| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | /////////////////////////////////////////////////////////////////////////////// | ||
| 2 | // BSD 3-Clause License | ||
| 3 | // | ||
| 4 | // Copyright (C) 2019-2025, University of Edinburgh, University of Oxford, | ||
| 5 | // Heriot-Watt University | ||
| 6 | // Copyright note valid unless otherwise stated in individual files. | ||
| 7 | // All rights reserved. | ||
| 8 | /////////////////////////////////////////////////////////////////////////////// | ||
| 9 | |||
| 10 | #define BOOST_TEST_NO_MAIN | ||
| 11 | #define BOOST_TEST_ALTERNATIVE_INIT_API | ||
| 12 | |||
| 13 | #include <pinocchio/math/quaternion.hpp> | ||
| 14 | |||
| 15 | #include "crocoddyl/core/activations/quadratic-barrier.hpp" | ||
| 16 | #include "crocoddyl/multibody/friction-cone.hpp" | ||
| 17 | #include "unittest_common.hpp" | ||
| 18 | |||
| 19 | using namespace boost::unit_test; | ||
| 20 | using namespace crocoddyl::unittest; | ||
| 21 | |||
| 22 | ✗ | void test_constructor() { | |
| 23 | // Common parameters | ||
| 24 | ✗ | double mu = random_real_in_range(0.01, 1.); | |
| 25 | ✗ | std::size_t nf = 2 * random_int_in_range(2, 16); | |
| 26 | ✗ | bool inner_appr = false; | |
| 27 | |||
| 28 | // No rotation | ||
| 29 | ✗ | Eigen::Matrix3d R = Eigen::Matrix3d::Identity(); | |
| 30 | |||
| 31 | // Create the friction cone with rotation and surface normal | ||
| 32 | ✗ | crocoddyl::FrictionCone cone(R, mu, nf, inner_appr); | |
| 33 | ✗ | crocoddyl::FrictionCone casted_cone = cone.cast<double>(); | |
| 34 | |||
| 35 | ✗ | BOOST_CHECK(cone.get_R().isApprox(R)); | |
| 36 | ✗ | BOOST_CHECK(cone.get_mu() == mu); | |
| 37 | ✗ | BOOST_CHECK(cone.get_nf() == nf); | |
| 38 | ✗ | BOOST_CHECK(cone.get_inner_appr() == inner_appr); | |
| 39 | ✗ | BOOST_CHECK(static_cast<std::size_t>(cone.get_A().rows()) == nf + 1); | |
| 40 | ✗ | BOOST_CHECK(static_cast<std::size_t>(cone.get_lb().size()) == nf + 1); | |
| 41 | ✗ | BOOST_CHECK(static_cast<std::size_t>(cone.get_ub().size()) == nf + 1); | |
| 42 | |||
| 43 | // Checking that casted computation is the same | ||
| 44 | ✗ | BOOST_CHECK(casted_cone.get_R().isApprox(R)); | |
| 45 | ✗ | BOOST_CHECK(casted_cone.get_mu() == mu); | |
| 46 | ✗ | BOOST_CHECK(casted_cone.get_nf() == nf); | |
| 47 | ✗ | BOOST_CHECK(casted_cone.get_inner_appr() == inner_appr); | |
| 48 | ✗ | BOOST_CHECK(static_cast<std::size_t>(casted_cone.get_A().rows()) == nf + 1); | |
| 49 | ✗ | BOOST_CHECK(static_cast<std::size_t>(casted_cone.get_lb().size()) == nf + 1); | |
| 50 | ✗ | BOOST_CHECK(static_cast<std::size_t>(casted_cone.get_ub().size()) == nf + 1); | |
| 51 | |||
| 52 | // With rotation | ||
| 53 | ✗ | Eigen::Quaterniond q; | |
| 54 | ✗ | pinocchio::quaternion::uniformRandom(q); | |
| 55 | ✗ | R = q.toRotationMatrix(); | |
| 56 | |||
| 57 | // Create the friction cone | ||
| 58 | ✗ | cone = crocoddyl::FrictionCone(R, mu, nf, inner_appr); | |
| 59 | ✗ | casted_cone = cone.cast<double>(); | |
| 60 | |||
| 61 | ✗ | BOOST_CHECK(cone.get_R().isApprox(R)); | |
| 62 | ✗ | BOOST_CHECK(cone.get_mu() == mu); | |
| 63 | ✗ | BOOST_CHECK(cone.get_nf() == nf); | |
| 64 | ✗ | BOOST_CHECK(cone.get_inner_appr() == inner_appr); | |
| 65 | ✗ | BOOST_CHECK(static_cast<std::size_t>(cone.get_A().rows()) == nf + 1); | |
| 66 | ✗ | BOOST_CHECK(static_cast<std::size_t>(cone.get_lb().size()) == nf + 1); | |
| 67 | ✗ | BOOST_CHECK(static_cast<std::size_t>(cone.get_ub().size()) == nf + 1); | |
| 68 | |||
| 69 | // Checking that casted computation is the same | ||
| 70 | ✗ | BOOST_CHECK(casted_cone.get_R().isApprox(R)); | |
| 71 | ✗ | BOOST_CHECK(casted_cone.get_mu() == mu); | |
| 72 | ✗ | BOOST_CHECK(casted_cone.get_nf() == nf); | |
| 73 | ✗ | BOOST_CHECK(casted_cone.get_inner_appr() == inner_appr); | |
| 74 | ✗ | BOOST_CHECK(static_cast<std::size_t>(casted_cone.get_A().rows()) == nf + 1); | |
| 75 | ✗ | BOOST_CHECK(static_cast<std::size_t>(casted_cone.get_lb().size()) == nf + 1); | |
| 76 | ✗ | BOOST_CHECK(static_cast<std::size_t>(casted_cone.get_ub().size()) == nf + 1); | |
| 77 | |||
| 78 | // Create the friction cone from a reference | ||
| 79 | { | ||
| 80 | ✗ | crocoddyl::FrictionCone cone_reference(cone); | |
| 81 | ✗ | casted_cone = cone_reference.cast<double>(); | |
| 82 | |||
| 83 | ✗ | BOOST_CHECK(cone.get_nf() == cone_reference.get_nf()); | |
| 84 | ✗ | BOOST_CHECK(cone.get_A().isApprox(cone_reference.get_A())); | |
| 85 | ✗ | for (std::size_t i = 0; i < static_cast<std::size_t>(cone.get_ub().size()); | |
| 86 | ++i) { | ||
| 87 | ✗ | BOOST_CHECK(cone.get_ub()[i] == cone_reference.get_ub()[i]); | |
| 88 | ✗ | BOOST_CHECK(cone.get_lb()[i] == cone_reference.get_lb()[i]); | |
| 89 | } | ||
| 90 | ✗ | BOOST_CHECK(cone.get_R().isApprox(cone_reference.get_R())); | |
| 91 | ✗ | BOOST_CHECK(std::abs(cone.get_mu() - cone_reference.get_mu()) < 1e-9); | |
| 92 | ✗ | BOOST_CHECK(cone.get_inner_appr() == cone_reference.get_inner_appr()); | |
| 93 | ✗ | BOOST_CHECK(std::abs(cone.get_min_nforce() - | |
| 94 | cone_reference.get_min_nforce()) < 1e-9); | ||
| 95 | ✗ | BOOST_CHECK(cone.get_max_nforce() == cone_reference.get_max_nforce()); | |
| 96 | |||
| 97 | // Checking that casted computation is the same | ||
| 98 | ✗ | BOOST_CHECK(casted_cone.get_nf() == cone_reference.get_nf()); | |
| 99 | ✗ | BOOST_CHECK(casted_cone.get_A().isApprox(cone_reference.get_A())); | |
| 100 | ✗ | for (std::size_t i = 0; i < static_cast<std::size_t>(cone.get_ub().size()); | |
| 101 | ++i) { | ||
| 102 | ✗ | BOOST_CHECK(casted_cone.get_ub()[i] == cone_reference.get_ub()[i]); | |
| 103 | ✗ | BOOST_CHECK(casted_cone.get_lb()[i] == cone_reference.get_lb()[i]); | |
| 104 | } | ||
| 105 | ✗ | BOOST_CHECK(casted_cone.get_R().isApprox(cone_reference.get_R())); | |
| 106 | ✗ | BOOST_CHECK(std::abs(casted_cone.get_mu() - cone_reference.get_mu()) < | |
| 107 | 1e-9); | ||
| 108 | ✗ | BOOST_CHECK(cone.get_inner_appr() == cone_reference.get_inner_appr()); | |
| 109 | ✗ | BOOST_CHECK(std::abs(casted_cone.get_min_nforce() - | |
| 110 | cone_reference.get_min_nforce()) < 1e-9); | ||
| 111 | ✗ | BOOST_CHECK(casted_cone.get_max_nforce() == | |
| 112 | cone_reference.get_max_nforce()); | ||
| 113 | ✗ | } | |
| 114 | |||
| 115 | // Create the friction cone through the copy operator | ||
| 116 | { | ||
| 117 | ✗ | crocoddyl::FrictionCone cone_copy; | |
| 118 | ✗ | cone_copy = cone; | |
| 119 | ✗ | casted_cone = cone_copy.cast<double>(); | |
| 120 | |||
| 121 | ✗ | BOOST_CHECK(cone.get_nf() == cone_copy.get_nf()); | |
| 122 | ✗ | BOOST_CHECK(cone.get_A().isApprox(cone_copy.get_A())); | |
| 123 | ✗ | for (std::size_t i = 0; i < static_cast<std::size_t>(cone.get_ub().size()); | |
| 124 | ++i) { | ||
| 125 | ✗ | BOOST_CHECK(cone.get_ub()[i] == cone_copy.get_ub()[i]); | |
| 126 | ✗ | BOOST_CHECK(cone.get_lb()[i] == cone_copy.get_lb()[i]); | |
| 127 | } | ||
| 128 | ✗ | BOOST_CHECK(cone.get_R().isApprox(cone_copy.get_R())); | |
| 129 | ✗ | BOOST_CHECK(std::abs(cone.get_mu() - cone_copy.get_mu()) < 1e-9); | |
| 130 | ✗ | BOOST_CHECK(cone.get_inner_appr() == cone_copy.get_inner_appr()); | |
| 131 | ✗ | BOOST_CHECK(std::abs(cone.get_min_nforce() - cone_copy.get_min_nforce()) < | |
| 132 | 1e-9); | ||
| 133 | ✗ | BOOST_CHECK(cone.get_max_nforce() == cone_copy.get_max_nforce()); | |
| 134 | |||
| 135 | // Checking that casted computation is the same | ||
| 136 | ✗ | BOOST_CHECK(casted_cone.get_nf() == cone_copy.get_nf()); | |
| 137 | ✗ | BOOST_CHECK(casted_cone.get_A().isApprox(cone_copy.get_A())); | |
| 138 | ✗ | for (std::size_t i = 0; i < static_cast<std::size_t>(cone.get_ub().size()); | |
| 139 | ++i) { | ||
| 140 | ✗ | BOOST_CHECK(casted_cone.get_ub()[i] == cone_copy.get_ub()[i]); | |
| 141 | ✗ | BOOST_CHECK(casted_cone.get_lb()[i] == cone_copy.get_lb()[i]); | |
| 142 | } | ||
| 143 | ✗ | BOOST_CHECK(casted_cone.get_R().isApprox(cone_copy.get_R())); | |
| 144 | ✗ | BOOST_CHECK(std::abs(casted_cone.get_mu() - cone_copy.get_mu()) < 1e-9); | |
| 145 | ✗ | BOOST_CHECK(casted_cone.get_inner_appr() == cone_copy.get_inner_appr()); | |
| 146 | ✗ | BOOST_CHECK(std::abs(casted_cone.get_min_nforce() - | |
| 147 | cone_copy.get_min_nforce()) < 1e-9); | ||
| 148 | ✗ | BOOST_CHECK(casted_cone.get_max_nforce() == cone_copy.get_max_nforce()); | |
| 149 | ✗ | } | |
| 150 | ✗ | } | |
| 151 | |||
| 152 | ✗ | void test_inner_approximation_of_friction_cone() { | |
| 153 | ✗ | Eigen::Matrix3d R = Eigen::Matrix3d::Identity(); | |
| 154 | ✗ | double mu = random_real_in_range(0.01, 1.); | |
| 155 | ✗ | std::size_t nf = 2 * random_int_in_range(2, 16); | |
| 156 | ✗ | bool inner_appr = true; | |
| 157 | ✗ | crocoddyl::FrictionCone cone(R, mu, nf, inner_appr); | |
| 158 | ✗ | crocoddyl::FrictionCone casted_cone = cone.cast<double>(); | |
| 159 | ✗ | const Eigen::VectorXd A_mu = -cone.get_A().col(2); | |
| 160 | ✗ | for (std::size_t i = 0; i < nf; ++i) { | |
| 161 | ✗ | BOOST_CHECK_CLOSE( | |
| 162 | A_mu(i), | ||
| 163 | mu * cos((2 * crocoddyl::pi<double>() / static_cast<double>(nf)) / 2.), | ||
| 164 | 1e-9); | ||
| 165 | } | ||
| 166 | |||
| 167 | // Checking that casted computation is the same | ||
| 168 | ✗ | const Eigen::VectorXd A_mu_casted = -cone.get_A().col(2); | |
| 169 | ✗ | for (std::size_t i = 0; i < nf; ++i) { | |
| 170 | ✗ | BOOST_CHECK_CLOSE( | |
| 171 | A_mu_casted(i), | ||
| 172 | mu * cos((2 * crocoddyl::pi<double>() / static_cast<double>(nf)) / 2.), | ||
| 173 | 1e-9); | ||
| 174 | } | ||
| 175 | ✗ | } | |
| 176 | |||
| 177 | ✗ | void test_A_matrix_with_rotation_change() { | |
| 178 | // Common parameters | ||
| 179 | ✗ | double mu = random_real_in_range(0.01, 1.); | |
| 180 | ✗ | std::size_t nf = 2 * random_int_in_range(2, 16); | |
| 181 | ✗ | bool inner_appr = false; | |
| 182 | |||
| 183 | // No rotation | ||
| 184 | ✗ | Eigen::Matrix3d R = Eigen::Matrix3d::Identity(); | |
| 185 | ✗ | crocoddyl::FrictionCone cone_1(R, mu, nf, inner_appr); | |
| 186 | ✗ | crocoddyl::FrictionCone casted_cone_1 = cone_1.cast<double>(); | |
| 187 | |||
| 188 | // With rotation | ||
| 189 | ✗ | Eigen::Quaterniond q; | |
| 190 | ✗ | pinocchio::quaternion::uniformRandom(q); | |
| 191 | ✗ | R = q.toRotationMatrix(); | |
| 192 | ✗ | crocoddyl::FrictionCone cone_2(R, mu, nf, inner_appr); | |
| 193 | ✗ | crocoddyl::FrictionCone casted_cone_2 = cone_2.cast<double>(); | |
| 194 | |||
| 195 | ✗ | for (std::size_t i = 0; i < 5; ++i) { | |
| 196 | ✗ | BOOST_CHECK( | |
| 197 | (cone_1.get_A().row(i) - cone_2.get_A().row(i) * R).isZero(1e-9)); | ||
| 198 | } | ||
| 199 | |||
| 200 | // Checking that casted computation is the same | ||
| 201 | ✗ | for (std::size_t i = 0; i < 5; ++i) { | |
| 202 | ✗ | BOOST_CHECK( | |
| 203 | (casted_cone_1.get_A().row(i) - casted_cone_2.get_A().row(i) * R) | ||
| 204 | .isZero(1e-9)); | ||
| 205 | } | ||
| 206 | ✗ | } | |
| 207 | |||
| 208 | ✗ | void test_force_along_friction_cone_normal() { | |
| 209 | // Create the friction cone | ||
| 210 | ✗ | Eigen::Quaterniond q; | |
| 211 | ✗ | pinocchio::quaternion::uniformRandom(q); | |
| 212 | ✗ | Eigen::Matrix3d R = q.toRotationMatrix(); | |
| 213 | ✗ | double mu = random_real_in_range(0.01, 1.); | |
| 214 | ✗ | std::size_t nf = 2 * random_int_in_range(2, 16); | |
| 215 | ✗ | bool inner_appr = false; | |
| 216 | ✗ | crocoddyl::FrictionCone cone(R, mu, nf, inner_appr); | |
| 217 | |||
| 218 | // Create the activation for quadratic barrier | ||
| 219 | ✗ | crocoddyl::ActivationBounds bounds(cone.get_lb(), cone.get_ub()); | |
| 220 | ✗ | crocoddyl::ActivationModelQuadraticBarrier activation(bounds); | |
| 221 | crocoddyl::ActivationModelQuadraticBarrier casted_activation = | ||
| 222 | ✗ | activation.cast<double>(); | |
| 223 | const std::shared_ptr<crocoddyl::ActivationDataAbstract>& data = | ||
| 224 | ✗ | activation.createData(); | |
| 225 | const std::shared_ptr<crocoddyl::ActivationDataAbstract>& casted_data = | ||
| 226 | ✗ | casted_activation.createData(); | |
| 227 | |||
| 228 | // Compute the activation value | ||
| 229 | ✗ | Eigen::Vector3d force = random_real_in_range(0., 100.) * R.col(2); | |
| 230 | ✗ | Eigen::VectorXd r = cone.get_A() * force; | |
| 231 | ✗ | activation.calc(data, r); | |
| 232 | |||
| 233 | // The activation value has to be zero since the force is inside the friction | ||
| 234 | // cone | ||
| 235 | ✗ | BOOST_CHECK(data->a_value == 0.); | |
| 236 | |||
| 237 | // Checking that casted computation is the same | ||
| 238 | ✗ | casted_activation.calc(casted_data, r); | |
| 239 | ✗ | BOOST_CHECK(casted_data->a_value == 0.); | |
| 240 | ✗ | } | |
| 241 | |||
| 242 | ✗ | void test_negative_force_along_friction_cone_normal() { | |
| 243 | // Create the friction cone | ||
| 244 | ✗ | Eigen::Quaterniond q; | |
| 245 | ✗ | pinocchio::quaternion::uniformRandom(q); | |
| 246 | ✗ | Eigen::Matrix3d R = q.toRotationMatrix(); | |
| 247 | ✗ | double mu = random_real_in_range(0.01, 1.); | |
| 248 | ✗ | std::size_t nf = 2 * random_int_in_range(2, 16); | |
| 249 | ✗ | bool inner_appr = false; | |
| 250 | ✗ | crocoddyl::FrictionCone cone(R, mu, nf, inner_appr); | |
| 251 | ✗ | crocoddyl::FrictionCone casted_cone = cone.cast<double>(); | |
| 252 | |||
| 253 | // Create the activation for quadratic barrier | ||
| 254 | ✗ | crocoddyl::ActivationBounds bounds(cone.get_lb(), cone.get_ub()); | |
| 255 | ✗ | crocoddyl::ActivationModelQuadraticBarrier activation(bounds); | |
| 256 | crocoddyl::ActivationModelQuadraticBarrier casted_activation = | ||
| 257 | ✗ | activation.cast<double>(); | |
| 258 | const std::shared_ptr<crocoddyl::ActivationDataAbstract>& data = | ||
| 259 | ✗ | activation.createData(); | |
| 260 | const std::shared_ptr<crocoddyl::ActivationDataAbstract>& casted_data = | ||
| 261 | ✗ | casted_activation.createData(); | |
| 262 | |||
| 263 | // Compute the activation value | ||
| 264 | ✗ | Eigen::Vector3d force = -random_real_in_range(0., 100.) * R.col(2); | |
| 265 | ✗ | Eigen::VectorXd r = cone.get_A() * force; | |
| 266 | |||
| 267 | // The first nf elements of the residual has to be positive since the force is | ||
| 268 | // outside the friction cone. Additionally, the last value has to be equals to | ||
| 269 | // the force norm but with negative value since the forces is aligned and in | ||
| 270 | // opposite direction to the friction cone orientation | ||
| 271 | ✗ | for (std::size_t i = 0; i < nf; ++i) { | |
| 272 | ✗ | BOOST_CHECK(r(i) > 0.); | |
| 273 | } | ||
| 274 | ✗ | BOOST_CHECK_CLOSE(r(nf), -force.norm(), 1e-9); | |
| 275 | |||
| 276 | // The activation value has to be positive since the force is outside the | ||
| 277 | // friction cone | ||
| 278 | ✗ | activation.calc(data, r); | |
| 279 | ✗ | BOOST_CHECK(data->a_value > 0.); | |
| 280 | |||
| 281 | // Checking that casted computation is the same | ||
| 282 | ✗ | r = casted_cone.get_A() * force; | |
| 283 | ✗ | for (std::size_t i = 0; i < nf; ++i) { | |
| 284 | ✗ | BOOST_CHECK(r(i) > 0.); | |
| 285 | } | ||
| 286 | ✗ | BOOST_CHECK_CLOSE(r(nf), -force.norm(), 1e-9); | |
| 287 | ✗ | casted_activation.calc(casted_data, r); | |
| 288 | ✗ | BOOST_CHECK(casted_data->a_value > 0.); | |
| 289 | ✗ | } | |
| 290 | |||
| 291 | ✗ | void test_force_parallel_to_friction_cone_normal() { | |
| 292 | // Create the friction cone | ||
| 293 | ✗ | Eigen::Matrix3d R = Eigen::Matrix3d::Identity(); | |
| 294 | ✗ | double mu = random_real_in_range(0.01, 1.); | |
| 295 | ✗ | std::size_t nf = 2 * random_int_in_range(2, 16); | |
| 296 | ✗ | bool inner_appr = false; | |
| 297 | ✗ | crocoddyl::FrictionCone cone(R, mu, nf, inner_appr); | |
| 298 | ✗ | crocoddyl::FrictionCone casted_cone = cone.cast<double>(); | |
| 299 | |||
| 300 | // Create the activation for quadratic barrier | ||
| 301 | ✗ | crocoddyl::ActivationBounds bounds(cone.get_lb(), cone.get_ub()); | |
| 302 | ✗ | crocoddyl::ActivationModelQuadraticBarrier activation(bounds); | |
| 303 | crocoddyl::ActivationModelQuadraticBarrier casted_activation = | ||
| 304 | ✗ | activation.cast<double>(); | |
| 305 | const std::shared_ptr<crocoddyl::ActivationDataAbstract>& data = | ||
| 306 | ✗ | activation.createData(); | |
| 307 | const std::shared_ptr<crocoddyl::ActivationDataAbstract>& casted_data = | ||
| 308 | ✗ | casted_activation.createData(); | |
| 309 | |||
| 310 | // Compute the activation value | ||
| 311 | Eigen::Vector3d force = | ||
| 312 | ✗ | -random_real_in_range(0., 100.) * Eigen::Vector3d::UnitX(); | |
| 313 | ✗ | Eigen::VectorXd r = cone.get_A() * force; | |
| 314 | |||
| 315 | // The last value of the residual is equals to zero since the force is | ||
| 316 | // parallel to the friction cone orientation | ||
| 317 | ✗ | BOOST_CHECK_CLOSE(r(nf), 0., 1e-9); | |
| 318 | |||
| 319 | // The activation value has to be positive since the force is outside the | ||
| 320 | // friction cone | ||
| 321 | ✗ | activation.calc(data, r); | |
| 322 | ✗ | BOOST_CHECK(data->a_value > 0.); | |
| 323 | |||
| 324 | // Checking that casted computation is the same | ||
| 325 | ✗ | r = casted_cone.get_A() * force; | |
| 326 | ✗ | BOOST_CHECK_CLOSE(r(nf), 0., 1e-9); | |
| 327 | ✗ | casted_activation.calc(casted_data, r); | |
| 328 | ✗ | BOOST_CHECK(casted_data->a_value > 0.); | |
| 329 | ✗ | } | |
| 330 | |||
| 331 | ✗ | void register_unit_tests() { | |
| 332 | ✗ | framework::master_test_suite().add( | |
| 333 | ✗ | BOOST_TEST_CASE(boost::bind(&test_constructor))); | |
| 334 | ✗ | framework::master_test_suite().add( | |
| 335 | ✗ | BOOST_TEST_CASE(boost::bind(&test_inner_approximation_of_friction_cone))); | |
| 336 | ✗ | framework::master_test_suite().add( | |
| 337 | ✗ | BOOST_TEST_CASE(boost::bind(&test_A_matrix_with_rotation_change))); | |
| 338 | ✗ | framework::master_test_suite().add( | |
| 339 | ✗ | BOOST_TEST_CASE(boost::bind(&test_force_along_friction_cone_normal))); | |
| 340 | ✗ | framework::master_test_suite().add(BOOST_TEST_CASE( | |
| 341 | boost::bind(&test_negative_force_along_friction_cone_normal))); | ||
| 342 | ✗ | framework::master_test_suite().add(BOOST_TEST_CASE( | |
| 343 | boost::bind(&test_force_parallel_to_friction_cone_normal))); | ||
| 344 | ✗ | } | |
| 345 | |||
| 346 | ✗ | bool init_function() { | |
| 347 | ✗ | register_unit_tests(); | |
| 348 | ✗ | return true; | |
| 349 | } | ||
| 350 | |||
| 351 | ✗ | int main(int argc, char* argv[]) { | |
| 352 | ✗ | return ::boost::unit_test::unit_test_main(&init_function, argc, argv); | |
| 353 | } | ||
| 354 |