Line |
Branch |
Exec |
Source |
1 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
2 |
|
|
// BSD 3-Clause License |
3 |
|
|
// |
4 |
|
|
// Copyright (C) 2021-2025, University of Edinburgh, Heriot-Watt University |
5 |
|
|
// Copyright note valid unless otherwise stated in individual files. |
6 |
|
|
// All rights reserved. |
7 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
8 |
|
|
|
9 |
|
|
#define BOOST_TEST_NO_MAIN |
10 |
|
|
#define BOOST_TEST_ALTERNATIVE_INIT_API |
11 |
|
|
|
12 |
|
|
#include "factory/impulse_cost.hpp" |
13 |
|
|
#include "unittest_common.hpp" |
14 |
|
|
|
15 |
|
|
using namespace boost::unit_test; |
16 |
|
|
using namespace crocoddyl::unittest; |
17 |
|
|
|
18 |
|
|
//----------------------------------------------------------------------------// |
19 |
|
|
|
20 |
|
✗ |
void test_partial_derivatives_against_impulse_numdiff( |
21 |
|
|
ImpulseCostModelTypes::Type cost_type, PinocchioModelTypes::Type model_type, |
22 |
|
|
ActivationModelTypes::Type activation_type) { |
23 |
|
|
// create the model |
24 |
|
|
const std::shared_ptr<crocoddyl::ActionModelAbstract>& model = |
25 |
|
✗ |
ImpulseCostModelFactory().create(cost_type, model_type, activation_type); |
26 |
|
|
|
27 |
|
|
// create the corresponding data object and set the cost to nan |
28 |
|
|
const std::shared_ptr<crocoddyl::ActionDataAbstract>& data = |
29 |
|
✗ |
model->createData(); |
30 |
|
|
|
31 |
|
✗ |
crocoddyl::ActionModelNumDiff model_num_diff(model); |
32 |
|
|
const std::shared_ptr<crocoddyl::ActionDataAbstract>& data_num_diff = |
33 |
|
✗ |
model_num_diff.createData(); |
34 |
|
|
|
35 |
|
|
// Generating random values for the state and control |
36 |
|
✗ |
Eigen::VectorXd x = model->get_state()->rand(); |
37 |
|
✗ |
const Eigen::VectorXd u = Eigen::VectorXd::Random(model->get_nu()); |
38 |
|
|
|
39 |
|
|
// Computing the action derivatives |
40 |
|
✗ |
model->calc(data, x, u); |
41 |
|
✗ |
model->calcDiff(data, x, u); |
42 |
|
✗ |
model_num_diff.calc(data_num_diff, x, u); |
43 |
|
✗ |
model_num_diff.calcDiff(data_num_diff, x, u); |
44 |
|
|
// Tolerance defined as in |
45 |
|
|
// http://www.it.uom.gr/teaching/linearalgebra/NumericalRecipiesInC/c5-7.pdf |
46 |
|
✗ |
double tol = std::pow(model_num_diff.get_disturbance(), 1. / 3.); |
47 |
|
✗ |
BOOST_CHECK((data->Lx - data_num_diff->Lx).isZero(tol)); |
48 |
|
✗ |
BOOST_CHECK((data->Lu - data_num_diff->Lu).isZero(tol)); |
49 |
|
✗ |
if (model_num_diff.get_with_gauss_approx()) { |
50 |
|
✗ |
BOOST_CHECK((data->Lxx - data_num_diff->Lxx).isZero(tol)); |
51 |
|
✗ |
BOOST_CHECK((data->Lxu - data_num_diff->Lxu).isZero(tol)); |
52 |
|
✗ |
BOOST_CHECK((data->Luu - data_num_diff->Luu).isZero(tol)); |
53 |
|
|
} |
54 |
|
|
|
55 |
|
|
// Computing the action derivatives |
56 |
|
✗ |
x = model->get_state()->rand(); |
57 |
|
✗ |
model->calc(data, x); |
58 |
|
✗ |
model->calcDiff(data, x); |
59 |
|
✗ |
model_num_diff.calc(data_num_diff, x); |
60 |
|
✗ |
model_num_diff.calcDiff(data_num_diff, x); |
61 |
|
|
|
62 |
|
|
// Checking the partial derivatives against numerical differentiation |
63 |
|
✗ |
BOOST_CHECK((data->Lx - data_num_diff->Lx).isZero(tol)); |
64 |
|
✗ |
if (model_num_diff.get_with_gauss_approx()) { |
65 |
|
✗ |
BOOST_CHECK((data->Lxx - data_num_diff->Lxx).isZero(tol)); |
66 |
|
|
} |
67 |
|
|
|
68 |
|
|
// Checking that casted computation is the same |
69 |
|
|
#ifdef NDEBUG // Run only in release mode |
70 |
|
|
const std::shared_ptr<crocoddyl::ActionModelAbstractTpl<float>>& |
71 |
|
|
casted_model = model->cast<float>(); |
72 |
|
|
const std::shared_ptr<crocoddyl::ActionDataAbstractTpl<float>>& casted_data = |
73 |
|
|
casted_model->createData(); |
74 |
|
|
Eigen::VectorXf x_f = x.cast<float>(); |
75 |
|
|
const Eigen::VectorXf u_f = u.cast<float>(); |
76 |
|
|
model->calc(data, x, u); |
77 |
|
|
model->calcDiff(data, x, u); |
78 |
|
|
casted_model->calc(casted_data, x_f, u_f); |
79 |
|
|
casted_model->calcDiff(casted_data, x_f, u_f); |
80 |
|
|
float tol_f = 80.f * std::sqrt(2.0f * std::numeric_limits<float>::epsilon()); |
81 |
|
|
BOOST_CHECK((data->Lx.cast<float>() - casted_data->Lx).isZero(tol_f)); |
82 |
|
|
BOOST_CHECK((data->Lu.cast<float>() - casted_data->Lu).isZero(tol_f)); |
83 |
|
|
BOOST_CHECK((data->Lxx.cast<float>() - casted_data->Lxx).isZero(tol_f)); |
84 |
|
|
BOOST_CHECK((data->Lxu.cast<float>() - casted_data->Lxu).isZero(tol_f)); |
85 |
|
|
BOOST_CHECK((data->Luu.cast<float>() - casted_data->Luu).isZero(tol_f)); |
86 |
|
|
model->calc(data, x); |
87 |
|
|
model->calcDiff(data, x); |
88 |
|
|
casted_model->calc(casted_data, x_f); |
89 |
|
|
casted_model->calcDiff(casted_data, x_f); |
90 |
|
|
BOOST_CHECK((data->Lx.cast<float>() - casted_data->Lx).isZero(tol_f)); |
91 |
|
|
BOOST_CHECK((data->Lxx.cast<float>() - casted_data->Lxx).isZero(tol_f)); |
92 |
|
|
#endif |
93 |
|
|
} |
94 |
|
|
|
95 |
|
|
//----------------------------------------------------------------------------// |
96 |
|
|
|
97 |
|
✗ |
void register_impulse_cost_model_unit_tests( |
98 |
|
|
ImpulseCostModelTypes::Type cost_type, PinocchioModelTypes::Type model_type, |
99 |
|
|
ActivationModelTypes::Type activation_type) { |
100 |
|
✗ |
boost::test_tools::output_test_stream test_name; |
101 |
|
✗ |
test_name << "test_" << cost_type << "_" << activation_type << "_" |
102 |
|
✗ |
<< model_type; |
103 |
|
✗ |
std::cout << "Running " << test_name.str() << std::endl; |
104 |
|
✗ |
test_suite* ts = BOOST_TEST_SUITE(test_name.str()); |
105 |
|
✗ |
ts->add(BOOST_TEST_CASE( |
106 |
|
|
boost::bind(&test_partial_derivatives_against_impulse_numdiff, cost_type, |
107 |
|
|
model_type, activation_type))); |
108 |
|
✗ |
framework::master_test_suite().add(ts); |
109 |
|
|
} |
110 |
|
|
|
111 |
|
✗ |
bool init_function() { |
112 |
|
|
// Test all the impulse cost model. Note that we can do it only with humanoids |
113 |
|
|
// as it needs to test the contact wrench cone |
114 |
|
✗ |
for (std::size_t cost_type = 0; cost_type < ImpulseCostModelTypes::all.size(); |
115 |
|
|
++cost_type) { |
116 |
|
✗ |
for (std::size_t activation_type = 0; |
117 |
|
✗ |
activation_type < |
118 |
|
|
ActivationModelTypes::ActivationModelQuadraticBarrier; |
119 |
|
|
++activation_type) { |
120 |
|
✗ |
register_impulse_cost_model_unit_tests( |
121 |
|
✗ |
ImpulseCostModelTypes::all[cost_type], PinocchioModelTypes::Talos, |
122 |
|
✗ |
ActivationModelTypes::all[activation_type]); |
123 |
|
✗ |
if (ImpulseCostModelTypes::all[cost_type] == |
124 |
|
✗ |
ImpulseCostModelTypes::CostModelResidualContactForce || |
125 |
|
✗ |
ImpulseCostModelTypes::all[cost_type] == |
126 |
|
|
ImpulseCostModelTypes::CostModelResidualContactFrictionCone) { |
127 |
|
✗ |
register_impulse_cost_model_unit_tests( |
128 |
|
✗ |
ImpulseCostModelTypes::all[cost_type], PinocchioModelTypes::HyQ, |
129 |
|
✗ |
ActivationModelTypes::all[activation_type]); |
130 |
|
|
} |
131 |
|
|
} |
132 |
|
|
} |
133 |
|
|
|
134 |
|
✗ |
return true; |
135 |
|
|
} |
136 |
|
|
|
137 |
|
✗ |
int main(int argc, char** argv) { |
138 |
|
✗ |
return ::boost::unit_test::unit_test_main(&init_function, argc, argv); |
139 |
|
|
} |
140 |
|
|
|