Line |
Branch |
Exec |
Source |
1 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
2 |
|
|
// BSD 3-Clause License |
3 |
|
|
// |
4 |
|
|
// Copyright (C) 2019-2025, University of Edinburgh, University of Oxford, |
5 |
|
|
// Heriot-Watt University |
6 |
|
|
// Copyright note valid unless otherwise stated in individual files. |
7 |
|
|
// All rights reserved. |
8 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
9 |
|
|
|
10 |
|
|
#define BOOST_TEST_NO_MAIN |
11 |
|
|
#define BOOST_TEST_ALTERNATIVE_INIT_API |
12 |
|
|
|
13 |
|
|
#include <pinocchio/math/quaternion.hpp> |
14 |
|
|
|
15 |
|
|
#include "crocoddyl/core/activations/quadratic-barrier.hpp" |
16 |
|
|
#include "crocoddyl/multibody/friction-cone.hpp" |
17 |
|
|
#include "unittest_common.hpp" |
18 |
|
|
|
19 |
|
|
using namespace boost::unit_test; |
20 |
|
|
using namespace crocoddyl::unittest; |
21 |
|
|
|
22 |
|
✗ |
void test_constructor() { |
23 |
|
|
// Common parameters |
24 |
|
✗ |
double mu = random_real_in_range(0.01, 1.); |
25 |
|
✗ |
std::size_t nf = 2 * random_int_in_range(2, 16); |
26 |
|
✗ |
bool inner_appr = false; |
27 |
|
|
|
28 |
|
|
// No rotation |
29 |
|
✗ |
Eigen::Matrix3d R = Eigen::Matrix3d::Identity(); |
30 |
|
|
|
31 |
|
|
// Create the friction cone with rotation and surface normal |
32 |
|
✗ |
crocoddyl::FrictionCone cone(R, mu, nf, inner_appr); |
33 |
|
✗ |
crocoddyl::FrictionCone casted_cone = cone.cast<double>(); |
34 |
|
|
|
35 |
|
✗ |
BOOST_CHECK(cone.get_R().isApprox(R)); |
36 |
|
✗ |
BOOST_CHECK(cone.get_mu() == mu); |
37 |
|
✗ |
BOOST_CHECK(cone.get_nf() == nf); |
38 |
|
✗ |
BOOST_CHECK(cone.get_inner_appr() == inner_appr); |
39 |
|
✗ |
BOOST_CHECK(static_cast<std::size_t>(cone.get_A().rows()) == nf + 1); |
40 |
|
✗ |
BOOST_CHECK(static_cast<std::size_t>(cone.get_lb().size()) == nf + 1); |
41 |
|
✗ |
BOOST_CHECK(static_cast<std::size_t>(cone.get_ub().size()) == nf + 1); |
42 |
|
|
|
43 |
|
|
// Checking that casted computation is the same |
44 |
|
✗ |
BOOST_CHECK(casted_cone.get_R().isApprox(R)); |
45 |
|
✗ |
BOOST_CHECK(casted_cone.get_mu() == mu); |
46 |
|
✗ |
BOOST_CHECK(casted_cone.get_nf() == nf); |
47 |
|
✗ |
BOOST_CHECK(casted_cone.get_inner_appr() == inner_appr); |
48 |
|
✗ |
BOOST_CHECK(static_cast<std::size_t>(casted_cone.get_A().rows()) == nf + 1); |
49 |
|
✗ |
BOOST_CHECK(static_cast<std::size_t>(casted_cone.get_lb().size()) == nf + 1); |
50 |
|
✗ |
BOOST_CHECK(static_cast<std::size_t>(casted_cone.get_ub().size()) == nf + 1); |
51 |
|
|
|
52 |
|
|
// With rotation |
53 |
|
✗ |
Eigen::Quaterniond q; |
54 |
|
✗ |
pinocchio::quaternion::uniformRandom(q); |
55 |
|
✗ |
R = q.toRotationMatrix(); |
56 |
|
|
|
57 |
|
|
// Create the friction cone |
58 |
|
✗ |
cone = crocoddyl::FrictionCone(R, mu, nf, inner_appr); |
59 |
|
✗ |
casted_cone = cone.cast<double>(); |
60 |
|
|
|
61 |
|
✗ |
BOOST_CHECK(cone.get_R().isApprox(R)); |
62 |
|
✗ |
BOOST_CHECK(cone.get_mu() == mu); |
63 |
|
✗ |
BOOST_CHECK(cone.get_nf() == nf); |
64 |
|
✗ |
BOOST_CHECK(cone.get_inner_appr() == inner_appr); |
65 |
|
✗ |
BOOST_CHECK(static_cast<std::size_t>(cone.get_A().rows()) == nf + 1); |
66 |
|
✗ |
BOOST_CHECK(static_cast<std::size_t>(cone.get_lb().size()) == nf + 1); |
67 |
|
✗ |
BOOST_CHECK(static_cast<std::size_t>(cone.get_ub().size()) == nf + 1); |
68 |
|
|
|
69 |
|
|
// Checking that casted computation is the same |
70 |
|
✗ |
BOOST_CHECK(casted_cone.get_R().isApprox(R)); |
71 |
|
✗ |
BOOST_CHECK(casted_cone.get_mu() == mu); |
72 |
|
✗ |
BOOST_CHECK(casted_cone.get_nf() == nf); |
73 |
|
✗ |
BOOST_CHECK(casted_cone.get_inner_appr() == inner_appr); |
74 |
|
✗ |
BOOST_CHECK(static_cast<std::size_t>(casted_cone.get_A().rows()) == nf + 1); |
75 |
|
✗ |
BOOST_CHECK(static_cast<std::size_t>(casted_cone.get_lb().size()) == nf + 1); |
76 |
|
✗ |
BOOST_CHECK(static_cast<std::size_t>(casted_cone.get_ub().size()) == nf + 1); |
77 |
|
|
|
78 |
|
|
// Create the friction cone from a reference |
79 |
|
|
{ |
80 |
|
✗ |
crocoddyl::FrictionCone cone_reference(cone); |
81 |
|
✗ |
casted_cone = cone_reference.cast<double>(); |
82 |
|
|
|
83 |
|
✗ |
BOOST_CHECK(cone.get_nf() == cone_reference.get_nf()); |
84 |
|
✗ |
BOOST_CHECK(cone.get_A().isApprox(cone_reference.get_A())); |
85 |
|
✗ |
for (std::size_t i = 0; i < static_cast<std::size_t>(cone.get_ub().size()); |
86 |
|
|
++i) { |
87 |
|
✗ |
BOOST_CHECK(cone.get_ub()[i] == cone_reference.get_ub()[i]); |
88 |
|
✗ |
BOOST_CHECK(cone.get_lb()[i] == cone_reference.get_lb()[i]); |
89 |
|
|
} |
90 |
|
✗ |
BOOST_CHECK(cone.get_R().isApprox(cone_reference.get_R())); |
91 |
|
✗ |
BOOST_CHECK(std::abs(cone.get_mu() - cone_reference.get_mu()) < 1e-9); |
92 |
|
✗ |
BOOST_CHECK(cone.get_inner_appr() == cone_reference.get_inner_appr()); |
93 |
|
✗ |
BOOST_CHECK(std::abs(cone.get_min_nforce() - |
94 |
|
|
cone_reference.get_min_nforce()) < 1e-9); |
95 |
|
✗ |
BOOST_CHECK(cone.get_max_nforce() == cone_reference.get_max_nforce()); |
96 |
|
|
|
97 |
|
|
// Checking that casted computation is the same |
98 |
|
✗ |
BOOST_CHECK(casted_cone.get_nf() == cone_reference.get_nf()); |
99 |
|
✗ |
BOOST_CHECK(casted_cone.get_A().isApprox(cone_reference.get_A())); |
100 |
|
✗ |
for (std::size_t i = 0; i < static_cast<std::size_t>(cone.get_ub().size()); |
101 |
|
|
++i) { |
102 |
|
✗ |
BOOST_CHECK(casted_cone.get_ub()[i] == cone_reference.get_ub()[i]); |
103 |
|
✗ |
BOOST_CHECK(casted_cone.get_lb()[i] == cone_reference.get_lb()[i]); |
104 |
|
|
} |
105 |
|
✗ |
BOOST_CHECK(casted_cone.get_R().isApprox(cone_reference.get_R())); |
106 |
|
✗ |
BOOST_CHECK(std::abs(casted_cone.get_mu() - cone_reference.get_mu()) < |
107 |
|
|
1e-9); |
108 |
|
✗ |
BOOST_CHECK(cone.get_inner_appr() == cone_reference.get_inner_appr()); |
109 |
|
✗ |
BOOST_CHECK(std::abs(casted_cone.get_min_nforce() - |
110 |
|
|
cone_reference.get_min_nforce()) < 1e-9); |
111 |
|
✗ |
BOOST_CHECK(casted_cone.get_max_nforce() == |
112 |
|
|
cone_reference.get_max_nforce()); |
113 |
|
|
} |
114 |
|
|
|
115 |
|
|
// Create the friction cone through the copy operator |
116 |
|
|
{ |
117 |
|
✗ |
crocoddyl::FrictionCone cone_copy; |
118 |
|
✗ |
cone_copy = cone; |
119 |
|
✗ |
casted_cone = cone_copy.cast<double>(); |
120 |
|
|
|
121 |
|
✗ |
BOOST_CHECK(cone.get_nf() == cone_copy.get_nf()); |
122 |
|
✗ |
BOOST_CHECK(cone.get_A().isApprox(cone_copy.get_A())); |
123 |
|
✗ |
for (std::size_t i = 0; i < static_cast<std::size_t>(cone.get_ub().size()); |
124 |
|
|
++i) { |
125 |
|
✗ |
BOOST_CHECK(cone.get_ub()[i] == cone_copy.get_ub()[i]); |
126 |
|
✗ |
BOOST_CHECK(cone.get_lb()[i] == cone_copy.get_lb()[i]); |
127 |
|
|
} |
128 |
|
✗ |
BOOST_CHECK(cone.get_R().isApprox(cone_copy.get_R())); |
129 |
|
✗ |
BOOST_CHECK(std::abs(cone.get_mu() - cone_copy.get_mu()) < 1e-9); |
130 |
|
✗ |
BOOST_CHECK(cone.get_inner_appr() == cone_copy.get_inner_appr()); |
131 |
|
✗ |
BOOST_CHECK(std::abs(cone.get_min_nforce() - cone_copy.get_min_nforce()) < |
132 |
|
|
1e-9); |
133 |
|
✗ |
BOOST_CHECK(cone.get_max_nforce() == cone_copy.get_max_nforce()); |
134 |
|
|
|
135 |
|
|
// Checking that casted computation is the same |
136 |
|
✗ |
BOOST_CHECK(casted_cone.get_nf() == cone_copy.get_nf()); |
137 |
|
✗ |
BOOST_CHECK(casted_cone.get_A().isApprox(cone_copy.get_A())); |
138 |
|
✗ |
for (std::size_t i = 0; i < static_cast<std::size_t>(cone.get_ub().size()); |
139 |
|
|
++i) { |
140 |
|
✗ |
BOOST_CHECK(casted_cone.get_ub()[i] == cone_copy.get_ub()[i]); |
141 |
|
✗ |
BOOST_CHECK(casted_cone.get_lb()[i] == cone_copy.get_lb()[i]); |
142 |
|
|
} |
143 |
|
✗ |
BOOST_CHECK(casted_cone.get_R().isApprox(cone_copy.get_R())); |
144 |
|
✗ |
BOOST_CHECK(std::abs(casted_cone.get_mu() - cone_copy.get_mu()) < 1e-9); |
145 |
|
✗ |
BOOST_CHECK(casted_cone.get_inner_appr() == cone_copy.get_inner_appr()); |
146 |
|
✗ |
BOOST_CHECK(std::abs(casted_cone.get_min_nforce() - |
147 |
|
|
cone_copy.get_min_nforce()) < 1e-9); |
148 |
|
✗ |
BOOST_CHECK(casted_cone.get_max_nforce() == cone_copy.get_max_nforce()); |
149 |
|
|
} |
150 |
|
|
} |
151 |
|
|
|
152 |
|
✗ |
void test_inner_approximation_of_friction_cone() { |
153 |
|
✗ |
Eigen::Matrix3d R = Eigen::Matrix3d::Identity(); |
154 |
|
✗ |
double mu = random_real_in_range(0.01, 1.); |
155 |
|
✗ |
std::size_t nf = 2 * random_int_in_range(2, 16); |
156 |
|
✗ |
bool inner_appr = true; |
157 |
|
✗ |
crocoddyl::FrictionCone cone(R, mu, nf, inner_appr); |
158 |
|
✗ |
crocoddyl::FrictionCone casted_cone = cone.cast<double>(); |
159 |
|
✗ |
const Eigen::VectorXd A_mu = -cone.get_A().col(2); |
160 |
|
✗ |
for (std::size_t i = 0; i < nf; ++i) { |
161 |
|
✗ |
BOOST_CHECK_CLOSE( |
162 |
|
|
A_mu(i), |
163 |
|
|
mu * cos((2 * crocoddyl::pi<double>() / static_cast<double>(nf)) / 2.), |
164 |
|
|
1e-9); |
165 |
|
|
} |
166 |
|
|
|
167 |
|
|
// Checking that casted computation is the same |
168 |
|
✗ |
const Eigen::VectorXd A_mu_casted = -cone.get_A().col(2); |
169 |
|
✗ |
for (std::size_t i = 0; i < nf; ++i) { |
170 |
|
✗ |
BOOST_CHECK_CLOSE( |
171 |
|
|
A_mu_casted(i), |
172 |
|
|
mu * cos((2 * crocoddyl::pi<double>() / static_cast<double>(nf)) / 2.), |
173 |
|
|
1e-9); |
174 |
|
|
} |
175 |
|
|
} |
176 |
|
|
|
177 |
|
✗ |
void test_A_matrix_with_rotation_change() { |
178 |
|
|
// Common parameters |
179 |
|
✗ |
double mu = random_real_in_range(0.01, 1.); |
180 |
|
✗ |
std::size_t nf = 2 * random_int_in_range(2, 16); |
181 |
|
✗ |
bool inner_appr = false; |
182 |
|
|
|
183 |
|
|
// No rotation |
184 |
|
✗ |
Eigen::Matrix3d R = Eigen::Matrix3d::Identity(); |
185 |
|
✗ |
crocoddyl::FrictionCone cone_1(R, mu, nf, inner_appr); |
186 |
|
✗ |
crocoddyl::FrictionCone casted_cone_1 = cone_1.cast<double>(); |
187 |
|
|
|
188 |
|
|
// With rotation |
189 |
|
✗ |
Eigen::Quaterniond q; |
190 |
|
✗ |
pinocchio::quaternion::uniformRandom(q); |
191 |
|
✗ |
R = q.toRotationMatrix(); |
192 |
|
✗ |
crocoddyl::FrictionCone cone_2(R, mu, nf, inner_appr); |
193 |
|
✗ |
crocoddyl::FrictionCone casted_cone_2 = cone_2.cast<double>(); |
194 |
|
|
|
195 |
|
✗ |
for (std::size_t i = 0; i < 5; ++i) { |
196 |
|
✗ |
BOOST_CHECK( |
197 |
|
|
(cone_1.get_A().row(i) - cone_2.get_A().row(i) * R).isZero(1e-9)); |
198 |
|
|
} |
199 |
|
|
|
200 |
|
|
// Checking that casted computation is the same |
201 |
|
✗ |
for (std::size_t i = 0; i < 5; ++i) { |
202 |
|
✗ |
BOOST_CHECK( |
203 |
|
|
(casted_cone_1.get_A().row(i) - casted_cone_2.get_A().row(i) * R) |
204 |
|
|
.isZero(1e-9)); |
205 |
|
|
} |
206 |
|
|
} |
207 |
|
|
|
208 |
|
✗ |
void test_force_along_friction_cone_normal() { |
209 |
|
|
// Create the friction cone |
210 |
|
✗ |
Eigen::Quaterniond q; |
211 |
|
✗ |
pinocchio::quaternion::uniformRandom(q); |
212 |
|
✗ |
Eigen::Matrix3d R = q.toRotationMatrix(); |
213 |
|
✗ |
double mu = random_real_in_range(0.01, 1.); |
214 |
|
✗ |
std::size_t nf = 2 * random_int_in_range(2, 16); |
215 |
|
✗ |
bool inner_appr = false; |
216 |
|
✗ |
crocoddyl::FrictionCone cone(R, mu, nf, inner_appr); |
217 |
|
|
|
218 |
|
|
// Create the activation for quadratic barrier |
219 |
|
✗ |
crocoddyl::ActivationBounds bounds(cone.get_lb(), cone.get_ub()); |
220 |
|
✗ |
crocoddyl::ActivationModelQuadraticBarrier activation(bounds); |
221 |
|
|
crocoddyl::ActivationModelQuadraticBarrier casted_activation = |
222 |
|
✗ |
activation.cast<double>(); |
223 |
|
|
const std::shared_ptr<crocoddyl::ActivationDataAbstract>& data = |
224 |
|
✗ |
activation.createData(); |
225 |
|
|
const std::shared_ptr<crocoddyl::ActivationDataAbstract>& casted_data = |
226 |
|
✗ |
casted_activation.createData(); |
227 |
|
|
|
228 |
|
|
// Compute the activation value |
229 |
|
✗ |
Eigen::Vector3d force = random_real_in_range(0., 100.) * R.col(2); |
230 |
|
✗ |
Eigen::VectorXd r = cone.get_A() * force; |
231 |
|
✗ |
activation.calc(data, r); |
232 |
|
|
|
233 |
|
|
// The activation value has to be zero since the force is inside the friction |
234 |
|
|
// cone |
235 |
|
✗ |
BOOST_CHECK(data->a_value == 0.); |
236 |
|
|
|
237 |
|
|
// Checking that casted computation is the same |
238 |
|
✗ |
casted_activation.calc(casted_data, r); |
239 |
|
✗ |
BOOST_CHECK(casted_data->a_value == 0.); |
240 |
|
|
} |
241 |
|
|
|
242 |
|
✗ |
void test_negative_force_along_friction_cone_normal() { |
243 |
|
|
// Create the friction cone |
244 |
|
✗ |
Eigen::Quaterniond q; |
245 |
|
✗ |
pinocchio::quaternion::uniformRandom(q); |
246 |
|
✗ |
Eigen::Matrix3d R = q.toRotationMatrix(); |
247 |
|
✗ |
double mu = random_real_in_range(0.01, 1.); |
248 |
|
✗ |
std::size_t nf = 2 * random_int_in_range(2, 16); |
249 |
|
✗ |
bool inner_appr = false; |
250 |
|
✗ |
crocoddyl::FrictionCone cone(R, mu, nf, inner_appr); |
251 |
|
✗ |
crocoddyl::FrictionCone casted_cone = cone.cast<double>(); |
252 |
|
|
|
253 |
|
|
// Create the activation for quadratic barrier |
254 |
|
✗ |
crocoddyl::ActivationBounds bounds(cone.get_lb(), cone.get_ub()); |
255 |
|
✗ |
crocoddyl::ActivationModelQuadraticBarrier activation(bounds); |
256 |
|
|
crocoddyl::ActivationModelQuadraticBarrier casted_activation = |
257 |
|
✗ |
activation.cast<double>(); |
258 |
|
|
const std::shared_ptr<crocoddyl::ActivationDataAbstract>& data = |
259 |
|
✗ |
activation.createData(); |
260 |
|
|
const std::shared_ptr<crocoddyl::ActivationDataAbstract>& casted_data = |
261 |
|
✗ |
casted_activation.createData(); |
262 |
|
|
|
263 |
|
|
// Compute the activation value |
264 |
|
✗ |
Eigen::Vector3d force = -random_real_in_range(0., 100.) * R.col(2); |
265 |
|
✗ |
Eigen::VectorXd r = cone.get_A() * force; |
266 |
|
|
|
267 |
|
|
// The first nf elements of the residual has to be positive since the force is |
268 |
|
|
// outside the friction cone. Additionally, the last value has to be equals to |
269 |
|
|
// the force norm but with negative value since the forces is aligned and in |
270 |
|
|
// opposite direction to the friction cone orientation |
271 |
|
✗ |
for (std::size_t i = 0; i < nf; ++i) { |
272 |
|
✗ |
BOOST_CHECK(r(i) > 0.); |
273 |
|
|
} |
274 |
|
✗ |
BOOST_CHECK_CLOSE(r(nf), -force.norm(), 1e-9); |
275 |
|
|
|
276 |
|
|
// The activation value has to be positive since the force is outside the |
277 |
|
|
// friction cone |
278 |
|
✗ |
activation.calc(data, r); |
279 |
|
✗ |
BOOST_CHECK(data->a_value > 0.); |
280 |
|
|
|
281 |
|
|
// Checking that casted computation is the same |
282 |
|
✗ |
r = casted_cone.get_A() * force; |
283 |
|
✗ |
for (std::size_t i = 0; i < nf; ++i) { |
284 |
|
✗ |
BOOST_CHECK(r(i) > 0.); |
285 |
|
|
} |
286 |
|
✗ |
BOOST_CHECK_CLOSE(r(nf), -force.norm(), 1e-9); |
287 |
|
✗ |
casted_activation.calc(casted_data, r); |
288 |
|
✗ |
BOOST_CHECK(casted_data->a_value > 0.); |
289 |
|
|
} |
290 |
|
|
|
291 |
|
✗ |
void test_force_parallel_to_friction_cone_normal() { |
292 |
|
|
// Create the friction cone |
293 |
|
✗ |
Eigen::Matrix3d R = Eigen::Matrix3d::Identity(); |
294 |
|
✗ |
double mu = random_real_in_range(0.01, 1.); |
295 |
|
✗ |
std::size_t nf = 2 * random_int_in_range(2, 16); |
296 |
|
✗ |
bool inner_appr = false; |
297 |
|
✗ |
crocoddyl::FrictionCone cone(R, mu, nf, inner_appr); |
298 |
|
✗ |
crocoddyl::FrictionCone casted_cone = cone.cast<double>(); |
299 |
|
|
|
300 |
|
|
// Create the activation for quadratic barrier |
301 |
|
✗ |
crocoddyl::ActivationBounds bounds(cone.get_lb(), cone.get_ub()); |
302 |
|
✗ |
crocoddyl::ActivationModelQuadraticBarrier activation(bounds); |
303 |
|
|
crocoddyl::ActivationModelQuadraticBarrier casted_activation = |
304 |
|
✗ |
activation.cast<double>(); |
305 |
|
|
const std::shared_ptr<crocoddyl::ActivationDataAbstract>& data = |
306 |
|
✗ |
activation.createData(); |
307 |
|
|
const std::shared_ptr<crocoddyl::ActivationDataAbstract>& casted_data = |
308 |
|
✗ |
casted_activation.createData(); |
309 |
|
|
|
310 |
|
|
// Compute the activation value |
311 |
|
|
Eigen::Vector3d force = |
312 |
|
✗ |
-random_real_in_range(0., 100.) * Eigen::Vector3d::UnitX(); |
313 |
|
✗ |
Eigen::VectorXd r = cone.get_A() * force; |
314 |
|
|
|
315 |
|
|
// The last value of the residual is equals to zero since the force is |
316 |
|
|
// parallel to the friction cone orientation |
317 |
|
✗ |
BOOST_CHECK_CLOSE(r(nf), 0., 1e-9); |
318 |
|
|
|
319 |
|
|
// The activation value has to be positive since the force is outside the |
320 |
|
|
// friction cone |
321 |
|
✗ |
activation.calc(data, r); |
322 |
|
✗ |
BOOST_CHECK(data->a_value > 0.); |
323 |
|
|
|
324 |
|
|
// Checking that casted computation is the same |
325 |
|
✗ |
r = casted_cone.get_A() * force; |
326 |
|
✗ |
BOOST_CHECK_CLOSE(r(nf), 0., 1e-9); |
327 |
|
✗ |
casted_activation.calc(casted_data, r); |
328 |
|
✗ |
BOOST_CHECK(casted_data->a_value > 0.); |
329 |
|
|
} |
330 |
|
|
|
331 |
|
✗ |
void register_unit_tests() { |
332 |
|
✗ |
framework::master_test_suite().add( |
333 |
|
✗ |
BOOST_TEST_CASE(boost::bind(&test_constructor))); |
334 |
|
✗ |
framework::master_test_suite().add( |
335 |
|
✗ |
BOOST_TEST_CASE(boost::bind(&test_inner_approximation_of_friction_cone))); |
336 |
|
✗ |
framework::master_test_suite().add( |
337 |
|
✗ |
BOOST_TEST_CASE(boost::bind(&test_A_matrix_with_rotation_change))); |
338 |
|
✗ |
framework::master_test_suite().add( |
339 |
|
✗ |
BOOST_TEST_CASE(boost::bind(&test_force_along_friction_cone_normal))); |
340 |
|
✗ |
framework::master_test_suite().add(BOOST_TEST_CASE( |
341 |
|
|
boost::bind(&test_negative_force_along_friction_cone_normal))); |
342 |
|
✗ |
framework::master_test_suite().add(BOOST_TEST_CASE( |
343 |
|
|
boost::bind(&test_force_parallel_to_friction_cone_normal))); |
344 |
|
|
} |
345 |
|
|
|
346 |
|
✗ |
bool init_function() { |
347 |
|
✗ |
register_unit_tests(); |
348 |
|
✗ |
return true; |
349 |
|
|
} |
350 |
|
|
|
351 |
|
✗ |
int main(int argc, char* argv[]) { |
352 |
|
✗ |
return ::boost::unit_test::unit_test_main(&init_function, argc, argv); |
353 |
|
|
} |
354 |
|
|
|