GCC Code Coverage Report


Directory: ./
File: unittest/test_impulse_costs.cpp
Date: 2025-05-13 10:30:51
Exec Total Coverage
Lines: 0 50 0.0%
Branches: 0 244 0.0%

Line Branch Exec Source
1 ///////////////////////////////////////////////////////////////////////////////
2 // BSD 3-Clause License
3 //
4 // Copyright (C) 2021-2025, University of Edinburgh, Heriot-Watt University
5 // Copyright note valid unless otherwise stated in individual files.
6 // All rights reserved.
7 ///////////////////////////////////////////////////////////////////////////////
8
9 #define BOOST_TEST_NO_MAIN
10 #define BOOST_TEST_ALTERNATIVE_INIT_API
11
12 #include "factory/impulse_cost.hpp"
13 #include "unittest_common.hpp"
14
15 using namespace boost::unit_test;
16 using namespace crocoddyl::unittest;
17
18 //----------------------------------------------------------------------------//
19
20 void test_partial_derivatives_against_impulse_numdiff(
21 ImpulseCostModelTypes::Type cost_type, PinocchioModelTypes::Type model_type,
22 ActivationModelTypes::Type activation_type) {
23 // create the model
24 const std::shared_ptr<crocoddyl::ActionModelAbstract>& model =
25 ImpulseCostModelFactory().create(cost_type, model_type, activation_type);
26
27 // create the corresponding data object and set the cost to nan
28 const std::shared_ptr<crocoddyl::ActionDataAbstract>& data =
29 model->createData();
30
31 crocoddyl::ActionModelNumDiff model_num_diff(model);
32 const std::shared_ptr<crocoddyl::ActionDataAbstract>& data_num_diff =
33 model_num_diff.createData();
34
35 // Generating random values for the state and control
36 Eigen::VectorXd x = model->get_state()->rand();
37 const Eigen::VectorXd u = Eigen::VectorXd::Random(model->get_nu());
38
39 // Computing the action derivatives
40 model->calc(data, x, u);
41 model->calcDiff(data, x, u);
42 model_num_diff.calc(data_num_diff, x, u);
43 model_num_diff.calcDiff(data_num_diff, x, u);
44 // Tolerance defined as in
45 // http://www.it.uom.gr/teaching/linearalgebra/NumericalRecipiesInC/c5-7.pdf
46 double tol = std::pow(model_num_diff.get_disturbance(), 1. / 3.);
47 BOOST_CHECK((data->Lx - data_num_diff->Lx).isZero(tol));
48 BOOST_CHECK((data->Lu - data_num_diff->Lu).isZero(tol));
49 if (model_num_diff.get_with_gauss_approx()) {
50 BOOST_CHECK((data->Lxx - data_num_diff->Lxx).isZero(tol));
51 BOOST_CHECK((data->Lxu - data_num_diff->Lxu).isZero(tol));
52 BOOST_CHECK((data->Luu - data_num_diff->Luu).isZero(tol));
53 }
54
55 // Computing the action derivatives
56 x = model->get_state()->rand();
57 model->calc(data, x);
58 model->calcDiff(data, x);
59 model_num_diff.calc(data_num_diff, x);
60 model_num_diff.calcDiff(data_num_diff, x);
61
62 // Checking the partial derivatives against numerical differentiation
63 BOOST_CHECK((data->Lx - data_num_diff->Lx).isZero(tol));
64 if (model_num_diff.get_with_gauss_approx()) {
65 BOOST_CHECK((data->Lxx - data_num_diff->Lxx).isZero(tol));
66 }
67
68 // Checking that casted computation is the same
69 #ifdef NDEBUG // Run only in release mode
70 const std::shared_ptr<crocoddyl::ActionModelAbstractTpl<float>>&
71 casted_model = model->cast<float>();
72 const std::shared_ptr<crocoddyl::ActionDataAbstractTpl<float>>& casted_data =
73 casted_model->createData();
74 Eigen::VectorXf x_f = x.cast<float>();
75 const Eigen::VectorXf u_f = u.cast<float>();
76 model->calc(data, x, u);
77 model->calcDiff(data, x, u);
78 casted_model->calc(casted_data, x_f, u_f);
79 casted_model->calcDiff(casted_data, x_f, u_f);
80 float tol_f = 80.f * std::sqrt(2.0f * std::numeric_limits<float>::epsilon());
81 BOOST_CHECK((data->Lx.cast<float>() - casted_data->Lx).isZero(tol_f));
82 BOOST_CHECK((data->Lu.cast<float>() - casted_data->Lu).isZero(tol_f));
83 BOOST_CHECK((data->Lxx.cast<float>() - casted_data->Lxx).isZero(tol_f));
84 BOOST_CHECK((data->Lxu.cast<float>() - casted_data->Lxu).isZero(tol_f));
85 BOOST_CHECK((data->Luu.cast<float>() - casted_data->Luu).isZero(tol_f));
86 model->calc(data, x);
87 model->calcDiff(data, x);
88 casted_model->calc(casted_data, x_f);
89 casted_model->calcDiff(casted_data, x_f);
90 BOOST_CHECK((data->Lx.cast<float>() - casted_data->Lx).isZero(tol_f));
91 BOOST_CHECK((data->Lxx.cast<float>() - casted_data->Lxx).isZero(tol_f));
92 #endif
93 }
94
95 //----------------------------------------------------------------------------//
96
97 void register_impulse_cost_model_unit_tests(
98 ImpulseCostModelTypes::Type cost_type, PinocchioModelTypes::Type model_type,
99 ActivationModelTypes::Type activation_type) {
100 boost::test_tools::output_test_stream test_name;
101 test_name << "test_" << cost_type << "_" << activation_type << "_"
102 << model_type;
103 std::cout << "Running " << test_name.str() << std::endl;
104 test_suite* ts = BOOST_TEST_SUITE(test_name.str());
105 ts->add(BOOST_TEST_CASE(
106 boost::bind(&test_partial_derivatives_against_impulse_numdiff, cost_type,
107 model_type, activation_type)));
108 framework::master_test_suite().add(ts);
109 }
110
111 bool init_function() {
112 // Test all the impulse cost model. Note that we can do it only with humanoids
113 // as it needs to test the contact wrench cone
114 for (std::size_t cost_type = 0; cost_type < ImpulseCostModelTypes::all.size();
115 ++cost_type) {
116 for (std::size_t activation_type = 0;
117 activation_type <
118 ActivationModelTypes::ActivationModelQuadraticBarrier;
119 ++activation_type) {
120 register_impulse_cost_model_unit_tests(
121 ImpulseCostModelTypes::all[cost_type], PinocchioModelTypes::Talos,
122 ActivationModelTypes::all[activation_type]);
123 if (ImpulseCostModelTypes::all[cost_type] ==
124 ImpulseCostModelTypes::CostModelResidualContactForce ||
125 ImpulseCostModelTypes::all[cost_type] ==
126 ImpulseCostModelTypes::CostModelResidualContactFrictionCone) {
127 register_impulse_cost_model_unit_tests(
128 ImpulseCostModelTypes::all[cost_type], PinocchioModelTypes::HyQ,
129 ActivationModelTypes::all[activation_type]);
130 }
131 }
132 }
133
134 return true;
135 }
136
137 int main(int argc, char** argv) {
138 return ::boost::unit_test::unit_test_main(&init_function, argc, argv);
139 }
140