Crocoddyl
box-fddp.cpp
1 // BSD 3-Clause License
3 //
4 // Copyright (C) 2019-2021, University of Edinburgh
5 // Copyright note valid unless otherwise stated in individual files.
6 // All rights reserved.
8 
9 #include "crocoddyl/core/solvers/box-fddp.hpp"
10 
11 #include <iostream>
12 
13 #include "crocoddyl/core/utils/exception.hpp"
14 
15 namespace crocoddyl {
16 
17 SolverBoxFDDP::SolverBoxFDDP(std::shared_ptr<ShootingProblem> problem)
18  : SolverFDDP(problem),
19  qp_(problem->get_runningModels()[0]->get_nu(), 100, 0.1, 1e-5, 0.) {
20  allocateData();
21 
22  const std::size_t n_alphas = 10;
23  alphas_.resize(n_alphas);
24  for (std::size_t n = 0; n < n_alphas; ++n) {
25  alphas_[n] = 1. / pow(2., static_cast<double>(n));
26  }
27  // Change the default convergence tolerance since the gradient of the
28  // Lagrangian is smaller than an unconstrained OC problem (i.e. gradient = Qu
29  // - mu^T * C where mu > 0 and C defines the inequality matrix that bounds the
30  // control); and we don't have access to mu from the box QP.
31  th_stop_ = 5e-5;
32 }
33 
34 SolverBoxFDDP::~SolverBoxFDDP() {}
35 
36 void SolverBoxFDDP::resizeData() {
37  START_PROFILER("SolverBoxFDDP::resizeData");
38  SolverFDDP::resizeData();
39 
40  const std::size_t T = problem_->get_T();
41  const std::vector<std::shared_ptr<ActionModelAbstract> >& models =
42  problem_->get_runningModels();
43  for (std::size_t t = 0; t < T; ++t) {
44  const std::shared_ptr<ActionModelAbstract>& model = models[t];
45  const std::size_t nu = model->get_nu();
46  Quu_inv_[t].conservativeResize(nu, nu);
47  du_lb_[t].conservativeResize(nu);
48  du_ub_[t].conservativeResize(nu);
49  }
50  STOP_PROFILER("SolverBoxFDDP::resizeData");
51 }
52 
53 void SolverBoxFDDP::allocateData() {
54  SolverFDDP::allocateData();
55 
56  const std::size_t T = problem_->get_T();
57  Quu_inv_.resize(T);
58  du_lb_.resize(T);
59  du_ub_.resize(T);
60  const std::vector<std::shared_ptr<ActionModelAbstract> >& models =
61  problem_->get_runningModels();
62  for (std::size_t t = 0; t < T; ++t) {
63  const std::shared_ptr<ActionModelAbstract>& model = models[t];
64  const std::size_t nu = model->get_nu();
65  Quu_inv_[t] = Eigen::MatrixXd::Zero(nu, nu);
66  du_lb_[t] = Eigen::VectorXd::Zero(nu);
67  du_ub_[t] = Eigen::VectorXd::Zero(nu);
68  }
69 }
70 
71 void SolverBoxFDDP::computeGains(const std::size_t t) {
72  const std::size_t nu = problem_->get_runningModels()[t]->get_nu();
73  if (nu > 0) {
74  if (!problem_->get_runningModels()[t]->get_has_control_limits() ||
75  !is_feasible_) {
76  // No control limits on this model: Use vanilla DDP
77  SolverFDDP::computeGains(t);
78  return;
79  }
80 
81  du_lb_[t] = problem_->get_runningModels()[t]->get_u_lb() - us_[t];
82  du_ub_[t] = problem_->get_runningModels()[t]->get_u_ub() - us_[t];
83 
84  const BoxQPSolution& boxqp_sol =
85  qp_.solve(Quu_[t], Qu_[t], du_lb_[t], du_ub_[t], k_[t]);
86 
87  // Compute controls
88  Quu_inv_[t].setZero();
89  for (std::size_t i = 0; i < boxqp_sol.free_idx.size(); ++i) {
90  for (std::size_t j = 0; j < boxqp_sol.free_idx.size(); ++j) {
91  Quu_inv_[t](boxqp_sol.free_idx[i], boxqp_sol.free_idx[j]) =
92  boxqp_sol.Hff_inv(i, j);
93  }
94  }
95  K_[t].noalias() = Quu_inv_[t] * Qxu_[t].transpose();
96  k_[t] = -boxqp_sol.x;
97 
98  // The box-QP clamped the gradient direction; this is important for
99  // accounting the algorithm advancement (i.e. stopping criteria)
100  for (std::size_t i = 0; i < boxqp_sol.clamped_idx.size(); ++i) {
101  Qu_[t](boxqp_sol.clamped_idx[i]) = 0.;
102  }
103  }
104 }
105 
106 void SolverBoxFDDP::forwardPass(const double steplength) {
107  if (steplength > 1. || steplength < 0.) {
108  throw_pretty("Invalid argument: "
109  << "invalid step length, value is between 0. to 1.");
110  }
111  cost_try_ = 0.;
112  xnext_ = problem_->get_x0();
113  const std::size_t T = problem_->get_T();
114  const std::vector<std::shared_ptr<ActionModelAbstract> >& models =
115  problem_->get_runningModels();
116  const std::vector<std::shared_ptr<ActionDataAbstract> >& datas =
117  problem_->get_runningDatas();
118  if ((is_feasible_) || (steplength == 1)) {
119  for (std::size_t t = 0; t < T; ++t) {
120  const std::shared_ptr<ActionModelAbstract>& m = models[t];
121  const std::shared_ptr<ActionDataAbstract>& d = datas[t];
122  const std::size_t nu = m->get_nu();
123 
124  xs_try_[t] = xnext_;
125  m->get_state()->diff(xs_[t], xs_try_[t], dx_[t]);
126  if (nu != 0) {
127  us_try_[t].noalias() = us_[t] - k_[t] * steplength - K_[t] * dx_[t];
128  if (m->get_has_control_limits()) { // clamp control
129  us_try_[t] =
130  us_try_[t].cwiseMax(m->get_u_lb()).cwiseMin(m->get_u_ub());
131  }
132  m->calc(d, xs_try_[t], us_try_[t]);
133  } else {
134  m->calc(d, xs_try_[t]);
135  }
136  xnext_ = d->xnext;
137  cost_try_ += d->cost;
138 
139  if (raiseIfNaN(cost_try_)) {
140  throw_pretty("forward_error");
141  }
142  if (raiseIfNaN(xnext_.lpNorm<Eigen::Infinity>())) {
143  throw_pretty("forward_error");
144  }
145  }
146 
147  const std::shared_ptr<ActionModelAbstract>& m =
148  problem_->get_terminalModel();
149  const std::shared_ptr<ActionDataAbstract>& d = problem_->get_terminalData();
150  xs_try_.back() = xnext_;
151  m->calc(d, xs_try_.back());
152  cost_try_ += d->cost;
153 
154  if (raiseIfNaN(cost_try_)) {
155  throw_pretty("forward_error");
156  }
157  } else {
158  for (std::size_t t = 0; t < T; ++t) {
159  const std::shared_ptr<ActionModelAbstract>& m = models[t];
160  const std::shared_ptr<ActionDataAbstract>& d = datas[t];
161  const std::size_t nu = m->get_nu();
162  m->get_state()->integrate(xnext_, fs_[t] * (steplength - 1), xs_try_[t]);
163  m->get_state()->diff(xs_[t], xs_try_[t], dx_[t]);
164  if (nu != 0) {
165  us_try_[t].noalias() = us_[t] - k_[t] * steplength - K_[t] * dx_[t];
166  if (m->get_has_control_limits()) { // clamp control
167  us_try_[t] =
168  us_try_[t].cwiseMax(m->get_u_lb()).cwiseMin(m->get_u_ub());
169  }
170  m->calc(d, xs_try_[t], us_try_[t]);
171  } else {
172  m->calc(d, xs_try_[t]);
173  }
174  xnext_ = d->xnext;
175  cost_try_ += d->cost;
176 
177  if (raiseIfNaN(cost_try_)) {
178  throw_pretty("forward_error");
179  }
180  if (raiseIfNaN(xnext_.lpNorm<Eigen::Infinity>())) {
181  throw_pretty("forward_error");
182  }
183  }
184 
185  const std::shared_ptr<ActionModelAbstract>& m =
186  problem_->get_terminalModel();
187  const std::shared_ptr<ActionDataAbstract>& d = problem_->get_terminalData();
188  m->get_state()->integrate(xnext_, fs_.back() * (steplength - 1),
189  xs_try_.back());
190  m->calc(d, xs_try_.back());
191  cost_try_ += d->cost;
192 
193  if (raiseIfNaN(cost_try_)) {
194  throw_pretty("forward_error");
195  }
196  }
197 }
198 
199 const std::vector<Eigen::MatrixXd>& SolverBoxFDDP::get_Quu_inv() const {
200  return Quu_inv_;
201 }
202 
203 } // namespace crocoddyl