactory factory; |
24 |
|
|
const std::shared_ptr<crocoddyl::ActuationModelAbstract>& model = |
25 |
|
✗ |
factory.create(actuation_type, state_type); |
26 |
|
|
|
27 |
|
|
// create the corresponding data object |
28 |
|
|
const std::shared_ptr<crocoddyl::ActuationDataAbstract>& data = |
29 |
|
✗ |
model->createData(); |
30 |
|
✗ |
if (!data) |
31 |
|
✗ |
throw std::runtime_error("[test_construct_data] Data pointer is dead."); |
32 |
|
|
} |
33 |
|
|
|
34 |
|
✗ |
void test_calc_returns_tau(ActuationModelTypes::Type actuation_type, |
35 |
|
|
StateModelTypes::Type state_type) { |
36 |
|
|
// create the model |
37 |
|
✗ |
ActuationModelFactory factory; |
38 |
|
|
const std::shared_ptr<crocoddyl::ActuationModelAbstract>& model = |
39 |
|
✗ |
factory.create(actuation_type, state_type); |
40 |
|
|
|
41 |
|
|
// create the corresponding data object |
42 |
|
|
const std::shared_ptr<crocoddyl::ActuationDataAbstract>& data = |
43 |
|
✗ |
model->createData(); |
44 |
|
|
|
45 |
|
|
// Generating random state and control vectors |
46 |
|
✗ |
const Eigen::VectorXd x = model->get_state()->rand(); |
47 |
|
✗ |
const Eigen::VectorXd u = Eigen::VectorXd::Random(model->get_nu()); |
48 |
|
|
|
49 |
|
|
// Getting the state dimension from calc() call |
50 |
|
✗ |
model->calc(data, x, u); |
51 |
|
✗ |
BOOST_CHECK(static_cast<std::size_t>(data->tau.size()) == |
52 |
|
|
model->get_state()->get_nv()); |
53 |
|
|
|
54 |
|
|
// Checking that casted computation is the same |
55 |
|
|
const std::shared_ptr<crocoddyl::ActuationModelAbstractTpl<float>>& |
56 |
|
✗ |
casted_model = model->cast<float>(); |
57 |
|
|
const std::shared_ptr<crocoddyl::ActuationDataAbstractTpl<float>>& |
58 |
|
✗ |
casted_data = casted_model->createData(); |
59 |
|
✗ |
const Eigen::VectorXf x_f = x.cast<float>(); |
60 |
|
✗ |
const Eigen::VectorXf u_f = u.cast<float>(); |
61 |
|
✗ |
casted_model->calc(casted_data, x_f, u_f); |
62 |
|
✗ |
float tol_f = std::sqrt(float(2.0) * std::numeric_limits<float>::epsilon()); |
63 |
|
✗ |
BOOST_CHECK((data->tau.cast<float>() - casted_data->tau).isZero(tol_f)); |
64 |
|
|
} |
65 |
|
|
|
66 |
|
✗ |
void test_actuationSet(ActuationModelTypes::Type actuation_type, |
67 |
|
|
StateModelTypes::Type state_type) { |
68 |
|
|
// create the model |
69 |
|
✗ |
ActuationModelFactory factory; |
70 |
|
|
const std::shared_ptr<crocoddyl::ActuationModelAbstract>& model = |
71 |
|
✗ |
factory.create(actuation_type, state_type); |
72 |
|
|
|
73 |
|
|
// create the corresponding data object and set the cost to nan |
74 |
|
|
const std::shared_ptr<crocoddyl::ActuationDataAbstract>& data = |
75 |
|
✗ |
model->createData(); |
76 |
|
|
|
77 |
|
✗ |
crocoddyl::ActuationModelNumDiff model_num_diff(model); |
78 |
|
|
const std::shared_ptr<crocoddyl::ActuationDataAbstract>& data_num_diff = |
79 |
|
✗ |
model_num_diff.createData(); |
80 |
|
|
|
81 |
|
|
// Generating random values for the state and control |
82 |
|
✗ |
Eigen::VectorXd x = model->get_state()->rand(); |
83 |
|
✗ |
const Eigen::VectorXd u = Eigen::VectorXd::Random(model->get_nu()); |
84 |
|
|
|
85 |
|
|
// Computing the selection matrix |
86 |
|
✗ |
model->calc(data, x, u); |
87 |
|
✗ |
model_num_diff.calc(data_num_diff, x, u); |
88 |
|
✗ |
model_num_diff.calcDiff(data_num_diff, x, u); |
89 |
|
|
|
90 |
|
✗ |
const std::size_t nv = model->get_state()->get_nv(); |
91 |
|
|
Eigen::MatrixXd S = |
92 |
|
✗ |
data_num_diff->dtau_du * crocoddyl::pseudoInverse(data_num_diff->dtau_du); |
93 |
|
✗ |
for (std::size_t k = 0; k < nv; ++k) { |
94 |
|
✗ |
if (fabs(S(k, k)) < std::numeric_limits<double>::epsilon()) { |
95 |
|
✗ |
BOOST_CHECK(data->tau_set[k] == false); |
96 |
|
|
} else { |
97 |
|
✗ |
BOOST_CHECK(data->tau_set[k] == true); |
98 |
|
|
} |
99 |
|
|
} |
100 |
|
|
|
101 |
|
|
// Checking that casted computation is the same |
102 |
|
|
const std::shared_ptr<crocoddyl::ActuationModelAbstractTpl<float>>& |
103 |
|
✗ |
casted_model = model->cast<float>(); |
104 |
|
|
const std::shared_ptr<crocoddyl::ActuationDataAbstractTpl<float>>& |
105 |
|
✗ |
casted_data = casted_model->createData(); |
106 |
|
✗ |
Eigen::VectorXf x_f = x.cast<float>(); |
107 |
|
✗ |
const Eigen::VectorXf u_f = u.cast<float>(); |
108 |
|
✗ |
casted_model->calc(casted_data, x_f, u_f); |
109 |
|
✗ |
for (std::size_t k = 0; k < nv; ++k) { |
110 |
|
✗ |
BOOST_CHECK(data->tau_set[k] == casted_data->tau_set[k]); |
111 |
|
|
} |
112 |
|
|
} |
113 |
|
|
|
114 |
|
✗ |
void test_partial_derivatives_against_numdiff( |
115 |
|
|
ActuationModelTypes::Type actuation_type, |
116 |
|
|
StateModelTypes::Type state_type) { |
117 |
|
|
// create the model |
118 |
|
✗ |
ActuationModelFactory factory; |
119 |
|
|
const std::shared_ptr<crocoddyl::ActuationModelAbstract>& model = |
120 |
|
✗ |
factory.create(actuation_type, state_type); |
121 |
|
|
|
122 |
|
|
// create the corresponding data object and set the cost to nan |
123 |
|
|
const std::shared_ptr<crocoddyl::ActuationDataAbstract>& data = |
124 |
|
✗ |
model->createData(); |
125 |
|
|
|
126 |
|
✗ |
crocoddyl::ActuationModelNumDiff model_num_diff(model); |
127 |
|
|
const std::shared_ptr<crocoddyl::ActuationDataAbstract>& data_num_diff = |
128 |
|
✗ |
model_num_diff.createData(); |
129 |
|
|
|
130 |
|
|
// Generating random values for the state and control |
131 |
|
✗ |
Eigen::VectorXd x = model->get_state()->rand(); |
132 |
|
✗ |
const Eigen::VectorXd u = Eigen::VectorXd::Random(model->get_nu()); |
133 |
|
|
|
134 |
|
|
// Computing the actuation derivatives |
135 |
|
✗ |
model->calc(data, x, u); |
136 |
|
✗ |
model->calcDiff(data, x, u); |
137 |
|
✗ |
model_num_diff.calc(data_num_diff, x, u); |
138 |
|
✗ |
model_num_diff.calcDiff(data_num_diff, x, u); |
139 |
|
|
// Tolerance defined as in |
140 |
|
|
// http://www.it.uom.gr/teaching/linearalgebra/NumericalRecipiesInC/c5-7.pdf |
141 |
|
✗ |
double tol = std::pow(model_num_diff.get_disturbance(), 1. / 3.); |
142 |
|
✗ |
BOOST_CHECK((data->dtau_dx - data_num_diff->dtau_dx).isZero(tol)); |
143 |
|
✗ |
BOOST_CHECK((data->dtau_du - data_num_diff->dtau_du).isZero(tol)); |
144 |
|
|
|
145 |
|
|
// Computing the actuation derivatives |
146 |
|
✗ |
x = model->get_state()->rand(); |
147 |
|
✗ |
model->calc(data, x); |
148 |
|
✗ |
model->calcDiff(data, x); |
149 |
|
✗ |
model_num_diff.calc(data_num_diff, x); |
150 |
|
✗ |
model_num_diff.calcDiff(data_num_diff, x); |
151 |
|
|
|
152 |
|
|
// Checking the partial derivatives against numdiff |
153 |
|
✗ |
BOOST_CHECK((data->dtau_dx - data_num_diff->dtau_dx).isZero(tol)); |
154 |
|
|
|
155 |
|
|
// Checking that casted computation is the same |
156 |
|
|
const std::shared_ptr<crocoddyl::ActuationModelAbstractTpl<float>>& |
157 |
|
✗ |
casted_model = model->cast<float>(); |
158 |
|
|
const std::shared_ptr<crocoddyl::ActuationDataAbstractTpl<float>>& |
159 |
|
✗ |
casted_data = casted_model->createData(); |
160 |
|
✗ |
Eigen::VectorXf x_f = x.cast<float>(); |
161 |
|
✗ |
const Eigen::VectorXf u_f = u.cast<float>(); |
162 |
|
✗ |
casted_model->calc(casted_data, x_f, u_f); |
163 |
|
✗ |
casted_model->calcDiff(casted_data, x_f, u_f); |
164 |
|
✗ |
float tol_f = std::sqrt(2.0f * std::numeric_limits<float>::epsilon()); |
165 |
|
✗ |
BOOST_CHECK( |
166 |
|
|
(data->dtau_dx.cast<float>() - casted_data->dtau_dx).isZero(tol_f)); |
167 |
|
✗ |
BOOST_CHECK( |
168 |
|
|
(data->dtau_du.cast<float>() - casted_data->dtau_du).isZero(tol_f)); |
169 |
|
|
|
170 |
|
✗ |
casted_model->calc(casted_data, x_f); |
171 |
|
✗ |
casted_model->calcDiff(casted_data, x_f); |
172 |
|
✗ |
BOOST_CHECK( |
173 |
|
|
(data->dtau_dx.cast<float>() - casted_data->dtau_dx).isZero(tol_f)); |
174 |
|
|
} |
175 |
|
|
|
176 |
|
✗ |
void test_commands(ActuationModelTypes::Type actuation_type, |
177 |
|
|
StateModelTypes::Type state_type) { |
178 |
|
|
// create the model |
179 |
|
✗ |
ActuationModelFactory factory; |
180 |
|
|
const std::shared_ptr<crocoddyl::ActuationModelAbstract>& model = |
181 |
|
✗ |
factory.create(actuation_type, state_type); |
182 |
|
|
|
183 |
|
|
// create the corresponding data object and set the cost to nan |
184 |
|
|
const std::shared_ptr<crocoddyl::ActuationDataAbstract>& data = |
185 |
|
✗ |
model->createData(); |
186 |
|
|
|
187 |
|
✗ |
crocoddyl::ActuationModelNumDiff model_num_diff(model); |
188 |
|
|
const std::shared_ptr<crocoddyl::ActuationDataAbstract>& data_num_diff = |
189 |
|
✗ |
model_num_diff.createData(); |
190 |
|
|
|
191 |
|
|
// Generating random values for the state and control |
192 |
|
✗ |
Eigen::VectorXd x = model->get_state()->rand(); |
193 |
|
|
const Eigen::VectorXd tau = |
194 |
|
✗ |
Eigen::VectorXd::Random(model->get_state()->get_nv()); |
195 |
|
|
|
196 |
|
|
// Computing the actuation commands |
197 |
|
✗ |
model->commands(data, x, tau); |
198 |
|
✗ |
model_num_diff.commands(data_num_diff, x, tau); |
199 |
|
|
|
200 |
|
|
// Checking the joint torques |
201 |
|
✗ |
double tol = sqrt(model_num_diff.get_disturbance()); |
202 |
|
✗ |
BOOST_CHECK((data->u - data_num_diff->u).isZero(tol)); |
203 |
|
|
|
204 |
|
|
// Checking that casted computation is the same |
205 |
|
|
const std::shared_ptr<crocoddyl::ActuationModelAbstractTpl<float>>& |
206 |
|
✗ |
casted_model = model->cast<float>(); |
207 |
|
|
const std::shared_ptr<crocoddyl::ActuationDataAbstractTpl<float>>& |
208 |
|
✗ |
casted_data = casted_model->createData(); |
209 |
|
✗ |
Eigen::VectorXf x_f = x.cast<float>(); |
210 |
|
✗ |
const Eigen::VectorXf tau_f = tau.cast<float>(); |
211 |
|
✗ |
casted_model->commands(casted_data, x_f, tau_f); |
212 |
|
✗ |
float tol_f = std::sqrt(2.0f * std::numeric_limits<float>::epsilon()); |
213 |
|
✗ |
BOOST_CHECK((data->u.cast<float>() - casted_data->u).isZero(tol_f)); |
214 |
|
|
} |
215 |
|
|
|
216 |
|
✗ |
void test_torqueTransform(ActuationModelTypes::Type actuation_type, |
217 |
|
|
StateModelTypes::Type state_type) { |
218 |
|
|
// create the model |
219 |
|
✗ |
ActuationModelFactory factory; |
220 |
|
|
const std::shared_ptr<crocoddyl::ActuationModelAbstract>& model = |
221 |
|
✗ |
factory.create(actuation_type, state_type); |
222 |
|
|
|
223 |
|
|
// create the corresponding data object and set the cost to nan |
224 |
|
|
const std::shared_ptr<crocoddyl::ActuationDataAbstract>& data = |
225 |
|
✗ |
model->createData(); |
226 |
|
|
|
227 |
|
✗ |
crocoddyl::ActuationModelNumDiff model_num_diff(model); |
228 |
|
|
const std::shared_ptr<crocoddyl::ActuationDataAbstract>& data_num_diff = |
229 |
|
✗ |
model_num_diff.createData(); |
230 |
|
|
|
231 |
|
|
// Generating random values for the state and control |
232 |
|
✗ |
Eigen::VectorXd x = model->get_state()->rand(); |
233 |
|
✗ |
const Eigen::VectorXd u = Eigen::VectorXd::Random(model->get_nu()); |
234 |
|
|
|
235 |
|
|
// Computing the torque transform |
236 |
|
✗ |
model->torqueTransform(data, x, u); |
237 |
|
✗ |
model_num_diff.torqueTransform(data_num_diff, x, u); |
238 |
|
|
|
239 |
|
|
// Checking the torque transform |
240 |
|
|
// Tolerance defined as in |
241 |
|
|
// http://www.it.uom.gr/teaching/linearalgebra/NumericalRecipiesInC/c5-7.pdf |
242 |
|
✗ |
double tol = std::pow(model_num_diff.get_disturbance(), 1. / 3.); |
243 |
|
✗ |
BOOST_CHECK((data->Mtau - data_num_diff->Mtau).isZero(tol)); |
244 |
|
|
|
245 |
|
|
// Checking that casted computation is the same |
246 |
|
|
const std::shared_ptr<crocoddyl::ActuationModelAbstractTpl<float>>& |
247 |
|
✗ |
casted_model = model->cast<float>(); |
248 |
|
|
const std::shared_ptr<crocoddyl::ActuationDataAbstractTpl<float>>& |
249 |
|
✗ |
casted_data = casted_model->createData(); |
250 |
|
✗ |
Eigen::VectorXf x_f = x.cast<float>(); |
251 |
|
✗ |
const Eigen::VectorXf u_f = u.cast<float>(); |
252 |
|
✗ |
casted_model->torqueTransform(casted_data, x_f, u_f); |
253 |
|
✗ |
float tol_f = std::sqrt(2.0f * std::numeric_limits<float>::epsilon()); |
254 |
|
✗ |
BOOST_CHECK((data->Mtau.cast<float>() - casted_data->Mtau).isZero(tol_f)); |
255 |
|
|
} |
256 |
|
|
|
257 |
|
|
//----------------------------------------------------------------------------// |
258 |
|
|
|
259 |
|
✗ |
void register_actuation_model_unit_tests( |
260 |
|
|
ActuationModelTypes::Type actuation_type, |
261 |
|
|
StateModelTypes::Type state_type) { |
262 |
|
✗ |
boost::test_tools::output_test_stream test_name; |
263 |
|
✗ |
test_name << "test_" << actuation_type << "_" << state_type; |
264 |
|
✗ |
std::cout << "Running " << test_name.str() << std::endl; |
265 |
|
✗ |
test_suite* ts = BOOST_TEST_SUITE(test_name.str()); |
266 |
|
✗ |
ts->add(BOOST_TEST_CASE( |
267 |
|
|
boost::bind(&test_construct_data, actuation_type, state_type))); |
268 |
|
✗ |
ts->add(BOOST_TEST_CASE( |
269 |
|
|
boost::bind(&test_calc_returns_tau, actuation_type, state_type))); |
270 |
|
✗ |
ts->add(BOOST_TEST_CASE( |
271 |
|
|
boost::bind(&test_actuationSet, actuation_type, state_type))); |
272 |
|
✗ |
ts->add(BOOST_TEST_CASE(boost::bind(&test_partial_derivatives_against_numdiff, |
273 |
|
|
actuation_type, state_type))); |
274 |
|
✗ |
ts->add( |
275 |
|
✗ |
BOOST_TEST_CASE(boost::bind(&test_commands, actuation_type, state_type))); |
276 |
|
✗ |
ts->add(BOOST_TEST_CASE( |
277 |
|
|
boost::bind(&test_torqueTransform, actuation_type, state_type))); |
278 |
|
✗ |
framework::master_test_suite().add(ts); |
279 |
|
|
} |
280 |
|
|
|
281 |
|
✗ |
bool init_function() { |
282 |
|
✗ |
for (size_t i = 0; i < StateModelTypes::all.size(); ++i) { |
283 |
|
✗ |
register_actuation_model_unit_tests(ActuationModelTypes::ActuationModelFull, |
284 |
|
✗ |
StateModelTypes::all[i]); |
285 |
|
|
} |
286 |
|
✗ |
for (size_t i = 0; i < StateModelTypes::all.size(); ++i) { |
287 |
|
✗ |
if (StateModelTypes::all[i] != StateModelTypes::StateVector && |
288 |
|
✗ |
StateModelTypes::all[i] != StateModelTypes::StateMultibody_Hector) { |
289 |
|
✗ |
register_actuation_model_unit_tests( |
290 |
|
|
ActuationModelTypes::ActuationModelFloatingBase, |
291 |
|
✗ |
StateModelTypes::all[i]); |
292 |
|
✗ |
register_actuation_model_unit_tests( |
293 |
|
|
ActuationModelTypes::ActuationModelSquashingFull, |
294 |
|
✗ |
StateModelTypes::all[i]); |
295 |
|
|
} |
296 |
|
|
} |
297 |
|
|
|
298 |
|
✗ |
register_actuation_model_unit_tests( |
299 |
|
|
ActuationModelTypes::ActuationModelFloatingBaseThrusters, |
300 |
|
|
StateModelTypes::StateMultibody_Hector); |
301 |
|
✗ |
return true; |
302 |
|
|
} |
303 |
|
|
|
304 |
|
✗ |
int main(int argc, char** argv) { |
305 |
|
✗ |
return ::boost::unit_test::unit_test_main(&init_function, argc, argv); |
306 |
|
|
} |
307 |
|
|
|