Line |
Branch |
Exec |
Source |
1 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
2 |
|
|
// BSD 3-Clause License |
3 |
|
|
// |
4 |
|
|
// Copyright (C) 2019-2025, LAAS-CNRS, New York University, |
5 |
|
|
// Max Planck Gesellschaft, INRIA, University of |
6 |
|
|
// Oxford, Heriot-Watt University |
7 |
|
|
// Copyright note valid unless otherwise stated in individual files. |
8 |
|
|
// All rights reserved. |
9 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
10 |
|
|
|
11 |
|
|
#define BOOST_TEST_NO_MAIN |
12 |
|
|
#define BOOST_TEST_ALTERNATIVE_INIT_API |
13 |
|
|
|
14 |
|
|
#include "factory/diff_action.hpp" |
15 |
|
|
#include "unittest_common.hpp" |
16 |
|
|
|
17 |
|
|
using namespace boost::unit_test; |
18 |
|
|
using namespace crocoddyl::unittest; |
19 |
|
|
|
20 |
|
|
//----------------------------------------------------------------------------// |
21 |
|
|
|
22 |
|
✗ |
void test_check_data(DifferentialActionModelTypes::Type action_type) { |
23 |
|
|
// create the model |
24 |
|
✗ |
DifferentialActionModelFactory factory; |
25 |
|
|
std::shared_ptr<crocoddyl::DifferentialActionModelAbstract> model = |
26 |
|
✗ |
factory.create(action_type); |
27 |
|
|
|
28 |
|
|
// Run the print function |
29 |
|
✗ |
std::ostringstream tmp; |
30 |
|
✗ |
tmp << *model; |
31 |
|
|
|
32 |
|
|
// create the corresponding data object |
33 |
|
|
std::shared_ptr<crocoddyl::DifferentialActionDataAbstract> data = |
34 |
|
✗ |
model->createData(); |
35 |
|
|
|
36 |
|
✗ |
BOOST_CHECK(model->checkData(data)); |
37 |
|
|
|
38 |
|
|
// Checking that casted computation is the same |
39 |
|
|
#ifdef NDEBUG // Run only in release mode |
40 |
|
|
std::shared_ptr<crocoddyl::DifferentialActionModelAbstractTpl<float>> |
41 |
|
|
casted_model = model->cast<float>(); |
42 |
|
|
std::shared_ptr<crocoddyl::DifferentialActionDataAbstractTpl<float>> |
43 |
|
|
casted_data = casted_model->createData(); |
44 |
|
|
BOOST_CHECK(casted_model->checkData(casted_data)); |
45 |
|
|
#endif |
46 |
|
|
} |
47 |
|
|
|
48 |
|
✗ |
void test_calc_returns_state(DifferentialActionModelTypes::Type action_type) { |
49 |
|
|
// create the model |
50 |
|
✗ |
DifferentialActionModelFactory factory; |
51 |
|
|
std::shared_ptr<crocoddyl::DifferentialActionModelAbstract> model = |
52 |
|
✗ |
factory.create(action_type); |
53 |
|
|
|
54 |
|
|
// create the corresponding data object |
55 |
|
|
std::shared_ptr<crocoddyl::DifferentialActionDataAbstract> data = |
56 |
|
✗ |
model->createData(); |
57 |
|
|
|
58 |
|
|
// Generating random state and control vectors |
59 |
|
✗ |
const Eigen::VectorXd x = model->get_state()->rand(); |
60 |
|
✗ |
const Eigen::VectorXd u = Eigen::VectorXd::Random(model->get_nu()); |
61 |
|
|
|
62 |
|
|
// Getting the state dimension from calc() call |
63 |
|
✗ |
model->calc(data, x, u); |
64 |
|
|
|
65 |
|
✗ |
BOOST_CHECK(static_cast<std::size_t>(data->xout.size()) == |
66 |
|
|
model->get_state()->get_nv()); |
67 |
|
|
|
68 |
|
|
// Checking that casted computation is the same |
69 |
|
|
#ifdef NDEBUG // Run only in release mode |
70 |
|
|
std::shared_ptr<crocoddyl::DifferentialActionModelAbstractTpl<float>> |
71 |
|
|
casted_model = model->cast<float>(); |
72 |
|
|
std::shared_ptr<crocoddyl::DifferentialActionDataAbstractTpl<float>> |
73 |
|
|
casted_data = casted_model->createData(); |
74 |
|
|
const Eigen::VectorXf x_f = x.cast<float>(); |
75 |
|
|
const Eigen::VectorXf u_f = u.cast<float>(); |
76 |
|
|
casted_model->calc(casted_data, x_f, u_f); |
77 |
|
|
BOOST_CHECK(static_cast<std::size_t>(casted_data->xout.size()) == |
78 |
|
|
casted_model->get_state()->get_nv()); |
79 |
|
|
float tol_f = 10.f * std::sqrt(2.0f * std::numeric_limits<float>::epsilon()); |
80 |
|
|
BOOST_CHECK((data->xout.cast<float>() - casted_data->xout).isZero(tol_f)); |
81 |
|
|
#endif |
82 |
|
|
} |
83 |
|
|
|
84 |
|
✗ |
void test_calc_returns_a_cost(DifferentialActionModelTypes::Type action_type) { |
85 |
|
|
// create the model |
86 |
|
✗ |
DifferentialActionModelFactory factory; |
87 |
|
|
std::shared_ptr<crocoddyl::DifferentialActionModelAbstract> model = |
88 |
|
✗ |
factory.create(action_type); |
89 |
|
|
|
90 |
|
|
// create the corresponding data object and set the cost to nan |
91 |
|
|
std::shared_ptr<crocoddyl::DifferentialActionDataAbstract> data = |
92 |
|
✗ |
model->createData(); |
93 |
|
✗ |
data->cost = nan(""); |
94 |
|
|
|
95 |
|
|
// Getting the cost value computed by calc() |
96 |
|
✗ |
const Eigen::VectorXd x = model->get_state()->rand(); |
97 |
|
✗ |
const Eigen::VectorXd u = Eigen::VectorXd::Random(model->get_nu()); |
98 |
|
✗ |
model->calc(data, x, u); |
99 |
|
|
|
100 |
|
|
// Checking that calc returns a cost value |
101 |
|
✗ |
BOOST_CHECK(!std::isnan(data->cost)); |
102 |
|
|
|
103 |
|
|
// Checking that casted computation is the same |
104 |
|
|
#ifdef NDEBUG // Run only in release mode |
105 |
|
|
std::shared_ptr<crocoddyl::DifferentialActionModelAbstractTpl<float>> |
106 |
|
|
casted_model = model->cast<float>(); |
107 |
|
|
std::shared_ptr<crocoddyl::DifferentialActionDataAbstractTpl<float>> |
108 |
|
|
casted_data = casted_model->createData(); |
109 |
|
|
casted_data->cost = float(nan("")); |
110 |
|
|
const Eigen::VectorXf x_f = x.cast<float>(); |
111 |
|
|
const Eigen::VectorXf u_f = u.cast<float>(); |
112 |
|
|
casted_model->calc(casted_data, x_f, u_f); |
113 |
|
|
BOOST_CHECK(!std::isnan(casted_data->cost)); |
114 |
|
|
float tol_f = 50.f * std::sqrt(2.0f * std::numeric_limits<float>::epsilon()); |
115 |
|
|
BOOST_CHECK(std::abs(float(data->cost) - casted_data->cost) <= tol_f); |
116 |
|
|
#endif |
117 |
|
|
} |
118 |
|
|
|
119 |
|
✗ |
void test_quasi_static(DifferentialActionModelTypes::Type action_type) { |
120 |
|
✗ |
if (action_type == |
121 |
|
|
DifferentialActionModelTypes:: |
122 |
|
|
DifferentialActionModelFreeFwdDynamics_TalosArm_Squashed) |
123 |
|
✗ |
return; |
124 |
|
|
// create the model |
125 |
|
✗ |
DifferentialActionModelFactory factory; |
126 |
|
|
std::shared_ptr<crocoddyl::DifferentialActionModelAbstract> model = |
127 |
|
✗ |
factory.create(action_type, false); |
128 |
|
|
|
129 |
|
|
// create the corresponding data object and set the cost to nan |
130 |
|
|
std::shared_ptr<crocoddyl::DifferentialActionDataAbstract> data = |
131 |
|
✗ |
model->createData(); |
132 |
|
|
|
133 |
|
|
// Getting the cost value computed by calc() |
134 |
|
✗ |
Eigen::VectorXd x = model->get_state()->rand(); |
135 |
|
✗ |
x.tail(model->get_state()->get_nv()).setZero(); |
136 |
|
✗ |
Eigen::VectorXd u = Eigen::VectorXd::Zero(model->get_nu()); |
137 |
|
✗ |
model->quasiStatic(data, u, x); |
138 |
|
✗ |
model->calc(data, x, u); |
139 |
|
|
|
140 |
|
|
// Check for inactive contacts |
141 |
|
✗ |
if (action_type == DifferentialActionModelTypes:: |
142 |
|
✗ |
DifferentialActionModelContactFwdDynamics_HyQ || |
143 |
|
|
action_type == |
144 |
|
|
DifferentialActionModelTypes:: |
145 |
|
✗ |
DifferentialActionModelContactFwdDynamicsWithFriction_HyQ || |
146 |
|
|
action_type == DifferentialActionModelTypes:: |
147 |
|
✗ |
DifferentialActionModelContactFwdDynamics_Talos || |
148 |
|
|
action_type == |
149 |
|
|
DifferentialActionModelTypes:: |
150 |
|
✗ |
DifferentialActionModelContactFwdDynamicsWithFriction_Talos || |
151 |
|
|
action_type == DifferentialActionModelTypes:: |
152 |
|
✗ |
DifferentialActionModelContactInvDynamics_HyQ || |
153 |
|
|
action_type == |
154 |
|
|
DifferentialActionModelTypes:: |
155 |
|
✗ |
DifferentialActionModelContactInvDynamicsWithFriction_HyQ || |
156 |
|
|
action_type == DifferentialActionModelTypes:: |
157 |
|
✗ |
DifferentialActionModelContactInvDynamics_Talos || |
158 |
|
|
action_type == |
159 |
|
|
DifferentialActionModelTypes:: |
160 |
|
|
DifferentialActionModelContactInvDynamicsWithFriction_Talos) { |
161 |
|
|
std::shared_ptr<crocoddyl::DifferentialActionModelContactFwdDynamics> m = |
162 |
|
|
std::static_pointer_cast< |
163 |
|
✗ |
crocoddyl::DifferentialActionModelContactFwdDynamics>(model); |
164 |
|
✗ |
m->get_contacts()->changeContactStatus("lf", false); |
165 |
|
|
|
166 |
|
✗ |
model->quasiStatic(data, u, x); |
167 |
|
✗ |
model->calc(data, x, u); |
168 |
|
|
|
169 |
|
|
// Checking that the acceleration is zero as supposed to be in a quasi |
170 |
|
|
// static condition |
171 |
|
✗ |
BOOST_CHECK(data->xout.norm() <= 1e-8); |
172 |
|
|
|
173 |
|
|
// Checking that casted computation is the same |
174 |
|
|
#ifdef NDEBUG // Run only in release mode |
175 |
|
|
std::shared_ptr<crocoddyl::DifferentialActionModelAbstractTpl<float>> |
176 |
|
|
casted_model = model->cast<float>(); |
177 |
|
|
std::shared_ptr<crocoddyl::DifferentialActionDataAbstractTpl<float>> |
178 |
|
|
casted_data = casted_model->createData(); |
179 |
|
|
Eigen::VectorXf x_f = x.cast<float>(); |
180 |
|
|
x_f.tail(casted_model->get_state()->get_nv()).setZero(); |
181 |
|
|
Eigen::VectorXf u_f = Eigen::VectorXf::Zero(casted_model->get_nu()); |
182 |
|
|
casted_model->quasiStatic(casted_data, u_f, x_f); |
183 |
|
|
casted_model->calc(casted_data, x_f, u_f); |
184 |
|
|
float tol_f = |
185 |
|
|
50.f * std::sqrt(2.0f * std::numeric_limits<float>::epsilon()); |
186 |
|
|
BOOST_CHECK(casted_data->xout.norm() <= tol_f); |
187 |
|
|
BOOST_CHECK((data->xout.cast<float>() - casted_data->xout).isZero(tol_f)); |
188 |
|
|
#endif |
189 |
|
|
} |
190 |
|
|
} |
191 |
|
|
|
192 |
|
✗ |
void test_partial_derivatives_against_numdiff( |
193 |
|
|
DifferentialActionModelTypes::Type action_type) { |
194 |
|
|
// create the model |
195 |
|
✗ |
DifferentialActionModelFactory factory; |
196 |
|
|
std::shared_ptr<crocoddyl::DifferentialActionModelAbstract> model = |
197 |
|
✗ |
factory.create(action_type); |
198 |
|
|
|
199 |
|
|
// create the corresponding data object and set the cost to nan |
200 |
|
|
std::shared_ptr<crocoddyl::DifferentialActionDataAbstract> data = |
201 |
|
✗ |
model->createData(); |
202 |
|
|
|
203 |
|
✗ |
crocoddyl::DifferentialActionModelNumDiff model_num_diff(model); |
204 |
|
|
std::shared_ptr<crocoddyl::DifferentialActionDataAbstract> data_num_diff = |
205 |
|
✗ |
model_num_diff.createData(); |
206 |
|
|
|
207 |
|
|
// Generating random values for the state and control |
208 |
|
✗ |
Eigen::VectorXd x = model->get_state()->rand(); |
209 |
|
✗ |
const Eigen::VectorXd u = Eigen::VectorXd::Random(model->get_nu()); |
210 |
|
|
|
211 |
|
|
// Computing the action derivatives |
212 |
|
✗ |
model->calc(data, x, u); |
213 |
|
✗ |
model->calcDiff(data, x, u); |
214 |
|
✗ |
model_num_diff.calc(data_num_diff, x, u); |
215 |
|
✗ |
model_num_diff.calcDiff(data_num_diff, x, u); |
216 |
|
|
// Tolerance defined as in |
217 |
|
|
// http://www.it.uom.gr/teaching/linearalgebra/NumericalRecipiesInC/c5-7.pdf |
218 |
|
✗ |
double tol = 2. * std::pow(model_num_diff.get_disturbance(), 1. / 3.); |
219 |
|
✗ |
BOOST_CHECK((data->h - data_num_diff->h).isZero(tol)); |
220 |
|
✗ |
BOOST_CHECK((data->g - data_num_diff->g).isZero(tol)); |
221 |
|
✗ |
BOOST_CHECK((data->Fx - data_num_diff->Fx).isZero(tol)); |
222 |
|
✗ |
BOOST_CHECK((data->Fu - data_num_diff->Fu).isZero(tol)); |
223 |
|
✗ |
BOOST_CHECK((data->Lx - data_num_diff->Lx).isZero(tol)); |
224 |
|
✗ |
BOOST_CHECK((data->Lu - data_num_diff->Lu).isZero(tol)); |
225 |
|
✗ |
if (model_num_diff.get_with_gauss_approx()) { |
226 |
|
✗ |
BOOST_CHECK((data->Lxx - data_num_diff->Lxx).isZero(tol)); |
227 |
|
✗ |
BOOST_CHECK((data->Lxu - data_num_diff->Lxu).isZero(tol)); |
228 |
|
✗ |
BOOST_CHECK((data->Luu - data_num_diff->Luu).isZero(tol)); |
229 |
|
|
} |
230 |
|
✗ |
BOOST_CHECK((data->Hx - data_num_diff->Hx).isZero(tol)); |
231 |
|
✗ |
BOOST_CHECK((data->Hu - data_num_diff->Hu).isZero(tol)); |
232 |
|
✗ |
BOOST_CHECK((data->Gx - data_num_diff->Gx).isZero(tol)); |
233 |
|
✗ |
BOOST_CHECK((data->Gu - data_num_diff->Gu).isZero(tol)); |
234 |
|
|
|
235 |
|
|
// Computing the action derivatives |
236 |
|
✗ |
x = model->get_state()->rand(); |
237 |
|
✗ |
model->calc(data, x); |
238 |
|
✗ |
model->calcDiff(data, x); |
239 |
|
✗ |
model_num_diff.calc(data_num_diff, x); |
240 |
|
✗ |
model_num_diff.calcDiff(data_num_diff, x); |
241 |
|
✗ |
BOOST_CHECK((data->h - data_num_diff->h).isZero(tol)); |
242 |
|
✗ |
BOOST_CHECK((data->g - data_num_diff->g).isZero(tol)); |
243 |
|
✗ |
BOOST_CHECK((data->Lx - data_num_diff->Lx).isZero(tol)); |
244 |
|
✗ |
if (model_num_diff.get_with_gauss_approx()) { |
245 |
|
✗ |
BOOST_CHECK((data->Lxx - data_num_diff->Lxx).isZero(tol)); |
246 |
|
|
} |
247 |
|
✗ |
BOOST_CHECK((data->Hx - data_num_diff->Hx).isZero(tol)); |
248 |
|
✗ |
BOOST_CHECK((data->Gx - data_num_diff->Gx).isZero(tol)); |
249 |
|
|
|
250 |
|
|
// Checking that casted computation is the same |
251 |
|
|
#ifdef NDEBUG // Run only in release mode |
252 |
|
|
std::shared_ptr<crocoddyl::DifferentialActionModelAbstractTpl<float>> |
253 |
|
|
casted_model = model->cast<float>(); |
254 |
|
|
std::shared_ptr<crocoddyl::DifferentialActionDataAbstractTpl<float>> |
255 |
|
|
casted_data = casted_model->createData(); |
256 |
|
|
const Eigen::VectorXf x_f = x.cast<float>(); |
257 |
|
|
const Eigen::VectorXf u_f = u.cast<float>(); |
258 |
|
|
model->calc(data, x, u); |
259 |
|
|
model->calcDiff(data, x, u); |
260 |
|
|
casted_model->calc(casted_data, x_f, u_f); |
261 |
|
|
casted_model->calcDiff(casted_data, x_f, u_f); |
262 |
|
|
float tol_f = 80.f * std::sqrt(2.0f * std::numeric_limits<float>::epsilon()); |
263 |
|
|
BOOST_CHECK((data->h.cast<float>() - casted_data->h).isZero(tol_f)); |
264 |
|
|
BOOST_CHECK((data->g.cast<float>() - casted_data->g).isZero(tol_f)); |
265 |
|
|
BOOST_CHECK((data->Fx.cast<float>() - casted_data->Fx).isZero(tol_f)); |
266 |
|
|
BOOST_CHECK((data->Fu.cast<float>() - casted_data->Fu).isZero(tol_f)); |
267 |
|
|
BOOST_CHECK((data->Lx.cast<float>() - casted_data->Lx).isZero(tol_f)); |
268 |
|
|
BOOST_CHECK((data->Lu.cast<float>() - casted_data->Lu).isZero(tol_f)); |
269 |
|
|
BOOST_CHECK((data->Gx.cast<float>() - casted_data->Gx).isZero(tol_f)); |
270 |
|
|
BOOST_CHECK((data->Gu.cast<float>() - casted_data->Gu).isZero(tol_f)); |
271 |
|
|
BOOST_CHECK((data->Hx.cast<float>() - casted_data->Hx).isZero(tol_f)); |
272 |
|
|
BOOST_CHECK((data->Hu.cast<float>() - casted_data->Hu).isZero(tol_f)); |
273 |
|
|
crocoddyl::DifferentialActionModelNumDiffTpl<float> casted_model_num_diff = |
274 |
|
|
model_num_diff.cast<float>(); |
275 |
|
|
std::shared_ptr<crocoddyl::DifferentialActionDataAbstractTpl<float>> |
276 |
|
|
casted_data_num_diff = casted_model_num_diff.createData(); |
277 |
|
|
casted_model_num_diff.calc(casted_data_num_diff, x_f, u_f); |
278 |
|
|
casted_model_num_diff.calcDiff(casted_data_num_diff, x_f, u_f); |
279 |
|
|
tol_f = 80.0f * sqrt(casted_model_num_diff.get_disturbance()); |
280 |
|
|
BOOST_CHECK((casted_data->Gx - casted_data_num_diff->Gx).isZero(tol_f)); |
281 |
|
|
BOOST_CHECK((casted_data->Gu - casted_data_num_diff->Gu).isZero(tol_f)); |
282 |
|
|
BOOST_CHECK((casted_data->Hx - casted_data_num_diff->Hx).isZero(tol_f)); |
283 |
|
|
BOOST_CHECK((casted_data->Hu - casted_data_num_diff->Hu).isZero(tol_f)); |
284 |
|
|
#endif |
285 |
|
|
} |
286 |
|
|
|
287 |
|
|
//----------------------------------------------------------------------------// |
288 |
|
|
|
289 |
|
✗ |
void register_action_model_unit_tests( |
290 |
|
|
DifferentialActionModelTypes::Type action_type) { |
291 |
|
✗ |
boost::test_tools::output_test_stream test_name; |
292 |
|
✗ |
test_name << "test_" << action_type; |
293 |
|
✗ |
std::cout << "Running " << test_name.str() << std::endl; |
294 |
|
✗ |
test_suite* ts = BOOST_TEST_SUITE(test_name.str()); |
295 |
|
✗ |
ts->add(BOOST_TEST_CASE(boost::bind(&test_check_data, action_type))); |
296 |
|
✗ |
ts->add(BOOST_TEST_CASE(boost::bind(&test_calc_returns_state, action_type))); |
297 |
|
✗ |
ts->add(BOOST_TEST_CASE(boost::bind(&test_calc_returns_a_cost, action_type))); |
298 |
|
✗ |
ts->add(BOOST_TEST_CASE( |
299 |
|
|
boost::bind(&test_partial_derivatives_against_numdiff, action_type))); |
300 |
|
✗ |
ts->add(BOOST_TEST_CASE(boost::bind(&test_quasi_static, action_type))); |
301 |
|
✗ |
framework::master_test_suite().add(ts); |
302 |
|
|
} |
303 |
|
|
|
304 |
|
✗ |
bool init_function() { |
305 |
|
✗ |
for (size_t i = 0; i < DifferentialActionModelTypes::all.size(); ++i) { |
306 |
|
✗ |
register_action_model_unit_tests(DifferentialActionModelTypes::all[i]); |
307 |
|
|
} |
308 |
|
|
// register_action_model_unit_tests(DifferentialActionModelTypes::DifferentialActionModelContactInvDynamicsWithFriction_Talos); |
309 |
|
|
// register_action_model_unit_tests(DifferentialActionModelTypes::DifferentialActionModelContactInvDynamics_TalosArm); |
310 |
|
|
// register_action_model_unit_tests(DifferentialActionModelTypes::DifferentialActionModelContactInvDynamics_HyQ); |
311 |
|
✗ |
return true; |
312 |
|
|
} |
313 |
|
|
|
314 |
|
✗ |
int main(int argc, char** argv) { |
315 |
|
✗ |
return ::boost::unit_test::unit_test_main(&init_function, argc, argv); |
316 |
|
|
} |
317 |
|
|
|