Line |
Branch |
Exec |
Source |
1 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
2 |
|
|
// BSD 3-Clause License |
3 |
|
|
// |
4 |
|
|
// Copyright (C) 2019-2025, LAAS-CNRS, New York University, |
5 |
|
|
// Max Planck Gesellschaft, University of Edinburgh |
6 |
|
|
// INRIA, Heriot-Watt University |
7 |
|
|
// Copyright note valid unless otherwise stated in individual files. |
8 |
|
|
// All rights reserved. |
9 |
|
|
/////////////////////////////////////////////////////////////////////////////// |
10 |
|
|
|
11 |
|
|
#define BOOST_TEST_NO_MAIN |
12 |
|
|
#define BOOST_TEST_ALTERNATIVE_INIT_API |
13 |
|
|
|
14 |
|
|
#include "factory/state.hpp" |
15 |
|
|
#include "unittest_common.hpp" |
16 |
|
|
|
17 |
|
|
using namespace boost::unit_test; |
18 |
|
|
using namespace crocoddyl::unittest; |
19 |
|
|
|
20 |
|
|
//----------------------------------------------------------------------------// |
21 |
|
|
|
22 |
|
✗ |
void test_state_dimension(StateModelTypes::Type state_type) { |
23 |
|
✗ |
StateModelFactory factory; |
24 |
|
|
const std::shared_ptr<crocoddyl::StateAbstract>& state = |
25 |
|
✗ |
factory.create(state_type); |
26 |
|
|
|
27 |
|
|
// Checking the dimension of zero and random states |
28 |
|
✗ |
BOOST_CHECK(static_cast<std::size_t>(state->zero().size()) == |
29 |
|
|
state->get_nx()); |
30 |
|
✗ |
BOOST_CHECK(static_cast<std::size_t>(state->rand().size()) == |
31 |
|
|
state->get_nx()); |
32 |
|
✗ |
BOOST_CHECK(state->get_nx() == (state->get_nq() + state->get_nv())); |
33 |
|
✗ |
BOOST_CHECK(state->get_ndx() == (2 * state->get_nv())); |
34 |
|
✗ |
BOOST_CHECK(static_cast<std::size_t>(state->get_lb().size()) == |
35 |
|
|
state->get_nx()); |
36 |
|
✗ |
BOOST_CHECK(static_cast<std::size_t>(state->get_ub().size()) == |
37 |
|
|
state->get_nx()); |
38 |
|
|
|
39 |
|
|
// Checking that casted computation is the same |
40 |
|
|
#ifdef NDEBUG // Run only in release mode |
41 |
|
|
const std::shared_ptr<crocoddyl::StateAbstractTpl<float>>& casted_state = |
42 |
|
|
state->cast<float>(); |
43 |
|
|
BOOST_CHECK(static_cast<std::size_t>(casted_state->zero().size()) == |
44 |
|
|
casted_state->get_nx()); |
45 |
|
|
BOOST_CHECK(static_cast<std::size_t>(casted_state->rand().size()) == |
46 |
|
|
casted_state->get_nx()); |
47 |
|
|
BOOST_CHECK(casted_state->get_nx() == |
48 |
|
|
(casted_state->get_nq() + casted_state->get_nv())); |
49 |
|
|
BOOST_CHECK(casted_state->get_ndx() == (2 * casted_state->get_nv())); |
50 |
|
|
BOOST_CHECK(static_cast<std::size_t>(casted_state->get_lb().size()) == |
51 |
|
|
casted_state->get_nx()); |
52 |
|
|
BOOST_CHECK(static_cast<std::size_t>(casted_state->get_ub().size()) == |
53 |
|
|
casted_state->get_nx()); |
54 |
|
|
#endif |
55 |
|
|
} |
56 |
|
|
|
57 |
|
✗ |
void test_integrate_against_difference(StateModelTypes::Type state_type) { |
58 |
|
✗ |
StateModelFactory factory; |
59 |
|
|
const std::shared_ptr<crocoddyl::StateAbstract>& state = |
60 |
|
✗ |
factory.create(state_type); |
61 |
|
|
|
62 |
|
|
// Generating random states |
63 |
|
✗ |
const Eigen::VectorXd x1 = state->rand(); |
64 |
|
✗ |
const Eigen::VectorXd x2 = state->rand(); |
65 |
|
|
|
66 |
|
|
// Computing x2 by integrating its difference |
67 |
|
✗ |
Eigen::VectorXd dx(state->get_ndx()); |
68 |
|
✗ |
Eigen::VectorXd x2i(state->get_nx()); |
69 |
|
✗ |
Eigen::VectorXd dxi(state->get_ndx()); |
70 |
|
✗ |
state->diff(x1, x2, dx); |
71 |
|
✗ |
state->integrate(x1, dx, x2i); |
72 |
|
✗ |
state->diff(x2i, x2, dxi); |
73 |
|
|
|
74 |
|
|
// Checking that both states agree |
75 |
|
✗ |
BOOST_CHECK(dxi.isZero(1e-9)); |
76 |
|
|
|
77 |
|
|
// Checking that casted computation is the same |
78 |
|
|
#ifdef NDEBUG // Run only in release mode |
79 |
|
|
const std::shared_ptr<crocoddyl::StateAbstractTpl<float>>& casted_state = |
80 |
|
|
state->cast<float>(); |
81 |
|
|
const Eigen::VectorXf x1_f = casted_state->rand(); |
82 |
|
|
const Eigen::VectorXf x2_f = casted_state->rand(); |
83 |
|
|
Eigen::VectorXf dx_f(casted_state->get_ndx()); |
84 |
|
|
Eigen::VectorXf x2i_f(casted_state->get_nx()); |
85 |
|
|
Eigen::VectorXf dxi_f(casted_state->get_ndx()); |
86 |
|
|
casted_state->diff(x1_f, x2_f, dx_f); |
87 |
|
|
casted_state->integrate(x1_f, dx_f, x2i_f); |
88 |
|
|
casted_state->diff(x2i_f, x2_f, dxi_f); |
89 |
|
|
BOOST_CHECK(dxi_f.isZero(1e-6f)); |
90 |
|
|
#endif |
91 |
|
|
} |
92 |
|
|
|
93 |
|
✗ |
void test_difference_against_integrate(StateModelTypes::Type state_type) { |
94 |
|
✗ |
StateModelFactory factory; |
95 |
|
|
const std::shared_ptr<crocoddyl::StateAbstract>& state = |
96 |
|
✗ |
factory.create(state_type); |
97 |
|
|
|
98 |
|
|
// Generating random states |
99 |
|
✗ |
const Eigen::VectorXd x = state->rand(); |
100 |
|
✗ |
const Eigen::VectorXd dx = Eigen::VectorXd::Random(state->get_ndx()); |
101 |
|
|
|
102 |
|
|
// Computing dx by differentiation of its integrate |
103 |
|
✗ |
Eigen::VectorXd xidx(state->get_nx()); |
104 |
|
✗ |
Eigen::VectorXd dxd(state->get_ndx()); |
105 |
|
✗ |
state->integrate(x, dx, xidx); |
106 |
|
✗ |
state->diff(x, xidx, dxd); |
107 |
|
|
|
108 |
|
|
// Checking that both states agree |
109 |
|
✗ |
BOOST_CHECK((dxd - dx).isZero(1e-9)); |
110 |
|
|
|
111 |
|
|
// Checking that casted computation is the same |
112 |
|
|
#ifdef NDEBUG // Run only in release mode |
113 |
|
|
const std::shared_ptr<crocoddyl::StateAbstractTpl<float>>& casted_state = |
114 |
|
|
state->cast<float>(); |
115 |
|
|
const Eigen::VectorXf x_f = casted_state->rand(); |
116 |
|
|
const Eigen::VectorXf dx_f = Eigen::VectorXf::Random(casted_state->get_ndx()); |
117 |
|
|
Eigen::VectorXf xidx_f(casted_state->get_nx()); |
118 |
|
|
Eigen::VectorXf dxd_f(casted_state->get_ndx()); |
119 |
|
|
casted_state->integrate(x_f, dx_f, xidx_f); |
120 |
|
|
casted_state->diff(x_f, xidx_f, dxd_f); |
121 |
|
|
BOOST_CHECK((dxd_f - dx_f).isZero(1e-6f)); |
122 |
|
|
#endif |
123 |
|
|
} |
124 |
|
|
|
125 |
|
✗ |
void test_Jdiff_firstsecond(StateModelTypes::Type state_type) { |
126 |
|
✗ |
StateModelFactory factory; |
127 |
|
|
const std::shared_ptr<crocoddyl::StateAbstract>& state = |
128 |
|
✗ |
factory.create(state_type); |
129 |
|
|
|
130 |
|
|
// Generating random values for the initial and terminal states |
131 |
|
✗ |
const Eigen::VectorXd x1 = state->rand(); |
132 |
|
✗ |
const Eigen::VectorXd x2 = state->rand(); |
133 |
|
|
|
134 |
|
|
// Computing the partial derivatives of the difference function separately |
135 |
|
|
Eigen::MatrixXd Jdiff_tmp( |
136 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
137 |
|
|
Eigen::MatrixXd Jdiff_first( |
138 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
139 |
|
|
Eigen::MatrixXd Jdiff_second( |
140 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
141 |
|
✗ |
state->Jdiff(x1, x2, Jdiff_first, Jdiff_tmp, crocoddyl::first); |
142 |
|
✗ |
state->Jdiff(x1, x2, Jdiff_tmp, Jdiff_second, crocoddyl::second); |
143 |
|
|
|
144 |
|
|
// Computing the partial derivatives of the difference function separately |
145 |
|
|
Eigen::MatrixXd Jdiff_both_first( |
146 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
147 |
|
|
Eigen::MatrixXd Jdiff_both_second( |
148 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
149 |
|
✗ |
state->Jdiff(x1, x2, Jdiff_both_first, Jdiff_both_second); |
150 |
|
|
|
151 |
|
✗ |
BOOST_CHECK((Jdiff_first - Jdiff_both_first).isZero(1e-9)); |
152 |
|
✗ |
BOOST_CHECK((Jdiff_second - Jdiff_both_second).isZero(1e-9)); |
153 |
|
|
|
154 |
|
|
// Checking that casted computation is the same |
155 |
|
|
#ifdef NDEBUG // Run only in release mode |
156 |
|
|
const std::shared_ptr<crocoddyl::StateAbstractTpl<float>>& casted_state = |
157 |
|
|
state->cast<float>(); |
158 |
|
|
const Eigen::VectorXf x1_f = casted_state->rand(); |
159 |
|
|
const Eigen::VectorXf x2_f = casted_state->rand(); |
160 |
|
|
Eigen::MatrixXf Jdiff_tmp_f( |
161 |
|
|
Eigen::MatrixXf::Zero(casted_state->get_ndx(), casted_state->get_ndx())); |
162 |
|
|
Eigen::MatrixXf Jdiff_first_f( |
163 |
|
|
Eigen::MatrixXf::Zero(casted_state->get_ndx(), casted_state->get_ndx())); |
164 |
|
|
Eigen::MatrixXf Jdiff_second_f( |
165 |
|
|
Eigen::MatrixXf::Zero(casted_state->get_ndx(), casted_state->get_ndx())); |
166 |
|
|
Eigen::MatrixXf Jdiff_both_first_f( |
167 |
|
|
Eigen::MatrixXf::Zero(casted_state->get_ndx(), casted_state->get_ndx())); |
168 |
|
|
Eigen::MatrixXf Jdiff_both_second_f( |
169 |
|
|
Eigen::MatrixXf::Zero(casted_state->get_ndx(), casted_state->get_ndx())); |
170 |
|
|
casted_state->Jdiff(x1_f, x2_f, Jdiff_first_f, Jdiff_tmp_f, crocoddyl::first); |
171 |
|
|
casted_state->Jdiff(x1_f, x2_f, Jdiff_tmp_f, Jdiff_second_f, |
172 |
|
|
crocoddyl::second); |
173 |
|
|
casted_state->Jdiff(x1_f, x2_f, Jdiff_both_first_f, Jdiff_both_second_f); |
174 |
|
|
BOOST_CHECK((Jdiff_first_f - Jdiff_both_first_f).isZero(1e-9f)); |
175 |
|
|
BOOST_CHECK((Jdiff_second_f - Jdiff_both_second_f).isZero(1e-9f)); |
176 |
|
|
#endif |
177 |
|
|
} |
178 |
|
|
|
179 |
|
✗ |
void test_Jint_firstsecond(StateModelTypes::Type state_type) { |
180 |
|
✗ |
StateModelFactory factory; |
181 |
|
|
const std::shared_ptr<crocoddyl::StateAbstract>& state = |
182 |
|
✗ |
factory.create(state_type); |
183 |
|
|
|
184 |
|
|
// Generating random values for the initial and terminal states |
185 |
|
✗ |
const Eigen::VectorXd x = state->rand(); |
186 |
|
✗ |
const Eigen::VectorXd dx = Eigen::VectorXd::Random(state->get_ndx()); |
187 |
|
|
|
188 |
|
|
// Computing the partial derivatives of the difference function separately |
189 |
|
|
Eigen::MatrixXd Jint_tmp( |
190 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
191 |
|
|
Eigen::MatrixXd Jint_first( |
192 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
193 |
|
|
Eigen::MatrixXd Jint_second( |
194 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
195 |
|
✗ |
state->Jintegrate(x, dx, Jint_first, Jint_tmp, crocoddyl::first); |
196 |
|
✗ |
state->Jintegrate(x, dx, Jint_tmp, Jint_second, crocoddyl::second); |
197 |
|
|
|
198 |
|
|
// Computing the partial derivatives of the integrate function separately |
199 |
|
|
Eigen::MatrixXd Jint_both_first( |
200 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
201 |
|
|
Eigen::MatrixXd Jint_both_second( |
202 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
203 |
|
✗ |
state->Jintegrate(x, dx, Jint_both_first, Jint_both_second); |
204 |
|
|
|
205 |
|
✗ |
BOOST_CHECK((Jint_first - Jint_both_first).isZero(1e-9)); |
206 |
|
✗ |
BOOST_CHECK((Jint_second - Jint_both_second).isZero(1e-9)); |
207 |
|
|
|
208 |
|
|
// Checking that casted computation is the same |
209 |
|
|
#ifdef NDEBUG // Run only in release mode |
210 |
|
|
const std::shared_ptr<crocoddyl::StateAbstractTpl<float>>& casted_state = |
211 |
|
|
state->cast<float>(); |
212 |
|
|
const Eigen::VectorXf x_f = casted_state->rand(); |
213 |
|
|
const Eigen::VectorXf dx_f = Eigen::VectorXf::Random(casted_state->get_ndx()); |
214 |
|
|
Eigen::MatrixXf Jint_tmp_f( |
215 |
|
|
Eigen::MatrixXf::Zero(casted_state->get_ndx(), casted_state->get_ndx())); |
216 |
|
|
Eigen::MatrixXf Jint_first_f( |
217 |
|
|
Eigen::MatrixXf::Zero(casted_state->get_ndx(), casted_state->get_ndx())); |
218 |
|
|
Eigen::MatrixXf Jint_second_f( |
219 |
|
|
Eigen::MatrixXf::Zero(casted_state->get_ndx(), casted_state->get_ndx())); |
220 |
|
|
Eigen::MatrixXf Jint_both_first_f( |
221 |
|
|
Eigen::MatrixXf::Zero(casted_state->get_ndx(), casted_state->get_ndx())); |
222 |
|
|
Eigen::MatrixXf Jint_both_second_f( |
223 |
|
|
Eigen::MatrixXf::Zero(casted_state->get_ndx(), casted_state->get_ndx())); |
224 |
|
|
casted_state->Jintegrate(x_f, dx_f, Jint_first_f, Jint_tmp_f, |
225 |
|
|
crocoddyl::first); |
226 |
|
|
casted_state->Jintegrate(x_f, dx_f, Jint_tmp_f, Jint_second_f, |
227 |
|
|
crocoddyl::second); |
228 |
|
|
casted_state->Jintegrate(x_f, dx_f, Jint_both_first_f, Jint_both_second_f); |
229 |
|
|
BOOST_CHECK((Jint_first_f - Jint_both_first_f).isZero(1e-9f)); |
230 |
|
|
BOOST_CHECK((Jint_second_f - Jint_both_second_f).isZero(1e-9f)); |
231 |
|
|
#endif |
232 |
|
|
} |
233 |
|
|
|
234 |
|
✗ |
void test_Jdiff_num_diff_firstsecond(StateModelTypes::Type state_type) { |
235 |
|
✗ |
StateModelFactory factory; |
236 |
|
|
const std::shared_ptr<crocoddyl::StateAbstract>& state = |
237 |
|
✗ |
factory.create(state_type); |
238 |
|
|
// Generating random values for the initial and terminal states |
239 |
|
✗ |
const Eigen::VectorXd x1 = state->rand(); |
240 |
|
✗ |
const Eigen::VectorXd x2 = state->rand(); |
241 |
|
|
|
242 |
|
|
// Get the num diff state |
243 |
|
✗ |
crocoddyl::StateNumDiff state_num_diff(state); |
244 |
|
|
|
245 |
|
|
// Computing the partial derivatives of the difference function separately |
246 |
|
|
Eigen::MatrixXd Jdiff_num_diff_tmp( |
247 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
248 |
|
|
Eigen::MatrixXd Jdiff_num_diff_first( |
249 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
250 |
|
|
Eigen::MatrixXd Jdiff_num_diff_second( |
251 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
252 |
|
✗ |
state_num_diff.Jdiff(x1, x2, Jdiff_num_diff_first, Jdiff_num_diff_tmp, |
253 |
|
|
crocoddyl::first); |
254 |
|
✗ |
state_num_diff.Jdiff(x1, x2, Jdiff_num_diff_tmp, Jdiff_num_diff_second, |
255 |
|
|
crocoddyl::second); |
256 |
|
|
|
257 |
|
|
// Computing the partial derivatives of the difference function separately |
258 |
|
|
Eigen::MatrixXd Jdiff_num_diff_both_first( |
259 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
260 |
|
|
Eigen::MatrixXd Jdiff_num_diff_both_second( |
261 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
262 |
|
✗ |
state_num_diff.Jdiff(x1, x2, Jdiff_num_diff_both_first, |
263 |
|
|
Jdiff_num_diff_both_second); |
264 |
|
|
|
265 |
|
✗ |
BOOST_CHECK((Jdiff_num_diff_first - Jdiff_num_diff_both_first).isZero(1e-9)); |
266 |
|
✗ |
BOOST_CHECK( |
267 |
|
|
(Jdiff_num_diff_second - Jdiff_num_diff_both_second).isZero(1e-9)); |
268 |
|
|
} |
269 |
|
|
|
270 |
|
✗ |
void test_Jint_num_diff_firstsecond(StateModelTypes::Type state_type) { |
271 |
|
✗ |
StateModelFactory factory; |
272 |
|
|
const std::shared_ptr<crocoddyl::StateAbstract>& state = |
273 |
|
✗ |
factory.create(state_type); |
274 |
|
|
// Generating random values for the initial and terminal states |
275 |
|
✗ |
const Eigen::VectorXd x = state->rand(); |
276 |
|
✗ |
const Eigen::VectorXd dx = Eigen::VectorXd::Random(state->get_ndx()); |
277 |
|
|
|
278 |
|
|
// Get the num diff state |
279 |
|
✗ |
crocoddyl::StateNumDiff state_num_diff(state); |
280 |
|
|
|
281 |
|
|
// Computing the partial derivatives of the difference function separately |
282 |
|
|
Eigen::MatrixXd Jint_num_diff_tmp( |
283 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
284 |
|
|
Eigen::MatrixXd Jint_num_diff_first( |
285 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
286 |
|
|
Eigen::MatrixXd Jint_num_diff_second( |
287 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
288 |
|
✗ |
state_num_diff.Jintegrate(x, dx, Jint_num_diff_first, Jint_num_diff_tmp, |
289 |
|
|
crocoddyl::first); |
290 |
|
✗ |
state_num_diff.Jintegrate(x, dx, Jint_num_diff_tmp, Jint_num_diff_second, |
291 |
|
|
crocoddyl::second); |
292 |
|
|
|
293 |
|
|
// Computing the partial derivatives of the given function separately |
294 |
|
|
Eigen::MatrixXd Jint_num_diff_both_first( |
295 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
296 |
|
|
Eigen::MatrixXd Jint_num_diff_both_second( |
297 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
298 |
|
✗ |
state_num_diff.Jintegrate(x, dx, Jint_num_diff_both_first, |
299 |
|
|
Jint_num_diff_both_second); |
300 |
|
|
|
301 |
|
✗ |
BOOST_CHECK((Jint_num_diff_first - Jint_num_diff_both_first).isZero(1e-9)); |
302 |
|
✗ |
BOOST_CHECK((Jint_num_diff_second - Jint_num_diff_both_second).isZero(1e-9)); |
303 |
|
|
} |
304 |
|
|
|
305 |
|
✗ |
void test_Jdiff_against_numdiff(StateModelTypes::Type state_type) { |
306 |
|
✗ |
StateModelFactory factory; |
307 |
|
|
const std::shared_ptr<crocoddyl::StateAbstract>& state = |
308 |
|
✗ |
factory.create(state_type); |
309 |
|
|
// Generating random values for the initial and terminal states |
310 |
|
✗ |
const Eigen::VectorXd x1 = state->rand(); |
311 |
|
✗ |
const Eigen::VectorXd x2 = state->rand(); |
312 |
|
|
|
313 |
|
|
// Computing the partial derivatives of the difference function analytically |
314 |
|
|
Eigen::MatrixXd Jdiff_1( |
315 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
316 |
|
|
Eigen::MatrixXd Jdiff_2( |
317 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
318 |
|
✗ |
state->Jdiff(x1, x2, Jdiff_1, Jdiff_2, crocoddyl::first); |
319 |
|
✗ |
state->Jdiff(x1, x2, Jdiff_1, Jdiff_2, crocoddyl::second); |
320 |
|
|
|
321 |
|
|
// Computing the partial derivatives of the difference function numerically |
322 |
|
✗ |
crocoddyl::StateNumDiff state_num_diff(state); |
323 |
|
|
Eigen::MatrixXd Jdiff_num_1( |
324 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
325 |
|
|
Eigen::MatrixXd Jdiff_num_2( |
326 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
327 |
|
✗ |
state_num_diff.Jdiff(x1, x2, Jdiff_num_1, Jdiff_num_2); |
328 |
|
|
|
329 |
|
|
// Checking the partial derivatives against numerical differentiation |
330 |
|
|
// Tolerance defined as in |
331 |
|
|
// http://www.it.uom.gr/teaching/linearalgebra/NumericalRecipiesInC/c5-7.pdf |
332 |
|
✗ |
double tol = std::pow(std::sqrt(2.0 * std::numeric_limits<double>::epsilon()), |
333 |
|
|
1. / 3.); |
334 |
|
✗ |
BOOST_CHECK((Jdiff_1 - Jdiff_num_1).isZero(tol)); |
335 |
|
✗ |
BOOST_CHECK((Jdiff_2 - Jdiff_num_2).isZero(tol)); |
336 |
|
|
} |
337 |
|
|
|
338 |
|
✗ |
void test_Jintegrate_against_numdiff(StateModelTypes::Type state_type) { |
339 |
|
✗ |
StateModelFactory factory; |
340 |
|
|
const std::shared_ptr<crocoddyl::StateAbstract>& state = |
341 |
|
✗ |
factory.create(state_type); |
342 |
|
|
|
343 |
|
|
// Generating random values for the initial state and its rate of change |
344 |
|
✗ |
const Eigen::VectorXd x = state->rand(); |
345 |
|
✗ |
const Eigen::VectorXd dx = Eigen::VectorXd::Random(state->get_ndx()); |
346 |
|
|
|
347 |
|
|
// Computing the partial derivatives of the difference function analytically |
348 |
|
|
Eigen::MatrixXd Jint_1( |
349 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
350 |
|
|
Eigen::MatrixXd Jint_2( |
351 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
352 |
|
✗ |
state->Jintegrate(x, dx, Jint_1, Jint_2); |
353 |
|
|
|
354 |
|
|
// Computing the partial derivatives of the difference function numerically |
355 |
|
✗ |
crocoddyl::StateNumDiff state_num_diff(state); |
356 |
|
|
Eigen::MatrixXd Jint_num_1( |
357 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
358 |
|
|
Eigen::MatrixXd Jint_num_2( |
359 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
360 |
|
✗ |
state_num_diff.Jintegrate(x, dx, Jint_num_1, Jint_num_2); |
361 |
|
|
|
362 |
|
|
// Checking the partial derivatives against numerical differentiation |
363 |
|
|
// Tolerance defined as in |
364 |
|
|
// http://www.it.uom.gr/teaching/linearalgebra/NumericalRecipiesInC/c5-7.pdf |
365 |
|
✗ |
double tol = std::pow(std::sqrt(2.0 * std::numeric_limits<double>::epsilon()), |
366 |
|
|
1. / 3.); |
367 |
|
✗ |
BOOST_CHECK((Jint_1 - Jint_num_1).isZero(tol)); |
368 |
|
✗ |
BOOST_CHECK((Jint_2 - Jint_num_2).isZero(tol)); |
369 |
|
|
|
370 |
|
|
// Checking that casted computation is the same |
371 |
|
|
#ifdef NDEBUG // Run only in release mode |
372 |
|
|
float tol_f = std::sqrt(float(2.0) * std::numeric_limits<float>::epsilon()); |
373 |
|
|
const std::shared_ptr<crocoddyl::StateAbstractTpl<float>>& casted_state = |
374 |
|
|
state->cast<float>(); |
375 |
|
|
crocoddyl::StateNumDiffTpl<float> casted_state_num_diff = |
376 |
|
|
state_num_diff.cast<float>(); |
377 |
|
|
const Eigen::VectorXf x_f = casted_state->rand(); |
378 |
|
|
const Eigen::VectorXf dx_f = Eigen::VectorXf::Random(casted_state->get_ndx()); |
379 |
|
|
Eigen::MatrixXf Jint_1_f( |
380 |
|
|
Eigen::MatrixXf::Zero(casted_state->get_ndx(), casted_state->get_ndx())); |
381 |
|
|
Eigen::MatrixXf Jint_2_f( |
382 |
|
|
Eigen::MatrixXf::Zero(casted_state->get_ndx(), casted_state->get_ndx())); |
383 |
|
|
Eigen::MatrixXf Jint_num_1_f( |
384 |
|
|
Eigen::MatrixXf::Zero(casted_state->get_ndx(), casted_state->get_ndx())); |
385 |
|
|
Eigen::MatrixXf Jint_num_2_f( |
386 |
|
|
Eigen::MatrixXf::Zero(casted_state->get_ndx(), casted_state->get_ndx())); |
387 |
|
|
casted_state_num_diff.Jintegrate(x_f, dx_f, Jint_num_1_f, Jint_num_2_f); |
388 |
|
|
casted_state->Jintegrate(x_f, dx_f, Jint_1_f, Jint_2_f); |
389 |
|
|
BOOST_CHECK((Jint_1_f - Jint_num_1_f).isZero(tol_f)); |
390 |
|
|
BOOST_CHECK((Jint_2_f - Jint_num_2_f).isZero(tol_f)); |
391 |
|
|
#endif |
392 |
|
|
} |
393 |
|
|
|
394 |
|
✗ |
void test_JintegrateTransport(StateModelTypes::Type state_type) { |
395 |
|
✗ |
StateModelFactory factory; |
396 |
|
|
const std::shared_ptr<crocoddyl::StateAbstract>& state = |
397 |
|
✗ |
factory.create(state_type); |
398 |
|
|
|
399 |
|
|
// Generating random values for the initial state and its rate of change |
400 |
|
✗ |
const Eigen::VectorXd x = state->rand(); |
401 |
|
✗ |
const Eigen::VectorXd dx = Eigen::VectorXd::Random(state->get_ndx()); |
402 |
|
|
|
403 |
|
|
// Computing the partial derivatives of the difference function analytically |
404 |
|
|
Eigen::MatrixXd Jint_1( |
405 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
406 |
|
|
Eigen::MatrixXd Jint_2( |
407 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
408 |
|
✗ |
state->Jintegrate(x, dx, Jint_1, Jint_2); |
409 |
|
|
|
410 |
|
|
Eigen::MatrixXd Jref( |
411 |
|
✗ |
Eigen::MatrixXd::Random(state->get_ndx(), 2 * state->get_ndx())); |
412 |
|
✗ |
const Eigen::MatrixXd Jtest(Jref); |
413 |
|
|
|
414 |
|
✗ |
state->JintegrateTransport(x, dx, Jref, crocoddyl::first); |
415 |
|
✗ |
BOOST_CHECK((Jref - Jint_1 * Jtest).isZero(1e-10)); |
416 |
|
|
|
417 |
|
✗ |
Jref = Jtest; |
418 |
|
✗ |
state->JintegrateTransport(x, dx, Jref, crocoddyl::second); |
419 |
|
✗ |
BOOST_CHECK((Jref - Jint_2 * Jtest).isZero(1e-10)); |
420 |
|
|
|
421 |
|
|
// Checking that casted computation is the same |
422 |
|
|
#ifdef NDEBUG // Run only in release mode |
423 |
|
|
const std::shared_ptr<crocoddyl::StateAbstractTpl<float>>& casted_state = |
424 |
|
|
state->cast<float>(); |
425 |
|
|
const Eigen::VectorXf x_f = casted_state->rand(); |
426 |
|
|
const Eigen::VectorXf dx_f = Eigen::VectorXf::Random(casted_state->get_ndx()); |
427 |
|
|
Eigen::MatrixXf Jint_1_f( |
428 |
|
|
Eigen::MatrixXf::Zero(casted_state->get_ndx(), casted_state->get_ndx())); |
429 |
|
|
Eigen::MatrixXf Jint_2_f( |
430 |
|
|
Eigen::MatrixXf::Zero(casted_state->get_ndx(), casted_state->get_ndx())); |
431 |
|
|
Eigen::MatrixXf Jref_f(Eigen::MatrixXf::Random(casted_state->get_ndx(), |
432 |
|
|
2 * casted_state->get_ndx())); |
433 |
|
|
const Eigen::MatrixXf Jtest_f(Jref_f); |
434 |
|
|
casted_state->Jintegrate(x_f, dx_f, Jint_1_f, Jint_2_f); |
435 |
|
|
Jref_f = Jtest_f; |
436 |
|
|
casted_state->JintegrateTransport(x_f, dx_f, Jref_f, crocoddyl::first); |
437 |
|
|
BOOST_CHECK((Jref_f - Jint_1_f * Jtest_f).isZero(1e-6f)); |
438 |
|
|
casted_state->JintegrateTransport(x_f, dx_f, Jref_f, crocoddyl::second); |
439 |
|
|
Jref_f = Jtest_f; |
440 |
|
|
casted_state->JintegrateTransport(x_f, dx_f, Jref_f, crocoddyl::second); |
441 |
|
|
BOOST_CHECK((Jref_f - Jint_2_f * Jtest_f).isZero(1e-6f)); |
442 |
|
|
#endif |
443 |
|
|
} |
444 |
|
|
|
445 |
|
✗ |
void test_Jdiff_and_Jintegrate_are_inverses(StateModelTypes::Type state_type) { |
446 |
|
✗ |
StateModelFactory factory; |
447 |
|
|
const std::shared_ptr<crocoddyl::StateAbstract>& state = |
448 |
|
✗ |
factory.create(state_type); |
449 |
|
|
|
450 |
|
|
// Generating random states |
451 |
|
✗ |
const Eigen::VectorXd x1 = state->rand(); |
452 |
|
✗ |
const Eigen::VectorXd dx = Eigen::VectorXd::Random(state->get_ndx()); |
453 |
|
✗ |
Eigen::VectorXd x2(state->get_nx()); |
454 |
|
✗ |
state->integrate(x1, dx, x2); |
455 |
|
|
|
456 |
|
|
// Computing the partial derivatives of the integrate and difference function |
457 |
|
✗ |
Eigen::MatrixXd Jx(Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
458 |
|
|
Eigen::MatrixXd Jdx( |
459 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
460 |
|
✗ |
state->Jintegrate(x1, dx, Jx, Jdx); |
461 |
|
✗ |
Eigen::MatrixXd J1(Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
462 |
|
✗ |
Eigen::MatrixXd J2(Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
463 |
|
✗ |
state->Jdiff(x1, x2, J1, J2); |
464 |
|
|
|
465 |
|
|
// Checking that Jdiff and Jintegrate are inverses |
466 |
|
✗ |
Eigen::MatrixXd dX_dDX = Jdx; |
467 |
|
✗ |
Eigen::MatrixXd dDX_dX = J2; |
468 |
|
✗ |
BOOST_CHECK((dX_dDX - dDX_dX.inverse()).isZero(1e-9)); |
469 |
|
|
|
470 |
|
|
// Checking that casted computation is the same |
471 |
|
|
#ifdef NDEBUG // Run only in release mode |
472 |
|
|
const std::shared_ptr<crocoddyl::StateAbstractTpl<float>>& casted_state = |
473 |
|
|
state->cast<float>(); |
474 |
|
|
const Eigen::VectorXf x1_f = casted_state->rand(); |
475 |
|
|
const Eigen::VectorXf dx_f = Eigen::VectorXf::Random(casted_state->get_ndx()); |
476 |
|
|
Eigen::VectorXf x2_f(casted_state->get_nx()); |
477 |
|
|
|
478 |
|
|
Eigen::MatrixXf Jx_f( |
479 |
|
|
Eigen::MatrixXf::Zero(casted_state->get_ndx(), casted_state->get_ndx())); |
480 |
|
|
Eigen::MatrixXf Jdx_f( |
481 |
|
|
Eigen::MatrixXf::Zero(casted_state->get_ndx(), casted_state->get_ndx())); |
482 |
|
|
Eigen::MatrixXf J1_f( |
483 |
|
|
Eigen::MatrixXf::Zero(casted_state->get_ndx(), casted_state->get_ndx())); |
484 |
|
|
Eigen::MatrixXf J2_f( |
485 |
|
|
Eigen::MatrixXf::Zero(casted_state->get_ndx(), casted_state->get_ndx())); |
486 |
|
|
Eigen::MatrixXf dX_dDX_f = Jdx_f; |
487 |
|
|
Eigen::MatrixXf dDX_dX_f = J2_f; |
488 |
|
|
casted_state->integrate(x1_f, dx_f, x2_f); |
489 |
|
|
casted_state->Jintegrate(x1_f, dx_f, Jx_f, Jdx_f); |
490 |
|
|
casted_state->Jdiff(x1_f, x2_f, J1_f, J2_f); |
491 |
|
|
dX_dDX_f = Jdx_f; |
492 |
|
|
dDX_dX_f = J2_f; |
493 |
|
|
BOOST_CHECK((dX_dDX_f - dDX_dX_f.inverse()).isZero(1e-4f)); |
494 |
|
|
#endif |
495 |
|
|
} |
496 |
|
|
|
497 |
|
✗ |
void test_velocity_from_Jintegrate_Jdiff(StateModelTypes::Type state_type) { |
498 |
|
✗ |
StateModelFactory factory; |
499 |
|
|
const std::shared_ptr<crocoddyl::StateAbstract>& state = |
500 |
|
✗ |
factory.create(state_type); |
501 |
|
|
|
502 |
|
|
// Generating random states |
503 |
|
✗ |
const Eigen::VectorXd x1 = state->rand(); |
504 |
|
✗ |
Eigen::VectorXd dx = Eigen::VectorXd::Random(state->get_ndx()); |
505 |
|
✗ |
Eigen::VectorXd x2(state->get_nx()); |
506 |
|
✗ |
state->integrate(x1, dx, x2); |
507 |
|
✗ |
Eigen::VectorXd eps = Eigen::VectorXd::Random(state->get_ndx()); |
508 |
|
✗ |
double h = 1e-8; |
509 |
|
|
|
510 |
|
|
// Computing the partial derivatives of the integrate and difference function |
511 |
|
✗ |
Eigen::MatrixXd Jx(Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
512 |
|
|
Eigen::MatrixXd Jdx( |
513 |
|
✗ |
Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
514 |
|
✗ |
state->Jintegrate(x1, dx, Jx, Jdx); |
515 |
|
✗ |
Eigen::MatrixXd J1(Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
516 |
|
✗ |
Eigen::MatrixXd J2(Eigen::MatrixXd::Zero(state->get_ndx(), state->get_ndx())); |
517 |
|
✗ |
state->Jdiff(x1, x2, J1, J2); |
518 |
|
|
|
519 |
|
|
// Checking that computed velocity from Jintegrate |
520 |
|
✗ |
Eigen::MatrixXd dX_dDX = Jdx; |
521 |
|
✗ |
Eigen::VectorXd x2eps(state->get_nx()); |
522 |
|
✗ |
state->integrate(x1, dx + eps * h, x2eps); |
523 |
|
✗ |
Eigen::VectorXd x2_eps(state->get_ndx()); |
524 |
|
✗ |
state->diff(x2, x2eps, x2_eps); |
525 |
|
✗ |
BOOST_CHECK((dX_dDX * eps - x2_eps / h).isZero(1e-3)); |
526 |
|
|
|
527 |
|
|
// Checking the velocity computed from Jdiff |
528 |
|
✗ |
const Eigen::VectorXd x = state->rand(); |
529 |
|
✗ |
dx.setZero(); |
530 |
|
✗ |
state->diff(x1, x, dx); |
531 |
|
✗ |
Eigen::VectorXd x2i(state->get_nx()); |
532 |
|
✗ |
state->integrate(x, eps * h, x2i); |
533 |
|
✗ |
Eigen::VectorXd dxi(state->get_ndx()); |
534 |
|
✗ |
state->diff(x1, x2i, dxi); |
535 |
|
✗ |
J1.setZero(); |
536 |
|
✗ |
J2.setZero(); |
537 |
|
✗ |
state->Jdiff(x1, x, J1, J2); |
538 |
|
✗ |
BOOST_CHECK((J2 * eps - (-dx + dxi) / h).isZero(1e-3)); |
539 |
|
|
|
540 |
|
|
// Checking that casted computation is the same |
541 |
|
|
#ifdef NDEBUG // Run only in release mode |
542 |
|
|
const std::shared_ptr<crocoddyl::StateAbstractTpl<float>>& casted_state = |
543 |
|
|
state->cast<float>(); |
544 |
|
|
float h_f = std::sqrt(float(2.0) * std::numeric_limits<float>::epsilon()); |
545 |
|
|
Eigen::VectorXf eps_f = Eigen::VectorXf::Random(casted_state->get_ndx()); |
546 |
|
|
const Eigen::VectorXf x1_f = casted_state->rand(); |
547 |
|
|
Eigen::VectorXf dx_f = Eigen::VectorXf::Random(casted_state->get_ndx()); |
548 |
|
|
Eigen::VectorXf x2_f(casted_state->get_nx()); |
549 |
|
|
Eigen::MatrixXf Jx_f( |
550 |
|
|
Eigen::MatrixXf::Zero(casted_state->get_ndx(), casted_state->get_ndx())); |
551 |
|
|
Eigen::MatrixXf Jdx_f( |
552 |
|
|
Eigen::MatrixXf::Zero(casted_state->get_ndx(), casted_state->get_ndx())); |
553 |
|
|
Eigen::MatrixXf J1_f( |
554 |
|
|
Eigen::MatrixXf::Zero(casted_state->get_ndx(), casted_state->get_ndx())); |
555 |
|
|
Eigen::MatrixXf J2_f( |
556 |
|
|
Eigen::MatrixXf::Zero(casted_state->get_ndx(), casted_state->get_ndx())); |
557 |
|
|
Eigen::MatrixXf dX_dDX_f = Jdx_f; |
558 |
|
|
Eigen::VectorXf x2eps_f(casted_state->get_nx()); |
559 |
|
|
Eigen::VectorXf x2_eps_f(casted_state->get_ndx()); |
560 |
|
|
const Eigen::VectorXf x_f = casted_state->rand(); |
561 |
|
|
Eigen::VectorXf x2i_f(casted_state->get_nx()); |
562 |
|
|
Eigen::VectorXf dxi_f(casted_state->get_ndx()); |
563 |
|
|
casted_state->integrate(x1_f, dx_f, x2_f); |
564 |
|
|
casted_state->Jintegrate(x1_f, dx_f, Jx_f, Jdx_f); |
565 |
|
|
casted_state->Jdiff(x1_f, x2_f, J1_f, J2_f); |
566 |
|
|
dX_dDX_f = Jdx_f; |
567 |
|
|
casted_state->integrate(x1_f, dx_f + eps_f * h_f, x2eps_f); |
568 |
|
|
casted_state->diff(x2_f, x2eps_f, x2_eps_f); |
569 |
|
|
BOOST_CHECK((dX_dDX_f * eps_f - x2_eps_f / h_f).isZero(1e-3f)); |
570 |
|
|
dx_f.setZero(); |
571 |
|
|
casted_state->diff(x1_f, x_f, dx_f); |
572 |
|
|
casted_state->integrate(x_f, eps_f * h_f, x2i_f); |
573 |
|
|
casted_state->diff(x1_f, x2i_f, dxi_f); |
574 |
|
|
casted_state->Jdiff(x1_f, x_f, J1_f, J2_f); |
575 |
|
|
BOOST_CHECK((J2_f * eps_f - (dxi_f - dx_f) / h_f).isZero(1e-2f)); |
576 |
|
|
#endif |
577 |
|
|
} |
578 |
|
|
|
579 |
|
|
//----------------------------------------------------------------------------// |
580 |
|
|
|
581 |
|
✗ |
void register_state_unit_tests(StateModelTypes::Type state_type) { |
582 |
|
✗ |
boost::test_tools::output_test_stream test_name; |
583 |
|
✗ |
test_name << "test_" << state_type; |
584 |
|
✗ |
std::cout << "Running " << test_name.str() << std::endl; |
585 |
|
✗ |
test_suite* ts = BOOST_TEST_SUITE(test_name.str()); |
586 |
|
✗ |
ts->add(BOOST_TEST_CASE(boost::bind(&test_state_dimension, state_type))); |
587 |
|
✗ |
ts->add(BOOST_TEST_CASE( |
588 |
|
|
boost::bind(&test_integrate_against_difference, state_type))); |
589 |
|
✗ |
ts->add(BOOST_TEST_CASE( |
590 |
|
|
boost::bind(&test_difference_against_integrate, state_type))); |
591 |
|
✗ |
ts->add(BOOST_TEST_CASE(boost::bind(&test_Jdiff_firstsecond, state_type))); |
592 |
|
✗ |
ts->add(BOOST_TEST_CASE(boost::bind(&test_Jint_firstsecond, state_type))); |
593 |
|
✗ |
ts->add(BOOST_TEST_CASE( |
594 |
|
|
boost::bind(&test_Jdiff_num_diff_firstsecond, state_type))); |
595 |
|
✗ |
ts->add(BOOST_TEST_CASE( |
596 |
|
|
boost::bind(&test_Jint_num_diff_firstsecond, state_type))); |
597 |
|
✗ |
ts->add( |
598 |
|
✗ |
BOOST_TEST_CASE(boost::bind(&test_Jdiff_against_numdiff, state_type))); |
599 |
|
✗ |
ts->add(BOOST_TEST_CASE( |
600 |
|
|
boost::bind(&test_Jintegrate_against_numdiff, state_type))); |
601 |
|
✗ |
ts->add(BOOST_TEST_CASE(boost::bind(&test_JintegrateTransport, state_type))); |
602 |
|
✗ |
ts->add(BOOST_TEST_CASE( |
603 |
|
|
boost::bind(&test_Jdiff_and_Jintegrate_are_inverses, state_type))); |
604 |
|
✗ |
ts->add(BOOST_TEST_CASE( |
605 |
|
|
boost::bind(&test_velocity_from_Jintegrate_Jdiff, state_type))); |
606 |
|
✗ |
framework::master_test_suite().add(ts); |
607 |
|
|
} |
608 |
|
|
|
609 |
|
✗ |
bool init_function() { |
610 |
|
✗ |
for (size_t i = 0; i < StateModelTypes::all.size(); ++i) { |
611 |
|
✗ |
register_state_unit_tests(StateModelTypes::all[i]); |
612 |
|
|
} |
613 |
|
✗ |
return true; |
614 |
|
|
} |
615 |
|
|
|
616 |
|
✗ |
int main(int argc, char** argv) { |
617 |
|
✗ |
return ::boost::unit_test::unit_test_main(&init_function, argc, argv); |
618 |
|
|
} |
619 |
|
|
|