Line |
Branch |
Exec |
Source |
1 |
|
|
#ifndef __quadruped_walkgen_quadruped_step_hxx__ |
2 |
|
|
#define __quadruped_walkgen_quadruped_step_hxx__ |
3 |
|
|
|
4 |
|
|
#include "crocoddyl/core/utils/exception.hpp" |
5 |
|
|
|
6 |
|
|
namespace quadruped_walkgen { |
7 |
|
|
template <typename Scalar> |
8 |
|
✗ |
ActionModelQuadrupedStepTpl<Scalar>::ActionModelQuadrupedStepTpl() |
9 |
|
|
: crocoddyl::ActionModelAbstractTpl<Scalar>( |
10 |
|
✗ |
boost::make_shared<crocoddyl::StateVectorTpl<Scalar> >(20), 8, 28) { |
11 |
|
✗ |
B.setZero(); |
12 |
|
✗ |
state_weights_ << Scalar(1.), Scalar(1.), Scalar(150.), Scalar(35.), |
13 |
|
✗ |
Scalar(30.), Scalar(8.), Scalar(20.), Scalar(20.), Scalar(15.), |
14 |
|
✗ |
Scalar(4.), Scalar(4.), Scalar(8.); |
15 |
|
|
|
16 |
|
✗ |
pheuristic_ << Scalar(0.18), Scalar(0.15005), Scalar(0.18), Scalar(-0.15005), |
17 |
|
✗ |
Scalar(-0.21), Scalar(0.15005), Scalar(-0.21), Scalar(-0.15005); |
18 |
|
|
|
19 |
|
✗ |
centrifugal_term = true; |
20 |
|
✗ |
symmetry_term = true; |
21 |
|
✗ |
T_gait = Scalar(0.48); |
22 |
|
|
|
23 |
|
✗ |
step_weights_.setConstant(Scalar(1)); |
24 |
|
✗ |
heuristic_weights_.setConstant(Scalar(1)); |
25 |
|
|
|
26 |
|
|
// Compute heuristic inside |
27 |
|
|
// pshoulder_0 << Scalar(0.1946), Scalar(0.1946), Scalar(-0.1946), |
28 |
|
|
// Scalar(-0.1946), Scalar(0.15005), Scalar(-0.15005), |
29 |
|
|
// Scalar(0.15005), Scalar(-0.15005); |
30 |
|
|
// pshoulder_tmp.setZero(); |
31 |
|
|
// pcentrifugal_tmp_1.setZero(); |
32 |
|
|
// pcentrifugal_tmp_2.setZero(); |
33 |
|
|
// pcentrifugal_tmp.setZero(); |
34 |
|
|
|
35 |
|
✗ |
N_sampling = 5; // Number of point to sample the polynomial curve of the feet |
36 |
|
|
// trajectory |
37 |
|
✗ |
S_.setZero(); // Usefull to compute only the trajectory for moving feet |
38 |
|
✗ |
position_.setZero(); // Xk+1 = Xk + Uk, Xk does not correspond to the current |
39 |
|
|
// position of the flying feet, Delta_x is not |
40 |
|
|
// straightforward |
41 |
|
|
|
42 |
|
|
// Cost on the acceleration of the feet : |
43 |
|
✗ |
is_acc_activated_ = true; |
44 |
|
✗ |
acc_weight_ = Scalar(1.); |
45 |
|
✗ |
acc_lim_.setConstant(Scalar(50.)); |
46 |
|
|
|
47 |
|
✗ |
delta_ = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
48 |
|
✗ |
N_sampling - 1, 4); |
49 |
|
✗ |
gamma_ = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
50 |
|
✗ |
N_sampling - 1, 3); |
51 |
|
✗ |
for (int k = 1; k < N_sampling; k++) { |
52 |
|
✗ |
delta_(k - 1, 0) = |
53 |
|
✗ |
(float)k / (float)N_sampling; // [1/N, 2/N, ... , (N-1)/N] |
54 |
|
|
} |
55 |
|
✗ |
delta_.col(1) << delta_.col(0).pow(2); |
56 |
|
✗ |
delta_.col(2) << delta_.col(0).pow(3); |
57 |
|
✗ |
delta_.col(3) << delta_.col(0).pow(4); // Only used for speed cost |
58 |
|
✗ |
gamma_.col(0) = |
59 |
|
✗ |
60 * delta_.col(0) - 180 * delta_.col(1) + 120 * delta_.col(2); |
60 |
|
✗ |
gamma_.col(1) = -36 * delta_.col(0) + 96 * delta_.col(1) - 60 * delta_.col(2); |
61 |
|
✗ |
gamma_.col(2) = -9 * delta_.col(0) + 18 * delta_.col(1) - 10 * delta_.col(2); |
62 |
|
|
|
63 |
|
✗ |
alpha_ = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
64 |
|
✗ |
N_sampling - 1, 1); // Common for 4 feet |
65 |
|
✗ |
beta_x_ = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
66 |
|
✗ |
N_sampling - 1, 4); // Depends on a0_x, v0_x of feet |
67 |
|
✗ |
beta_y_ = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
68 |
|
✗ |
N_sampling - 1, 4); // Depends on a0_y, v0_y of feet |
69 |
|
✗ |
tmp_ones_ = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Ones( |
70 |
|
✗ |
N_sampling - 1, 1); |
71 |
|
|
|
72 |
|
✗ |
rb_accx_max_ = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
73 |
|
✗ |
N_sampling - 1, 8); |
74 |
|
✗ |
rb_accy_max_ = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
75 |
|
✗ |
N_sampling - 1, 8); |
76 |
|
✗ |
rb_accx_max_bool_ = |
77 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(N_sampling - 1, |
78 |
|
|
8); |
79 |
|
✗ |
rb_accy_max_bool_ = |
80 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(N_sampling - 1, |
81 |
|
|
8); |
82 |
|
|
|
83 |
|
|
// Cost on the velocity of the feet : |
84 |
|
✗ |
is_vel_activated_ = true; |
85 |
|
✗ |
vel_weight_ = Scalar(1.); |
86 |
|
✗ |
vel_lim_.setConstant(Scalar(3.)); |
87 |
|
|
|
88 |
|
✗ |
gamma_v = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
89 |
|
✗ |
N_sampling - 1, 4); |
90 |
|
✗ |
gamma_v.col(0) = 30 * delta_.col(1) - 60 * delta_.col(2) + 30 * delta_.col(3); |
91 |
|
✗ |
gamma_v.col(1) = delta_.col(0); |
92 |
|
✗ |
gamma_v.col(2) = |
93 |
|
✗ |
-18 * delta_.col(1) + 32 * delta_.col(2) - 15 * delta_.col(3); |
94 |
|
✗ |
gamma_v.col(3) = |
95 |
|
✗ |
-4.5 * delta_.col(1) + 6 * delta_.col(2) - 2.5 * delta_.col(3); |
96 |
|
|
|
97 |
|
✗ |
alpha_v = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
98 |
|
✗ |
N_sampling - 1, 1); // Common for 4 feet |
99 |
|
✗ |
beta_x_v = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
100 |
|
✗ |
N_sampling - 1, 4); // Depends on a0_x, v0_x of feet |
101 |
|
✗ |
beta_y_v = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
102 |
|
✗ |
N_sampling - 1, 4); // Depends on a0_y, v0_y of feet |
103 |
|
|
|
104 |
|
✗ |
rb_velx_max_ = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
105 |
|
✗ |
N_sampling - 1, 8); |
106 |
|
✗ |
rb_vely_max_ = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
107 |
|
✗ |
N_sampling - 1, 8); |
108 |
|
✗ |
rb_velx_max_bool_ = |
109 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(N_sampling - 1, |
110 |
|
|
8); |
111 |
|
✗ |
rb_vely_max_bool_ = |
112 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(N_sampling - 1, |
113 |
|
|
8); |
114 |
|
|
|
115 |
|
|
// Cost on the jerk at t=0 |
116 |
|
✗ |
is_jerk_activated_ = true; |
117 |
|
✗ |
jerk_weight_ = Scalar(1.); |
118 |
|
✗ |
alpha_j = Scalar(0.); // Common for 4 feet |
119 |
|
✗ |
beta_j = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
120 |
|
|
2, 4); // Depends on a0_x, v0_x of feet |
121 |
|
✗ |
rb_jerk_.setZero(); |
122 |
|
|
} |
123 |
|
|
|
124 |
|
|
template <typename Scalar> |
125 |
|
✗ |
ActionModelQuadrupedStepTpl<Scalar>::~ActionModelQuadrupedStepTpl() {} |
126 |
|
|
|
127 |
|
|
template <typename Scalar> |
128 |
|
✗ |
void ActionModelQuadrupedStepTpl<Scalar>::calc( |
129 |
|
|
const boost::shared_ptr<crocoddyl::ActionDataAbstractTpl<Scalar> >& data, |
130 |
|
|
const Eigen::Ref<const typename MathBase::VectorXs>& x, |
131 |
|
|
const Eigen::Ref<const typename MathBase::VectorXs>& u) { |
132 |
|
✗ |
if (static_cast<std::size_t>(x.size()) != state_->get_nx()) { |
133 |
|
✗ |
throw_pretty("Invalid argument: " |
134 |
|
|
<< "x has wrong dimension (it should be " + |
135 |
|
|
std::to_string(state_->get_nx()) + ")"); |
136 |
|
|
} |
137 |
|
✗ |
if (static_cast<std::size_t>(u.size()) != nu_) { |
138 |
|
✗ |
throw_pretty("Invalid argument: " |
139 |
|
|
<< "u has wrong dimension (it should be " + |
140 |
|
|
std::to_string(nu_) + ")"); |
141 |
|
|
} |
142 |
|
|
|
143 |
|
|
ActionDataQuadrupedStepTpl<Scalar>* d = |
144 |
|
✗ |
static_cast<ActionDataQuadrupedStepTpl<Scalar>*>(data.get()); |
145 |
|
|
|
146 |
|
✗ |
d->xnext.template head<12>() = x.head(12); |
147 |
|
✗ |
d->xnext.template tail<8>() = x.tail(8) + B * u; |
148 |
|
|
|
149 |
|
|
// Residual cost on the state and force norm |
150 |
|
✗ |
d->r.template head<12>() = state_weights_.cwiseProduct(x.head(12) - xref_); |
151 |
|
✗ |
d->r.template segment<8>(12) = |
152 |
|
✗ |
heuristic_weights_.cwiseProduct(x.tail(8) - pheuristic_); |
153 |
|
✗ |
d->r.template tail<8>() = step_weights_.cwiseProduct(u); |
154 |
|
|
|
155 |
|
✗ |
d->cost = Scalar(0.5) * d->r.transpose() * d->r; |
156 |
|
|
|
157 |
|
|
// Weight on the feet acceleration : |
158 |
|
✗ |
if (is_acc_activated_) { |
159 |
|
✗ |
for (int i = 0; i < 4; i++) { |
160 |
|
✗ |
if (S_(i) == Scalar(1.)) { |
161 |
|
|
// position_ expressed in base frame |
162 |
|
|
// rb_accx_max_.col(2*i) = (x(12+ 2*i) + u(2*i) - position_(0,i))*alpha_ |
163 |
|
|
// + beta_x_.col(i) - acc_lim_(0)*tmp_ones_; rb_accx_max_.col(2*i+1) = |
164 |
|
|
// -( x(12+ 2*i) + u(2*i) - position_(0,i) )*alpha_ - beta_x_.col(i) - |
165 |
|
|
// acc_lim_(0)*tmp_ones_; |
166 |
|
|
|
167 |
|
|
// rb_accy_max_.col(2*i) = ( x(12+ 2*i+1) + u(2*i+1) - position_(1,i) |
168 |
|
|
// )*alpha_ + beta_y_.col(i) - acc_lim_(1)*tmp_ones_; |
169 |
|
|
// rb_accy_max_.col(2*i+1) = -( x(12+ 2*i+1) + u(2*i+1) - position_(1,i) |
170 |
|
|
// )*alpha_ - beta_y_.col(i) - acc_lim_(1)*tmp_ones_; |
171 |
|
|
|
172 |
|
|
// position_ expressed in world frame |
173 |
|
✗ |
rb_accx_max_.col(2 * i) = |
174 |
|
✗ |
(oRh_(0, 0) * (x(12 + 2 * i) + u(2 * i)) + |
175 |
|
✗ |
oRh_(0, 1) * (x(12 + 2 * i + 1) + u(2 * i + 1)) + oTh_(0) - |
176 |
|
✗ |
position_(0, i)) * |
177 |
|
✗ |
alpha_ + |
178 |
|
✗ |
beta_x_.col(i) - acc_lim_(0) * tmp_ones_; |
179 |
|
✗ |
rb_accx_max_.col(2 * i + 1) = |
180 |
|
✗ |
-(oRh_(0, 0) * (x(12 + 2 * i) + u(2 * i)) + |
181 |
|
✗ |
oRh_(0, 1) * (x(12 + 2 * i + 1) + u(2 * i + 1)) + oTh_(0) - |
182 |
|
✗ |
position_(0, i)) * |
183 |
|
✗ |
alpha_ + |
184 |
|
✗ |
beta_x_.col(i) - acc_lim_(0) * tmp_ones_; |
185 |
|
|
; |
186 |
|
|
|
187 |
|
✗ |
rb_accy_max_.col(2 * i) = |
188 |
|
✗ |
(oRh_(1, 0) * (x(12 + 2 * i) + u(2 * i)) + |
189 |
|
✗ |
oRh_(1, 1) * (x(12 + 2 * i + 1) + u(2 * i + 1)) + oTh_(1) - |
190 |
|
✗ |
position_(1, i)) * |
191 |
|
✗ |
alpha_ + |
192 |
|
✗ |
beta_y_.col(i) - acc_lim_(1) * tmp_ones_; |
193 |
|
✗ |
rb_accy_max_.col(2 * i + 1) = |
194 |
|
✗ |
-(oRh_(1, 0) * (x(12 + 2 * i) + u(2 * i)) + |
195 |
|
✗ |
oRh_(1, 1) * (x(12 + 2 * i + 1) + u(2 * i + 1)) + oTh_(1) - |
196 |
|
✗ |
position_(1, i)) * |
197 |
|
✗ |
alpha_ - |
198 |
|
✗ |
beta_y_.col(i) - acc_lim_(1) * tmp_ones_; |
199 |
|
|
} else { |
200 |
|
✗ |
rb_accx_max_.col(2 * i).setZero(); |
201 |
|
✗ |
rb_accx_max_.col(2 * i + 1).setZero(); |
202 |
|
✗ |
rb_accy_max_.col(2 * i).setZero(); |
203 |
|
✗ |
rb_accy_max_.col(2 * i + 1).setZero(); |
204 |
|
|
} |
205 |
|
|
} |
206 |
|
✗ |
rb_accx_max_bool_ = |
207 |
|
✗ |
(rb_accx_max_ > Scalar(0.)) |
208 |
|
|
.template cast<Scalar>(); // Usefull to compute the derivatives |
209 |
|
✗ |
rb_accy_max_bool_ = |
210 |
|
✗ |
(rb_accy_max_ > Scalar(0.)) |
211 |
|
|
.template cast<Scalar>(); // Usefull to compute the derivatives |
212 |
|
|
|
213 |
|
✗ |
rb_accx_max_ = rb_accx_max_.cwiseMax(Scalar(0.)); |
214 |
|
✗ |
rb_accy_max_ = rb_accy_max_.cwiseMax(Scalar(0.)); |
215 |
|
|
|
216 |
|
✗ |
for (int foot = 0; foot < 4; foot++) { |
217 |
|
✗ |
if (S_(foot) == Scalar(1.)) { |
218 |
|
✗ |
for (int i = 0; i < (N_sampling - 1); i++) { |
219 |
|
✗ |
if (rb_accx_max_bool_(i, 2 * foot)) { |
220 |
|
✗ |
d->cost += |
221 |
|
✗ |
Scalar(0.5) * acc_weight_ * pow(rb_accx_max_(i, 2 * foot), 2); |
222 |
|
|
} |
223 |
|
✗ |
if (rb_accx_max_bool_(i, 2 * foot + 1)) { |
224 |
|
✗ |
d->cost += Scalar(0.5) * acc_weight_ * |
225 |
|
✗ |
pow(rb_accx_max_(i, 2 * foot + 1), 2); |
226 |
|
|
} |
227 |
|
✗ |
if (rb_accy_max_bool_(i, 2 * foot)) { |
228 |
|
✗ |
d->cost += |
229 |
|
✗ |
Scalar(0.5) * acc_weight_ * pow(rb_accy_max_(i, 2 * foot), 2); |
230 |
|
|
} |
231 |
|
✗ |
if (rb_accy_max_bool_(i, 2 * foot + 1)) { |
232 |
|
✗ |
d->cost += Scalar(0.5) * acc_weight_ * |
233 |
|
✗ |
pow(rb_accy_max_(i, 2 * foot + 1), 2); |
234 |
|
|
} |
235 |
|
|
} |
236 |
|
|
} |
237 |
|
|
} |
238 |
|
|
} |
239 |
|
|
|
240 |
|
|
// Weight on the feet velocity |
241 |
|
✗ |
if (is_vel_activated_) { |
242 |
|
✗ |
for (int i = 0; i < 4; i++) { |
243 |
|
✗ |
if (S_(i) == Scalar(1.)) { |
244 |
|
|
// position_ expressed in local frame |
245 |
|
|
// rb_velx_max_.col(2*i) = (x(12+ 2*i) + u(2*i) - |
246 |
|
|
// position_(0,i))*alpha_v + beta_x_v.col(i) - vel_lim_(0)*tmp_ones_; |
247 |
|
|
// rb_velx_max_.col(2*i+1) = -( x(12+ 2*i) + u(2*i) - position_(0,i) |
248 |
|
|
// )*alpha_v - beta_x_v.col(i) - vel_lim_(0)*tmp_ones_; |
249 |
|
|
|
250 |
|
|
// rb_vely_max_.col(2*i) = ( x(12+ 2*i+1) + u(2*i+1) - position_(1,i) |
251 |
|
|
// )*alpha_v + beta_y_v.col(i) - vel_lim_(1)*tmp_ones_; |
252 |
|
|
// rb_vely_max_.col(2*i+1) = -( x(12+ 2*i+1) + u(2*i+1) - position_(1,i) |
253 |
|
|
// )*alpha_v - beta_y_v.col(i) - vel_lim_(1)*tmp_ones_; |
254 |
|
|
|
255 |
|
|
// position_ expressed in world frame |
256 |
|
✗ |
rb_velx_max_.col(2 * i) = |
257 |
|
✗ |
(oRh_(0, 0) * (x(12 + 2 * i) + u(2 * i)) + |
258 |
|
✗ |
oRh_(0, 1) * (x(12 + 2 * i + 1) + u(2 * i + 1)) + oTh_(0) - |
259 |
|
✗ |
position_(0, i)) * |
260 |
|
✗ |
alpha_v + |
261 |
|
✗ |
beta_x_v.col(i) - vel_lim_(0) * tmp_ones_; |
262 |
|
✗ |
rb_velx_max_.col(2 * i + 1) = |
263 |
|
✗ |
-(oRh_(0, 0) * (x(12 + 2 * i) + u(2 * i)) + |
264 |
|
✗ |
oRh_(0, 1) * (x(12 + 2 * i + 1) + u(2 * i + 1)) + oTh_(0) - |
265 |
|
✗ |
position_(0, i)) * |
266 |
|
✗ |
alpha_v - |
267 |
|
✗ |
beta_x_v.col(i) - vel_lim_(0) * tmp_ones_; |
268 |
|
|
|
269 |
|
✗ |
rb_vely_max_.col(2 * i) = |
270 |
|
✗ |
(oRh_(1, 0) * (x(12 + 2 * i) + u(2 * i)) + |
271 |
|
✗ |
oRh_(1, 1) * (x(12 + 2 * i + 1) + u(2 * i + 1)) + oTh_(1) - |
272 |
|
✗ |
position_(1, i)) * |
273 |
|
✗ |
alpha_v + |
274 |
|
✗ |
beta_y_v.col(i) - vel_lim_(1) * tmp_ones_; |
275 |
|
✗ |
rb_vely_max_.col(2 * i + 1) = |
276 |
|
✗ |
-(oRh_(1, 0) * (x(12 + 2 * i) + u(2 * i)) + |
277 |
|
✗ |
oRh_(1, 1) * (x(12 + 2 * i + 1) + u(2 * i + 1)) + oTh_(1) - |
278 |
|
✗ |
position_(1, i)) * |
279 |
|
✗ |
alpha_v - |
280 |
|
✗ |
beta_y_v.col(i) - vel_lim_(1) * tmp_ones_; |
281 |
|
|
} else { |
282 |
|
✗ |
rb_velx_max_.col(2 * i).setZero(); |
283 |
|
✗ |
rb_velx_max_.col(2 * i + 1).setZero(); |
284 |
|
✗ |
rb_vely_max_.col(2 * i).setZero(); |
285 |
|
✗ |
rb_vely_max_.col(2 * i + 1).setZero(); |
286 |
|
|
} |
287 |
|
|
} |
288 |
|
✗ |
rb_velx_max_bool_ = |
289 |
|
✗ |
(rb_velx_max_ > Scalar(0.)) |
290 |
|
|
.template cast<Scalar>(); // Usefull to compute the derivatives |
291 |
|
✗ |
rb_vely_max_bool_ = |
292 |
|
✗ |
(rb_vely_max_ > Scalar(0.)) |
293 |
|
|
.template cast<Scalar>(); // Usefull to compute the derivatives |
294 |
|
|
|
295 |
|
✗ |
rb_velx_max_ = rb_velx_max_.cwiseMax(Scalar(0.)); |
296 |
|
✗ |
rb_vely_max_ = rb_vely_max_.cwiseMax(Scalar(0.)); |
297 |
|
|
|
298 |
|
✗ |
for (int foot = 0; foot < 4; foot++) { |
299 |
|
✗ |
if (S_(foot) == Scalar(1.)) { |
300 |
|
✗ |
for (int i = 0; i < (N_sampling - 1); i++) { |
301 |
|
✗ |
if (rb_velx_max_bool_(i, 2 * foot)) { |
302 |
|
✗ |
d->cost += |
303 |
|
✗ |
Scalar(0.5) * vel_weight_ * pow(rb_velx_max_(i, 2 * foot), 2); |
304 |
|
|
} |
305 |
|
✗ |
if (rb_velx_max_bool_(i, 2 * foot + 1)) { |
306 |
|
✗ |
d->cost += Scalar(0.5) * vel_weight_ * |
307 |
|
✗ |
pow(rb_velx_max_(i, 2 * foot + 1), 2); |
308 |
|
|
} |
309 |
|
✗ |
if (rb_vely_max_bool_(i, 2 * foot)) { |
310 |
|
✗ |
d->cost += |
311 |
|
✗ |
Scalar(0.5) * vel_weight_ * pow(rb_vely_max_(i, 2 * foot), 2); |
312 |
|
|
} |
313 |
|
✗ |
if (rb_vely_max_bool_(i, 2 * foot + 1)) { |
314 |
|
✗ |
d->cost += Scalar(0.5) * vel_weight_ * |
315 |
|
✗ |
pow(rb_vely_max_(i, 2 * foot + 1), 2); |
316 |
|
|
} |
317 |
|
|
} |
318 |
|
|
} |
319 |
|
|
} |
320 |
|
|
} |
321 |
|
|
|
322 |
|
|
// Weight on the feet velocity |
323 |
|
✗ |
if (is_jerk_activated_) { |
324 |
|
✗ |
for (int i = 0; i < 4; i++) { |
325 |
|
✗ |
if (S_(i) == Scalar(1.)) { |
326 |
|
✗ |
rb_jerk_(0, i) = (oRh_(0, 0) * (x(12 + 2 * i) + u(2 * i)) + |
327 |
|
✗ |
oRh_(0, 1) * (x(12 + 2 * i + 1) + u(2 * i + 1)) + |
328 |
|
✗ |
oTh_(0) - position_(0, i)) * |
329 |
|
✗ |
alpha_j + |
330 |
|
✗ |
beta_j(0, i) - jerk_(0, i); |
331 |
|
✗ |
rb_jerk_(1, i) = (oRh_(1, 0) * (x(12 + 2 * i) + u(2 * i)) + |
332 |
|
✗ |
oRh_(1, 1) * (x(12 + 2 * i + 1) + u(2 * i + 1)) + |
333 |
|
✗ |
oTh_(1) - position_(1, i)) * |
334 |
|
✗ |
alpha_j + |
335 |
|
✗ |
beta_j(1, i) - jerk_(1, i); |
336 |
|
✗ |
d->cost += Scalar(0.5) * jerk_weight_ * rb_jerk_.col(i).squaredNorm(); |
337 |
|
|
} else { |
338 |
|
✗ |
rb_jerk_.col(i).setZero(); |
339 |
|
|
} |
340 |
|
|
} |
341 |
|
|
} |
342 |
|
|
} |
343 |
|
|
|
344 |
|
|
template <typename Scalar> |
345 |
|
✗ |
void ActionModelQuadrupedStepTpl<Scalar>::calcDiff( |
346 |
|
|
const boost::shared_ptr<crocoddyl::ActionDataAbstractTpl<Scalar> >& data, |
347 |
|
|
const Eigen::Ref<const typename MathBase::VectorXs>& x, |
348 |
|
|
const Eigen::Ref<const typename MathBase::VectorXs>& u) { |
349 |
|
✗ |
if (static_cast<std::size_t>(x.size()) != state_->get_nx()) { |
350 |
|
✗ |
throw_pretty("Invalid argument: " |
351 |
|
|
<< "x has wrong dimension (it should be " + |
352 |
|
|
std::to_string(state_->get_nx()) + ")"); |
353 |
|
|
} |
354 |
|
✗ |
if (static_cast<std::size_t>(u.size()) != nu_) { |
355 |
|
✗ |
throw_pretty("Invalid argument: " |
356 |
|
|
<< "u has wrong dimension (it should be " + |
357 |
|
|
std::to_string(nu_) + ")"); |
358 |
|
|
} |
359 |
|
|
|
360 |
|
|
ActionDataQuadrupedStepTpl<Scalar>* d = |
361 |
|
✗ |
static_cast<ActionDataQuadrupedStepTpl<Scalar>*>(data.get()); |
362 |
|
|
|
363 |
|
✗ |
d->Lxu.setZero(); |
364 |
|
✗ |
d->Luu.setZero(); |
365 |
|
|
|
366 |
|
|
// Cost derivatives : Lx |
367 |
|
✗ |
d->Lx.template head<12>() = |
368 |
|
✗ |
(state_weights_.array() * d->r.template head<12>().array()).matrix(); |
369 |
|
✗ |
d->Lx.template tail<8>() = |
370 |
|
✗ |
(heuristic_weights_.array() * d->r.template segment<8>(12).array()) |
371 |
|
|
.matrix(); |
372 |
|
|
|
373 |
|
✗ |
d->Lu = (step_weights_.array() * d->r.template tail<8>().array()).matrix(); |
374 |
|
|
|
375 |
|
|
// Hessian : Lxx |
376 |
|
✗ |
d->Lxx.diagonal().head(12) = |
377 |
|
✗ |
(state_weights_.array() * state_weights_.array()).matrix(); |
378 |
|
✗ |
d->Lxx.diagonal().tail(8) = |
379 |
|
✗ |
(heuristic_weights_.array() * heuristic_weights_.array()).matrix(); |
380 |
|
|
|
381 |
|
✗ |
d->Luu.diagonal() = (step_weights_.array() * step_weights_.array()).matrix(); |
382 |
|
|
|
383 |
|
✗ |
if (is_acc_activated_) { |
384 |
|
✗ |
for (int foot = 0; foot < 4; foot++) { |
385 |
|
✗ |
if (S_[foot] == Scalar(1)) { |
386 |
|
✗ |
for (int i = 0; i < (N_sampling - 1); i++) { |
387 |
|
|
// Position_ expressed in local frame |
388 |
|
|
// if (rb_accx_max_bool_(i,2*foot)){ |
389 |
|
|
|
390 |
|
|
// d->Lu(2*foot) += acc_weight_ * alpha_(i) * |
391 |
|
|
// rb_accx_max_(i,2*foot); d->Luu(2*foot,2*foot) += acc_weight_ * |
392 |
|
|
// pow(alpha_(i),2); |
393 |
|
|
|
394 |
|
|
// d->Lx(12+2*foot) += acc_weight_ * alpha_(i) * |
395 |
|
|
// rb_accx_max_(i,2*foot); d->Lxu(12+2*foot,2*foot) += acc_weight_ * |
396 |
|
|
// pow(alpha_(i),2); d->Lxx(12+2*foot,12+2*foot) += acc_weight_ * |
397 |
|
|
// pow(alpha_(i),2); |
398 |
|
|
// } |
399 |
|
|
// if (rb_accx_max_bool_(i,2*foot+1)){ |
400 |
|
|
// d->Lu(2*foot) += - acc_weight_ * alpha_(i) * |
401 |
|
|
// rb_accx_max_(i,2*foot+1); d->Luu(2*foot,2*foot) += acc_weight_ * |
402 |
|
|
// pow(alpha_(i),2); |
403 |
|
|
|
404 |
|
|
// d->Lx(12+2*foot) += - acc_weight_ * alpha_(i) * |
405 |
|
|
// rb_accx_max_(i,2*foot+1); d->Lxu(12+2*foot,2*foot) += acc_weight_ |
406 |
|
|
// * pow(alpha_(i),2); d->Lxx(12+2*foot,12+2*foot) += acc_weight_ * |
407 |
|
|
// pow(alpha_(i),2); |
408 |
|
|
// } |
409 |
|
|
// if (rb_accy_max_bool_(i,2*foot)){ |
410 |
|
|
// d->Lu(2*foot+1) += acc_weight_ * alpha_(i) * |
411 |
|
|
// rb_accy_max_(i,2*foot); d->Luu(2*foot+1,2*foot+1) += acc_weight_ |
412 |
|
|
// * pow(alpha_(i),2); |
413 |
|
|
|
414 |
|
|
// d->Lx(12+2*foot+1) += acc_weight_ * alpha_(i) * |
415 |
|
|
// rb_accy_max_(i,2*foot); d->Lxu(12+2*foot+1,2*foot+1) += |
416 |
|
|
// acc_weight_ * pow(alpha_(i),2); d->Lxx(12+2*foot+1,12+2*foot+1) |
417 |
|
|
// += acc_weight_ * pow(alpha_(i),2); |
418 |
|
|
// } |
419 |
|
|
// if (rb_accy_max_bool_(i,2*foot+1)){ |
420 |
|
|
// d->Lu(2*foot+1) += - acc_weight_ * alpha_(i) * |
421 |
|
|
// rb_accy_max_(i,2*foot+1); d->Luu(2*foot+1,2*foot+1) += |
422 |
|
|
// acc_weight_ * pow(alpha_(i),2); |
423 |
|
|
|
424 |
|
|
// d->Lx(12+2*foot+1) += - acc_weight_ * alpha_(i) * |
425 |
|
|
// rb_accy_max_(i,2*foot+1); d->Lxu(12+2*foot+1,2*foot+1) += |
426 |
|
|
// acc_weight_ * pow(alpha_(i),2); d->Lxx(12+2*foot+1,12+2*foot+1) |
427 |
|
|
// += acc_weight_ * pow(alpha_(i),2); |
428 |
|
|
// } |
429 |
|
|
|
430 |
|
|
// Position_ expressed in world frame |
431 |
|
✗ |
if (rb_accx_max_bool_(i, 2 * foot)) { |
432 |
|
✗ |
d->Lu(2 * foot) += acc_weight_ * oRh_(0, 0) * alpha_(i) * |
433 |
|
✗ |
rb_accx_max_(i, 2 * foot); |
434 |
|
✗ |
d->Lu(2 * foot + 1) += acc_weight_ * oRh_(0, 1) * alpha_(i) * |
435 |
|
✗ |
rb_accx_max_(i, 2 * foot); |
436 |
|
|
|
437 |
|
✗ |
d->Luu(2 * foot, 2 * foot) += |
438 |
|
✗ |
acc_weight_ * pow(oRh_(0, 0), 2) * pow(alpha_(i), 2); |
439 |
|
✗ |
d->Luu(2 * foot + 1, 2 * foot + 1) += |
440 |
|
✗ |
acc_weight_ * pow(oRh_(0, 1), 2) * pow(alpha_(i), 2); |
441 |
|
|
|
442 |
|
✗ |
d->Luu(2 * foot, 2 * foot + 1) += |
443 |
|
✗ |
acc_weight_ * oRh_(0, 0) * oRh_(0, 1) * pow(alpha_(i), 2); |
444 |
|
✗ |
d->Luu(2 * foot + 1, 2 * foot) += |
445 |
|
✗ |
acc_weight_ * oRh_(0, 0) * oRh_(0, 1) * pow(alpha_(i), 2); |
446 |
|
|
|
447 |
|
✗ |
d->Lx(12 + 2 * foot) += acc_weight_ * oRh_(0, 0) * alpha_(i) * |
448 |
|
✗ |
rb_accx_max_(i, 2 * foot); |
449 |
|
✗ |
d->Lx(12 + 2 * foot + 1) += acc_weight_ * oRh_(0, 1) * alpha_(i) * |
450 |
|
✗ |
rb_accx_max_(i, 2 * foot); |
451 |
|
|
|
452 |
|
✗ |
d->Lxx(12 + 2 * foot, 12 + 2 * foot) += |
453 |
|
✗ |
acc_weight_ * pow(oRh_(0, 0), 2) * pow(alpha_(i), 2); |
454 |
|
✗ |
d->Lxx(12 + 2 * foot + 1, 12 + 2 * foot + 1) += |
455 |
|
✗ |
acc_weight_ * pow(oRh_(0, 1), 2) * pow(alpha_(i), 2); |
456 |
|
|
|
457 |
|
✗ |
d->Lxx(12 + 2 * foot, 12 + 2 * foot + 1) += |
458 |
|
✗ |
acc_weight_ * oRh_(0, 0) * oRh_(0, 1) * pow(alpha_(i), 2); |
459 |
|
✗ |
d->Lxx(12 + 2 * foot + 1, 12 + 2 * foot) += |
460 |
|
✗ |
acc_weight_ * oRh_(0, 0) * oRh_(0, 1) * pow(alpha_(i), 2); |
461 |
|
|
|
462 |
|
✗ |
d->Lxu(12 + 2 * foot, 2 * foot) += |
463 |
|
✗ |
acc_weight_ * pow(alpha_(i), 2) * pow(oRh_(0, 0), 2); |
464 |
|
✗ |
d->Lxu(12 + 2 * foot, 2 * foot + 1) += |
465 |
|
✗ |
acc_weight_ * pow(alpha_(i), 2) * oRh_(0, 0) * oRh_(0, 1); |
466 |
|
✗ |
d->Lxu(12 + 2 * foot + 1, 2 * foot) += |
467 |
|
✗ |
acc_weight_ * pow(alpha_(i), 2) * oRh_(0, 0) * oRh_(0, 1); |
468 |
|
✗ |
d->Lxu(12 + 2 * foot + 1, 2 * foot + 1) += |
469 |
|
✗ |
acc_weight_ * pow(alpha_(i), 2) * pow(oRh_(0, 1), 2); |
470 |
|
|
} |
471 |
|
✗ |
if (rb_accx_max_bool_(i, 2 * foot + 1)) { |
472 |
|
✗ |
d->Lu(2 * foot) += -acc_weight_ * oRh_(0, 0) * alpha_(i) * |
473 |
|
✗ |
rb_accx_max_(i, 2 * foot + 1); |
474 |
|
✗ |
d->Lu(2 * foot + 1) += -acc_weight_ * oRh_(0, 1) * alpha_(i) * |
475 |
|
✗ |
rb_accx_max_(i, 2 * foot + 1); |
476 |
|
|
|
477 |
|
✗ |
d->Luu(2 * foot, 2 * foot) += |
478 |
|
✗ |
acc_weight_ * pow(oRh_(0, 0), 2) * pow(alpha_(i), 2); |
479 |
|
✗ |
d->Luu(2 * foot + 1, 2 * foot + 1) += |
480 |
|
✗ |
acc_weight_ * pow(oRh_(0, 1), 2) * pow(alpha_(i), 2); |
481 |
|
|
|
482 |
|
✗ |
d->Luu(2 * foot, 2 * foot + 1) += |
483 |
|
✗ |
acc_weight_ * oRh_(0, 0) * oRh_(0, 1) * pow(alpha_(i), 2); |
484 |
|
✗ |
d->Luu(2 * foot + 1, 2 * foot) += |
485 |
|
✗ |
acc_weight_ * oRh_(0, 0) * oRh_(0, 1) * pow(alpha_(i), 2); |
486 |
|
|
|
487 |
|
✗ |
d->Lx(12 + 2 * foot) += -acc_weight_ * oRh_(0, 0) * alpha_(i) * |
488 |
|
✗ |
rb_accx_max_(i, 2 * foot + 1); |
489 |
|
✗ |
d->Lx(12 + 2 * foot + 1) += -acc_weight_ * oRh_(0, 1) * alpha_(i) * |
490 |
|
✗ |
rb_accx_max_(i, 2 * foot + 1); |
491 |
|
|
|
492 |
|
✗ |
d->Lxx(12 + 2 * foot, 12 + 2 * foot) += |
493 |
|
✗ |
acc_weight_ * pow(oRh_(0, 0), 2) * pow(alpha_(i), 2); |
494 |
|
✗ |
d->Lxx(12 + 2 * foot + 1, 12 + 2 * foot + 1) += |
495 |
|
✗ |
acc_weight_ * pow(oRh_(0, 1), 2) * pow(alpha_(i), 2); |
496 |
|
|
|
497 |
|
✗ |
d->Lxx(12 + 2 * foot, 12 + 2 * foot + 1) += |
498 |
|
✗ |
acc_weight_ * oRh_(0, 0) * oRh_(0, 1) * pow(alpha_(i), 2); |
499 |
|
✗ |
d->Lxx(12 + 2 * foot + 1, 12 + 2 * foot) += |
500 |
|
✗ |
acc_weight_ * oRh_(0, 0) * oRh_(0, 1) * pow(alpha_(i), 2); |
501 |
|
|
|
502 |
|
✗ |
d->Lxu(12 + 2 * foot, 2 * foot) += |
503 |
|
✗ |
acc_weight_ * pow(alpha_(i), 2) * pow(oRh_(0, 0), 2); |
504 |
|
✗ |
d->Lxu(12 + 2 * foot, 2 * foot + 1) += |
505 |
|
✗ |
acc_weight_ * pow(alpha_(i), 2) * oRh_(0, 0) * oRh_(0, 1); |
506 |
|
✗ |
d->Lxu(12 + 2 * foot + 1, 2 * foot) += |
507 |
|
✗ |
acc_weight_ * pow(alpha_(i), 2) * oRh_(0, 0) * oRh_(0, 1); |
508 |
|
✗ |
d->Lxu(12 + 2 * foot + 1, 2 * foot + 1) += |
509 |
|
✗ |
acc_weight_ * pow(alpha_(i), 2) * pow(oRh_(0, 1), 2); |
510 |
|
|
} |
511 |
|
✗ |
if (rb_accy_max_bool_(i, 2 * foot)) { |
512 |
|
✗ |
d->Lu(2 * foot) += acc_weight_ * oRh_(1, 0) * alpha_(i) * |
513 |
|
✗ |
rb_accy_max_(i, 2 * foot); |
514 |
|
✗ |
d->Lu(2 * foot + 1) += acc_weight_ * oRh_(1, 1) * alpha_(i) * |
515 |
|
✗ |
rb_accy_max_(i, 2 * foot); |
516 |
|
|
|
517 |
|
✗ |
d->Luu(2 * foot, 2 * foot) += |
518 |
|
✗ |
acc_weight_ * pow(oRh_(1, 0), 2) * pow(alpha_(i), 2); |
519 |
|
✗ |
d->Luu(2 * foot + 1, 2 * foot + 1) += |
520 |
|
✗ |
acc_weight_ * pow(oRh_(1, 1), 2) * pow(alpha_(i), 2); |
521 |
|
|
|
522 |
|
✗ |
d->Luu(2 * foot, 2 * foot + 1) += |
523 |
|
✗ |
acc_weight_ * oRh_(1, 0) * oRh_(1, 1) * pow(alpha_(i), 2); |
524 |
|
✗ |
d->Luu(2 * foot + 1, 2 * foot) += |
525 |
|
✗ |
acc_weight_ * oRh_(1, 0) * oRh_(1, 1) * pow(alpha_(i), 2); |
526 |
|
|
|
527 |
|
✗ |
d->Lx(12 + 2 * foot) += acc_weight_ * oRh_(1, 0) * alpha_(i) * |
528 |
|
✗ |
rb_accy_max_(i, 2 * foot); |
529 |
|
✗ |
d->Lx(12 + 2 * foot + 1) += acc_weight_ * oRh_(1, 1) * alpha_(i) * |
530 |
|
✗ |
rb_accy_max_(i, 2 * foot); |
531 |
|
|
|
532 |
|
✗ |
d->Lxx(12 + 2 * foot, 12 + 2 * foot) += |
533 |
|
✗ |
acc_weight_ * pow(oRh_(1, 0), 2) * pow(alpha_(i), 2); |
534 |
|
✗ |
d->Lxx(12 + 2 * foot + 1, 12 + 2 * foot + 1) += |
535 |
|
✗ |
acc_weight_ * pow(oRh_(1, 1), 2) * pow(alpha_(i), 2); |
536 |
|
|
|
537 |
|
✗ |
d->Lxx(12 + 2 * foot, 12 + 2 * foot + 1) += |
538 |
|
✗ |
acc_weight_ * oRh_(1, 0) * oRh_(1, 1) * pow(alpha_(i), 2); |
539 |
|
✗ |
d->Lxx(12 + 2 * foot + 1, 12 + 2 * foot) += |
540 |
|
✗ |
acc_weight_ * oRh_(1, 0) * oRh_(1, 1) * pow(alpha_(i), 2); |
541 |
|
|
|
542 |
|
✗ |
d->Lxu(12 + 2 * foot, 2 * foot) += |
543 |
|
✗ |
acc_weight_ * pow(alpha_(i), 2) * pow(oRh_(1, 0), 2); |
544 |
|
✗ |
d->Lxu(12 + 2 * foot, 2 * foot + 1) += |
545 |
|
✗ |
acc_weight_ * pow(alpha_(i), 2) * oRh_(1, 0) * oRh_(1, 1); |
546 |
|
✗ |
d->Lxu(12 + 2 * foot + 1, 2 * foot) += |
547 |
|
✗ |
acc_weight_ * pow(alpha_(i), 2) * oRh_(1, 0) * oRh_(1, 1); |
548 |
|
✗ |
d->Lxu(12 + 2 * foot + 1, 2 * foot + 1) += |
549 |
|
✗ |
acc_weight_ * pow(alpha_(i), 2) * pow(oRh_(1, 1), 2); |
550 |
|
|
} |
551 |
|
✗ |
if (rb_accy_max_bool_(i, 2 * foot + 1)) { |
552 |
|
✗ |
d->Lu(2 * foot) += -acc_weight_ * oRh_(1, 0) * alpha_(i) * |
553 |
|
✗ |
rb_accy_max_(i, 2 * foot + 1); |
554 |
|
✗ |
d->Lu(2 * foot + 1) += -acc_weight_ * oRh_(1, 1) * alpha_(i) * |
555 |
|
✗ |
rb_accy_max_(i, 2 * foot + 1); |
556 |
|
|
|
557 |
|
✗ |
d->Luu(2 * foot, 2 * foot) += |
558 |
|
✗ |
acc_weight_ * pow(oRh_(1, 0), 2) * pow(alpha_(i), 2); |
559 |
|
✗ |
d->Luu(2 * foot + 1, 2 * foot + 1) += |
560 |
|
✗ |
acc_weight_ * pow(oRh_(1, 1), 2) * pow(alpha_(i), 2); |
561 |
|
|
|
562 |
|
✗ |
d->Luu(2 * foot, 2 * foot + 1) += |
563 |
|
✗ |
acc_weight_ * oRh_(1, 0) * oRh_(1, 1) * pow(alpha_(i), 2); |
564 |
|
✗ |
d->Luu(2 * foot + 1, 2 * foot) += |
565 |
|
✗ |
acc_weight_ * oRh_(1, 0) * oRh_(1, 1) * pow(alpha_(i), 2); |
566 |
|
|
|
567 |
|
✗ |
d->Lx(12 + 2 * foot) += -acc_weight_ * oRh_(1, 0) * alpha_(i) * |
568 |
|
✗ |
rb_accy_max_(i, 2 * foot + 1); |
569 |
|
✗ |
d->Lx(12 + 2 * foot + 1) += -acc_weight_ * oRh_(1, 1) * alpha_(i) * |
570 |
|
✗ |
rb_accy_max_(i, 2 * foot + 1); |
571 |
|
|
|
572 |
|
✗ |
d->Lxx(12 + 2 * foot, 12 + 2 * foot) += |
573 |
|
✗ |
acc_weight_ * pow(oRh_(1, 0), 2) * pow(alpha_(i), 2); |
574 |
|
✗ |
d->Lxx(12 + 2 * foot + 1, 12 + 2 * foot + 1) += |
575 |
|
✗ |
acc_weight_ * pow(oRh_(1, 1), 2) * pow(alpha_(i), 2); |
576 |
|
|
|
577 |
|
✗ |
d->Lxx(12 + 2 * foot, 12 + 2 * foot + 1) += |
578 |
|
✗ |
acc_weight_ * oRh_(1, 0) * oRh_(1, 1) * pow(alpha_(i), 2); |
579 |
|
✗ |
d->Lxx(12 + 2 * foot + 1, 12 + 2 * foot) += |
580 |
|
✗ |
acc_weight_ * oRh_(1, 0) * oRh_(1, 1) * pow(alpha_(i), 2); |
581 |
|
|
|
582 |
|
✗ |
d->Lxu(12 + 2 * foot, 2 * foot) += |
583 |
|
✗ |
acc_weight_ * pow(alpha_(i), 2) * pow(oRh_(1, 0), 2); |
584 |
|
✗ |
d->Lxu(12 + 2 * foot, 2 * foot + 1) += |
585 |
|
✗ |
acc_weight_ * pow(alpha_(i), 2) * oRh_(1, 0) * oRh_(1, 1); |
586 |
|
✗ |
d->Lxu(12 + 2 * foot + 1, 2 * foot) += |
587 |
|
✗ |
acc_weight_ * pow(alpha_(i), 2) * oRh_(1, 0) * oRh_(1, 1); |
588 |
|
✗ |
d->Lxu(12 + 2 * foot + 1, 2 * foot + 1) += |
589 |
|
✗ |
acc_weight_ * pow(alpha_(i), 2) * pow(oRh_(1, 1), 2); |
590 |
|
|
} |
591 |
|
|
} |
592 |
|
|
} |
593 |
|
|
} |
594 |
|
|
} |
595 |
|
|
|
596 |
|
✗ |
if (is_vel_activated_) { |
597 |
|
✗ |
for (int foot = 0; foot < 4; foot++) { |
598 |
|
✗ |
if (S_[foot] == Scalar(1)) { |
599 |
|
✗ |
for (int i = 0; i < (N_sampling - 1); i++) { |
600 |
|
|
// position_ in base frame |
601 |
|
|
// if (rb_velx_max_bool_(i,2*foot)){ |
602 |
|
|
|
603 |
|
|
// d->Lu(2*foot) += vel_weight_ * alpha_v(i) * |
604 |
|
|
// rb_velx_max_(i,2*foot); d->Luu(2*foot,2*foot) += vel_weight_ * |
605 |
|
|
// pow(alpha_v(i),2); |
606 |
|
|
|
607 |
|
|
// d->Lx(12+2*foot) += vel_weight_ * alpha_v(i) * |
608 |
|
|
// rb_velx_max_(i,2*foot); d->Lxu(12+2*foot,2*foot) += vel_weight_ * |
609 |
|
|
// pow(alpha_v(i),2); d->Lxx(12+2*foot,12+2*foot) += vel_weight_ * |
610 |
|
|
// pow(alpha_v(i),2); |
611 |
|
|
// } |
612 |
|
|
// if (rb_velx_max_bool_(i,2*foot+1)){ |
613 |
|
|
// d->Lu(2*foot) += - vel_weight_ * alpha_v(i) * |
614 |
|
|
// rb_velx_max_(i,2*foot+1); d->Luu(2*foot,2*foot) += vel_weight_ * |
615 |
|
|
// pow(alpha_v(i),2); |
616 |
|
|
|
617 |
|
|
// d->Lx(12+2*foot) += - vel_weight_ * alpha_v(i) * |
618 |
|
|
// rb_velx_max_(i,2*foot+1); d->Lxu(12+2*foot,2*foot) += vel_weight_ |
619 |
|
|
// * pow(alpha_v(i),2); d->Lxx(12+2*foot,12+2*foot) += vel_weight_ * |
620 |
|
|
// pow(alpha_v(i),2); |
621 |
|
|
// } |
622 |
|
|
// if (rb_vely_max_bool_(i,2*foot)){ |
623 |
|
|
// d->Lu(2*foot+1) += vel_weight_ * alpha_v(i) * |
624 |
|
|
// rb_vely_max_(i,2*foot); d->Luu(2*foot+1,2*foot+1) += vel_weight_ |
625 |
|
|
// * pow(alpha_v(i),2); |
626 |
|
|
|
627 |
|
|
// d->Lx(12+2*foot+1) += vel_weight_ * alpha_v(i) * |
628 |
|
|
// rb_vely_max_(i,2*foot); d->Lxu(12+2*foot+1,2*foot+1) += |
629 |
|
|
// vel_weight_ * pow(alpha_v(i),2); d->Lxx(12+2*foot+1,12+2*foot+1) |
630 |
|
|
// += vel_weight_ * pow(alpha_v(i),2); |
631 |
|
|
// } |
632 |
|
|
// if (rb_vely_max_bool_(i,2*foot+1)){ |
633 |
|
|
// d->Lu(2*foot+1) += - vel_weight_ * alpha_v(i) * |
634 |
|
|
// rb_vely_max_(i,2*foot+1); d->Luu(2*foot+1,2*foot+1) += |
635 |
|
|
// vel_weight_ * pow(alpha_v(i),2); |
636 |
|
|
|
637 |
|
|
// d->Lx(12+2*foot+1) += - vel_weight_ * alpha_v(i) * |
638 |
|
|
// rb_vely_max_(i,2*foot+1); d->Lxu(12+2*foot+1,2*foot+1) += |
639 |
|
|
// vel_weight_ * pow(alpha_v(i),2); d->Lxx(12+2*foot+1,12+2*foot+1) |
640 |
|
|
// += vel_weight_ * pow(alpha_v(i),2); |
641 |
|
|
// } |
642 |
|
|
|
643 |
|
|
// position_ in world frame |
644 |
|
✗ |
if (rb_velx_max_bool_(i, 2 * foot)) { |
645 |
|
✗ |
d->Lu(2 * foot) += vel_weight_ * oRh_(0, 0) * alpha_v(i) * |
646 |
|
✗ |
rb_velx_max_(i, 2 * foot); |
647 |
|
✗ |
d->Lu(2 * foot + 1) += vel_weight_ * oRh_(0, 1) * alpha_v(i) * |
648 |
|
✗ |
rb_velx_max_(i, 2 * foot); |
649 |
|
|
|
650 |
|
✗ |
d->Luu(2 * foot, 2 * foot) += |
651 |
|
✗ |
vel_weight_ * pow(oRh_(0, 0), 2) * pow(alpha_v(i), 2); |
652 |
|
✗ |
d->Luu(2 * foot + 1, 2 * foot + 1) += |
653 |
|
✗ |
vel_weight_ * pow(oRh_(0, 1), 2) * pow(alpha_v(i), 2); |
654 |
|
|
|
655 |
|
✗ |
d->Luu(2 * foot, 2 * foot + 1) += |
656 |
|
✗ |
vel_weight_ * oRh_(0, 0) * oRh_(0, 1) * pow(alpha_v(i), 2); |
657 |
|
✗ |
d->Luu(2 * foot + 1, 2 * foot) += |
658 |
|
✗ |
vel_weight_ * oRh_(0, 0) * oRh_(0, 1) * pow(alpha_v(i), 2); |
659 |
|
|
|
660 |
|
✗ |
d->Lx(12 + 2 * foot) += vel_weight_ * oRh_(0, 0) * alpha_v(i) * |
661 |
|
✗ |
rb_velx_max_(i, 2 * foot); |
662 |
|
✗ |
d->Lx(12 + 2 * foot + 1) += vel_weight_ * oRh_(0, 1) * alpha_v(i) * |
663 |
|
✗ |
rb_velx_max_(i, 2 * foot); |
664 |
|
|
|
665 |
|
✗ |
d->Lxx(12 + 2 * foot, 12 + 2 * foot) += |
666 |
|
✗ |
vel_weight_ * pow(oRh_(0, 0), 2) * pow(alpha_v(i), 2); |
667 |
|
✗ |
d->Lxx(12 + 2 * foot + 1, 12 + 2 * foot + 1) += |
668 |
|
✗ |
vel_weight_ * pow(oRh_(0, 1), 2) * pow(alpha_v(i), 2); |
669 |
|
|
|
670 |
|
✗ |
d->Lxx(12 + 2 * foot, 12 + 2 * foot + 1) += |
671 |
|
✗ |
vel_weight_ * oRh_(0, 0) * oRh_(0, 1) * pow(alpha_v(i), 2); |
672 |
|
✗ |
d->Lxx(12 + 2 * foot + 1, 12 + 2 * foot) += |
673 |
|
✗ |
vel_weight_ * oRh_(0, 0) * oRh_(0, 1) * pow(alpha_v(i), 2); |
674 |
|
|
|
675 |
|
✗ |
d->Lxu(12 + 2 * foot, 2 * foot) += |
676 |
|
✗ |
vel_weight_ * pow(alpha_v(i), 2) * pow(oRh_(0, 0), 2); |
677 |
|
✗ |
d->Lxu(12 + 2 * foot, 2 * foot + 1) += |
678 |
|
✗ |
vel_weight_ * pow(alpha_v(i), 2) * oRh_(0, 0) * oRh_(0, 1); |
679 |
|
✗ |
d->Lxu(12 + 2 * foot + 1, 2 * foot) += |
680 |
|
✗ |
vel_weight_ * pow(alpha_v(i), 2) * oRh_(0, 0) * oRh_(0, 1); |
681 |
|
✗ |
d->Lxu(12 + 2 * foot + 1, 2 * foot + 1) += |
682 |
|
✗ |
vel_weight_ * pow(alpha_v(i), 2) * pow(oRh_(0, 1), 2); |
683 |
|
|
} |
684 |
|
✗ |
if (rb_velx_max_bool_(i, 2 * foot + 1)) { |
685 |
|
✗ |
d->Lu(2 * foot) += -vel_weight_ * oRh_(0, 0) * alpha_v(i) * |
686 |
|
✗ |
rb_velx_max_(i, 2 * foot + 1); |
687 |
|
✗ |
d->Lu(2 * foot + 1) += -vel_weight_ * oRh_(0, 1) * alpha_v(i) * |
688 |
|
✗ |
rb_velx_max_(i, 2 * foot + 1); |
689 |
|
|
|
690 |
|
✗ |
d->Luu(2 * foot, 2 * foot) += |
691 |
|
✗ |
vel_weight_ * pow(oRh_(0, 0), 2) * pow(alpha_v(i), 2); |
692 |
|
✗ |
d->Luu(2 * foot + 1, 2 * foot + 1) += |
693 |
|
✗ |
vel_weight_ * pow(oRh_(0, 1), 2) * pow(alpha_v(i), 2); |
694 |
|
|
|
695 |
|
✗ |
d->Luu(2 * foot, 2 * foot + 1) += |
696 |
|
✗ |
vel_weight_ * oRh_(0, 0) * oRh_(0, 1) * pow(alpha_v(i), 2); |
697 |
|
✗ |
d->Luu(2 * foot + 1, 2 * foot) += |
698 |
|
✗ |
vel_weight_ * oRh_(0, 0) * oRh_(0, 1) * pow(alpha_v(i), 2); |
699 |
|
|
|
700 |
|
✗ |
d->Lx(12 + 2 * foot) += -vel_weight_ * oRh_(0, 0) * alpha_v(i) * |
701 |
|
✗ |
rb_velx_max_(i, 2 * foot + 1); |
702 |
|
✗ |
d->Lx(12 + 2 * foot + 1) += -vel_weight_ * oRh_(0, 1) * alpha_v(i) * |
703 |
|
✗ |
rb_velx_max_(i, 2 * foot + 1); |
704 |
|
|
|
705 |
|
✗ |
d->Lxx(12 + 2 * foot, 12 + 2 * foot) += |
706 |
|
✗ |
vel_weight_ * pow(oRh_(0, 0), 2) * pow(alpha_v(i), 2); |
707 |
|
✗ |
d->Lxx(12 + 2 * foot + 1, 12 + 2 * foot + 1) += |
708 |
|
✗ |
vel_weight_ * pow(oRh_(0, 1), 2) * pow(alpha_v(i), 2); |
709 |
|
|
|
710 |
|
✗ |
d->Lxx(12 + 2 * foot, 12 + 2 * foot + 1) += |
711 |
|
✗ |
vel_weight_ * oRh_(0, 0) * oRh_(0, 1) * pow(alpha_v(i), 2); |
712 |
|
✗ |
d->Lxx(12 + 2 * foot + 1, 12 + 2 * foot) += |
713 |
|
✗ |
vel_weight_ * oRh_(0, 0) * oRh_(0, 1) * pow(alpha_v(i), 2); |
714 |
|
|
|
715 |
|
✗ |
d->Lxu(12 + 2 * foot, 2 * foot) += |
716 |
|
✗ |
vel_weight_ * pow(alpha_v(i), 2) * pow(oRh_(0, 0), 2); |
717 |
|
✗ |
d->Lxu(12 + 2 * foot, 2 * foot + 1) += |
718 |
|
✗ |
vel_weight_ * pow(alpha_v(i), 2) * oRh_(0, 0) * oRh_(0, 1); |
719 |
|
✗ |
d->Lxu(12 + 2 * foot + 1, 2 * foot) += |
720 |
|
✗ |
vel_weight_ * pow(alpha_v(i), 2) * oRh_(0, 0) * oRh_(0, 1); |
721 |
|
✗ |
d->Lxu(12 + 2 * foot + 1, 2 * foot + 1) += |
722 |
|
✗ |
vel_weight_ * pow(alpha_v(i), 2) * pow(oRh_(0, 1), 2); |
723 |
|
|
} |
724 |
|
✗ |
if (rb_vely_max_bool_(i, 2 * foot)) { |
725 |
|
✗ |
d->Lu(2 * foot) += vel_weight_ * oRh_(1, 0) * alpha_v(i) * |
726 |
|
✗ |
rb_vely_max_(i, 2 * foot); |
727 |
|
✗ |
d->Lu(2 * foot + 1) += vel_weight_ * oRh_(1, 1) * alpha_v(i) * |
728 |
|
✗ |
rb_vely_max_(i, 2 * foot); |
729 |
|
|
|
730 |
|
✗ |
d->Luu(2 * foot, 2 * foot) += |
731 |
|
✗ |
vel_weight_ * pow(oRh_(1, 0), 2) * pow(alpha_v(i), 2); |
732 |
|
✗ |
d->Luu(2 * foot + 1, 2 * foot + 1) += |
733 |
|
✗ |
vel_weight_ * pow(oRh_(1, 1), 2) * pow(alpha_v(i), 2); |
734 |
|
|
|
735 |
|
✗ |
d->Luu(2 * foot, 2 * foot + 1) += |
736 |
|
✗ |
vel_weight_ * oRh_(1, 0) * oRh_(1, 1) * pow(alpha_v(i), 2); |
737 |
|
✗ |
d->Luu(2 * foot + 1, 2 * foot) += |
738 |
|
✗ |
vel_weight_ * oRh_(1, 0) * oRh_(1, 1) * pow(alpha_v(i), 2); |
739 |
|
|
|
740 |
|
✗ |
d->Lx(12 + 2 * foot) += vel_weight_ * oRh_(1, 0) * alpha_v(i) * |
741 |
|
✗ |
rb_vely_max_(i, 2 * foot); |
742 |
|
✗ |
d->Lx(12 + 2 * foot + 1) += vel_weight_ * oRh_(1, 1) * alpha_v(i) * |
743 |
|
✗ |
rb_vely_max_(i, 2 * foot); |
744 |
|
|
|
745 |
|
✗ |
d->Lxx(12 + 2 * foot, 12 + 2 * foot) += |
746 |
|
✗ |
vel_weight_ * pow(oRh_(1, 0), 2) * pow(alpha_v(i), 2); |
747 |
|
✗ |
d->Lxx(12 + 2 * foot + 1, 12 + 2 * foot + 1) += |
748 |
|
✗ |
vel_weight_ * pow(oRh_(1, 1), 2) * pow(alpha_v(i), 2); |
749 |
|
|
|
750 |
|
✗ |
d->Lxx(12 + 2 * foot, 12 + 2 * foot + 1) += |
751 |
|
✗ |
vel_weight_ * oRh_(1, 0) * oRh_(1, 1) * pow(alpha_v(i), 2); |
752 |
|
✗ |
d->Lxx(12 + 2 * foot + 1, 12 + 2 * foot) += |
753 |
|
✗ |
vel_weight_ * oRh_(1, 0) * oRh_(1, 1) * pow(alpha_v(i), 2); |
754 |
|
|
|
755 |
|
✗ |
d->Lxu(12 + 2 * foot, 2 * foot) += |
756 |
|
✗ |
vel_weight_ * pow(alpha_v(i), 2) * pow(oRh_(1, 0), 2); |
757 |
|
✗ |
d->Lxu(12 + 2 * foot, 2 * foot + 1) += |
758 |
|
✗ |
vel_weight_ * pow(alpha_v(i), 2) * oRh_(1, 0) * oRh_(1, 1); |
759 |
|
✗ |
d->Lxu(12 + 2 * foot + 1, 2 * foot) += |
760 |
|
✗ |
vel_weight_ * pow(alpha_v(i), 2) * oRh_(1, 0) * oRh_(1, 1); |
761 |
|
✗ |
d->Lxu(12 + 2 * foot + 1, 2 * foot + 1) += |
762 |
|
✗ |
vel_weight_ * pow(alpha_v(i), 2) * pow(oRh_(1, 1), 2); |
763 |
|
|
} |
764 |
|
✗ |
if (rb_vely_max_bool_(i, 2 * foot + 1)) { |
765 |
|
✗ |
d->Lu(2 * foot) += -vel_weight_ * oRh_(1, 0) * alpha_v(i) * |
766 |
|
✗ |
rb_vely_max_(i, 2 * foot + 1); |
767 |
|
✗ |
d->Lu(2 * foot + 1) += -vel_weight_ * oRh_(1, 1) * alpha_v(i) * |
768 |
|
✗ |
rb_vely_max_(i, 2 * foot + 1); |
769 |
|
|
|
770 |
|
✗ |
d->Luu(2 * foot, 2 * foot) += |
771 |
|
✗ |
vel_weight_ * pow(oRh_(1, 0), 2) * pow(alpha_v(i), 2); |
772 |
|
✗ |
d->Luu(2 * foot + 1, 2 * foot + 1) += |
773 |
|
✗ |
vel_weight_ * pow(oRh_(1, 1), 2) * pow(alpha_v(i), 2); |
774 |
|
|
|
775 |
|
✗ |
d->Luu(2 * foot, 2 * foot + 1) += |
776 |
|
✗ |
vel_weight_ * oRh_(1, 0) * oRh_(1, 1) * pow(alpha_v(i), 2); |
777 |
|
✗ |
d->Luu(2 * foot + 1, 2 * foot) += |
778 |
|
✗ |
vel_weight_ * oRh_(1, 0) * oRh_(1, 1) * pow(alpha_v(i), 2); |
779 |
|
|
|
780 |
|
✗ |
d->Lx(12 + 2 * foot) += -vel_weight_ * oRh_(1, 0) * alpha_v(i) * |
781 |
|
✗ |
rb_vely_max_(i, 2 * foot + 1); |
782 |
|
✗ |
d->Lx(12 + 2 * foot + 1) += -vel_weight_ * oRh_(1, 1) * alpha_v(i) * |
783 |
|
✗ |
rb_vely_max_(i, 2 * foot + 1); |
784 |
|
|
|
785 |
|
✗ |
d->Lxx(12 + 2 * foot, 12 + 2 * foot) += |
786 |
|
✗ |
vel_weight_ * pow(oRh_(1, 0), 2) * pow(alpha_v(i), 2); |
787 |
|
✗ |
d->Lxx(12 + 2 * foot + 1, 12 + 2 * foot + 1) += |
788 |
|
✗ |
vel_weight_ * pow(oRh_(1, 1), 2) * pow(alpha_v(i), 2); |
789 |
|
|
|
790 |
|
✗ |
d->Lxx(12 + 2 * foot, 12 + 2 * foot + 1) += |
791 |
|
✗ |
vel_weight_ * oRh_(1, 0) * oRh_(1, 1) * pow(alpha_v(i), 2); |
792 |
|
✗ |
d->Lxx(12 + 2 * foot + 1, 12 + 2 * foot) += |
793 |
|
✗ |
vel_weight_ * oRh_(1, 0) * oRh_(1, 1) * pow(alpha_v(i), 2); |
794 |
|
|
|
795 |
|
✗ |
d->Lxu(12 + 2 * foot, 2 * foot) += |
796 |
|
✗ |
vel_weight_ * pow(alpha_v(i), 2) * pow(oRh_(1, 0), 2); |
797 |
|
✗ |
d->Lxu(12 + 2 * foot, 2 * foot + 1) += |
798 |
|
✗ |
vel_weight_ * pow(alpha_v(i), 2) * oRh_(1, 0) * oRh_(1, 1); |
799 |
|
✗ |
d->Lxu(12 + 2 * foot + 1, 2 * foot) += |
800 |
|
✗ |
vel_weight_ * pow(alpha_v(i), 2) * oRh_(1, 0) * oRh_(1, 1); |
801 |
|
✗ |
d->Lxu(12 + 2 * foot + 1, 2 * foot + 1) += |
802 |
|
✗ |
vel_weight_ * pow(alpha_v(i), 2) * pow(oRh_(1, 1), 2); |
803 |
|
|
} |
804 |
|
|
} |
805 |
|
|
} |
806 |
|
|
} |
807 |
|
|
} |
808 |
|
|
|
809 |
|
✗ |
if (is_jerk_activated_) { |
810 |
|
✗ |
for (int foot = 0; foot < 4; foot++) { |
811 |
|
✗ |
if (S_[foot] == Scalar(1)) { |
812 |
|
|
// derivatives relative to jerk on x axis |
813 |
|
✗ |
d->Lu(2 * foot) += |
814 |
|
✗ |
jerk_weight_ * oRh_(0, 0) * alpha_j * rb_jerk_(0, foot); |
815 |
|
✗ |
d->Lu(2 * foot + 1) += |
816 |
|
✗ |
jerk_weight_ * oRh_(0, 1) * alpha_j * rb_jerk_(0, foot); |
817 |
|
|
|
818 |
|
✗ |
d->Luu(2 * foot, 2 * foot) += |
819 |
|
✗ |
jerk_weight_ * pow(oRh_(0, 0), 2) * pow(alpha_j, 2); |
820 |
|
✗ |
d->Luu(2 * foot + 1, 2 * foot + 1) += |
821 |
|
✗ |
jerk_weight_ * pow(oRh_(0, 1), 2) * pow(alpha_j, 2); |
822 |
|
|
|
823 |
|
✗ |
d->Luu(2 * foot, 2 * foot + 1) += |
824 |
|
✗ |
jerk_weight_ * oRh_(0, 0) * oRh_(0, 1) * pow(alpha_j, 2); |
825 |
|
✗ |
d->Luu(2 * foot + 1, 2 * foot) += |
826 |
|
✗ |
jerk_weight_ * oRh_(0, 0) * oRh_(0, 1) * pow(alpha_j, 2); |
827 |
|
|
|
828 |
|
✗ |
d->Lx(12 + 2 * foot) += |
829 |
|
✗ |
jerk_weight_ * oRh_(0, 0) * alpha_j * rb_jerk_(0, foot); |
830 |
|
✗ |
d->Lx(12 + 2 * foot + 1) += |
831 |
|
✗ |
jerk_weight_ * oRh_(0, 1) * alpha_j * rb_jerk_(0, foot); |
832 |
|
|
|
833 |
|
✗ |
d->Lxx(12 + 2 * foot, 12 + 2 * foot) += |
834 |
|
✗ |
jerk_weight_ * pow(oRh_(0, 0), 2) * pow(alpha_j, 2); |
835 |
|
✗ |
d->Lxx(12 + 2 * foot + 1, 12 + 2 * foot + 1) += |
836 |
|
✗ |
jerk_weight_ * pow(oRh_(0, 1), 2) * pow(alpha_j, 2); |
837 |
|
|
|
838 |
|
✗ |
d->Lxx(12 + 2 * foot, 12 + 2 * foot + 1) += |
839 |
|
✗ |
jerk_weight_ * oRh_(0, 0) * oRh_(0, 1) * pow(alpha_j, 2); |
840 |
|
✗ |
d->Lxx(12 + 2 * foot + 1, 12 + 2 * foot) += |
841 |
|
✗ |
jerk_weight_ * oRh_(0, 0) * oRh_(0, 1) * pow(alpha_j, 2); |
842 |
|
|
|
843 |
|
✗ |
d->Lxu(12 + 2 * foot, 2 * foot) += |
844 |
|
✗ |
jerk_weight_ * pow(alpha_j, 2) * pow(oRh_(0, 0), 2); |
845 |
|
✗ |
d->Lxu(12 + 2 * foot, 2 * foot + 1) += |
846 |
|
✗ |
jerk_weight_ * pow(alpha_j, 2) * oRh_(0, 0) * oRh_(0, 1); |
847 |
|
✗ |
d->Lxu(12 + 2 * foot + 1, 2 * foot) += |
848 |
|
✗ |
jerk_weight_ * pow(alpha_j, 2) * oRh_(0, 0) * oRh_(0, 1); |
849 |
|
✗ |
d->Lxu(12 + 2 * foot + 1, 2 * foot + 1) += |
850 |
|
✗ |
jerk_weight_ * pow(alpha_j, 2) * pow(oRh_(0, 1), 2); |
851 |
|
|
|
852 |
|
|
// derivatives relative to jerk on y axis |
853 |
|
✗ |
d->Lu(2 * foot) += |
854 |
|
✗ |
jerk_weight_ * oRh_(1, 0) * alpha_j * rb_jerk_(1, foot); |
855 |
|
✗ |
d->Lu(2 * foot + 1) += |
856 |
|
✗ |
jerk_weight_ * oRh_(1, 1) * alpha_j * rb_jerk_(1, foot); |
857 |
|
|
|
858 |
|
✗ |
d->Luu(2 * foot, 2 * foot) += |
859 |
|
✗ |
jerk_weight_ * pow(oRh_(1, 0), 2) * pow(alpha_j, 2); |
860 |
|
✗ |
d->Luu(2 * foot + 1, 2 * foot + 1) += |
861 |
|
✗ |
jerk_weight_ * pow(oRh_(1, 1), 2) * pow(alpha_j, 2); |
862 |
|
|
|
863 |
|
✗ |
d->Luu(2 * foot, 2 * foot + 1) += |
864 |
|
✗ |
jerk_weight_ * oRh_(1, 0) * oRh_(1, 1) * pow(alpha_j, 2); |
865 |
|
✗ |
d->Luu(2 * foot + 1, 2 * foot) += |
866 |
|
✗ |
jerk_weight_ * oRh_(1, 0) * oRh_(1, 1) * pow(alpha_j, 2); |
867 |
|
|
|
868 |
|
✗ |
d->Lx(12 + 2 * foot) += |
869 |
|
✗ |
jerk_weight_ * oRh_(1, 0) * alpha_j * rb_jerk_(1, foot); |
870 |
|
✗ |
d->Lx(12 + 2 * foot + 1) += |
871 |
|
✗ |
jerk_weight_ * oRh_(1, 1) * alpha_j * rb_jerk_(1, foot); |
872 |
|
|
|
873 |
|
✗ |
d->Lxx(12 + 2 * foot, 12 + 2 * foot) += |
874 |
|
✗ |
jerk_weight_ * pow(oRh_(1, 0), 2) * pow(alpha_j, 2); |
875 |
|
✗ |
d->Lxx(12 + 2 * foot + 1, 12 + 2 * foot + 1) += |
876 |
|
✗ |
jerk_weight_ * pow(oRh_(1, 1), 2) * pow(alpha_j, 2); |
877 |
|
|
|
878 |
|
✗ |
d->Lxx(12 + 2 * foot, 12 + 2 * foot + 1) += |
879 |
|
✗ |
jerk_weight_ * oRh_(1, 0) * oRh_(1, 1) * pow(alpha_j, 2); |
880 |
|
✗ |
d->Lxx(12 + 2 * foot + 1, 12 + 2 * foot) += |
881 |
|
✗ |
jerk_weight_ * oRh_(1, 0) * oRh_(1, 1) * pow(alpha_j, 2); |
882 |
|
|
|
883 |
|
✗ |
d->Lxu(12 + 2 * foot, 2 * foot) += |
884 |
|
✗ |
jerk_weight_ * pow(alpha_j, 2) * pow(oRh_(1, 0), 2); |
885 |
|
✗ |
d->Lxu(12 + 2 * foot, 2 * foot + 1) += |
886 |
|
✗ |
jerk_weight_ * pow(alpha_j, 2) * oRh_(1, 0) * oRh_(1, 1); |
887 |
|
✗ |
d->Lxu(12 + 2 * foot + 1, 2 * foot) += |
888 |
|
✗ |
jerk_weight_ * pow(alpha_j, 2) * oRh_(1, 0) * oRh_(1, 1); |
889 |
|
✗ |
d->Lxu(12 + 2 * foot + 1, 2 * foot + 1) += |
890 |
|
✗ |
jerk_weight_ * pow(alpha_j, 2) * pow(oRh_(1, 1), 2); |
891 |
|
|
} |
892 |
|
|
} |
893 |
|
|
} |
894 |
|
|
|
895 |
|
|
// Dynamic derivatives |
896 |
|
✗ |
d->Fx.setIdentity(); |
897 |
|
✗ |
d->Fu.block(12, 0, 8, 8) = B; |
898 |
|
|
} |
899 |
|
|
|
900 |
|
|
template <typename Scalar> |
901 |
|
|
boost::shared_ptr<crocoddyl::ActionDataAbstractTpl<Scalar> > |
902 |
|
✗ |
ActionModelQuadrupedStepTpl<Scalar>::createData() { |
903 |
|
✗ |
return boost::make_shared<ActionDataQuadrupedStepTpl<Scalar> >(this); |
904 |
|
|
} |
905 |
|
|
|
906 |
|
|
//////////////////////////////// |
907 |
|
|
// get & set parameters //////// |
908 |
|
|
//////////////////////////////// |
909 |
|
|
|
910 |
|
|
template <typename Scalar> |
911 |
|
|
const typename Eigen::Matrix<Scalar, 12, 1>& |
912 |
|
✗ |
ActionModelQuadrupedStepTpl<Scalar>::get_state_weights() const { |
913 |
|
✗ |
return state_weights_; |
914 |
|
|
} |
915 |
|
|
template <typename Scalar> |
916 |
|
✗ |
void ActionModelQuadrupedStepTpl<Scalar>::set_state_weights( |
917 |
|
|
const typename MathBase::VectorXs& weights) { |
918 |
|
✗ |
if (static_cast<std::size_t>(weights.size()) != 12) { |
919 |
|
✗ |
throw_pretty("Invalid argument: " |
920 |
|
|
<< "Weights vector has wrong dimension (it should be 12)"); |
921 |
|
|
} |
922 |
|
✗ |
state_weights_ = weights; |
923 |
|
|
} |
924 |
|
|
|
925 |
|
|
template <typename Scalar> |
926 |
|
|
const typename Eigen::Matrix<Scalar, 8, 1>& |
927 |
|
✗ |
ActionModelQuadrupedStepTpl<Scalar>::get_step_weights() const { |
928 |
|
✗ |
return step_weights_; |
929 |
|
|
} |
930 |
|
|
template <typename Scalar> |
931 |
|
✗ |
void ActionModelQuadrupedStepTpl<Scalar>::set_step_weights( |
932 |
|
|
const typename MathBase::VectorXs& weights) { |
933 |
|
✗ |
if (static_cast<std::size_t>(weights.size()) != 8) { |
934 |
|
✗ |
throw_pretty("Invalid argument: " |
935 |
|
|
<< "Weights vector has wrong dimension (it should be 4)"); |
936 |
|
|
} |
937 |
|
✗ |
step_weights_ = weights; |
938 |
|
|
} |
939 |
|
|
|
940 |
|
|
template <typename Scalar> |
941 |
|
|
const typename Eigen::Matrix<Scalar, 8, 1>& |
942 |
|
✗ |
ActionModelQuadrupedStepTpl<Scalar>::get_heuristic_weights() const { |
943 |
|
✗ |
return heuristic_weights_; |
944 |
|
|
} |
945 |
|
|
template <typename Scalar> |
946 |
|
✗ |
void ActionModelQuadrupedStepTpl<Scalar>::set_heuristic_weights( |
947 |
|
|
const typename MathBase::VectorXs& weights) { |
948 |
|
✗ |
if (static_cast<std::size_t>(weights.size()) != 8) { |
949 |
|
✗ |
throw_pretty("Invalid argument: " |
950 |
|
|
<< "Weights vector has wrong dimension (it should be 8)"); |
951 |
|
|
} |
952 |
|
✗ |
heuristic_weights_ = weights; |
953 |
|
|
} |
954 |
|
|
|
955 |
|
|
template <typename Scalar> |
956 |
|
✗ |
const bool& ActionModelQuadrupedStepTpl<Scalar>::get_symmetry_term() const { |
957 |
|
✗ |
return symmetry_term; |
958 |
|
|
} |
959 |
|
|
template <typename Scalar> |
960 |
|
✗ |
void ActionModelQuadrupedStepTpl<Scalar>::set_symmetry_term( |
961 |
|
|
const bool& sym_term) { |
962 |
|
|
// The model need to be updated after this changed |
963 |
|
✗ |
symmetry_term = sym_term; |
964 |
|
|
} |
965 |
|
|
|
966 |
|
|
template <typename Scalar> |
967 |
|
✗ |
const bool& ActionModelQuadrupedStepTpl<Scalar>::get_centrifugal_term() const { |
968 |
|
✗ |
return centrifugal_term; |
969 |
|
|
} |
970 |
|
|
template <typename Scalar> |
971 |
|
✗ |
void ActionModelQuadrupedStepTpl<Scalar>::set_centrifugal_term( |
972 |
|
|
const bool& cent_term) { |
973 |
|
|
// The model need to be updated after this changed |
974 |
|
✗ |
centrifugal_term = cent_term; |
975 |
|
|
} |
976 |
|
|
|
977 |
|
|
template <typename Scalar> |
978 |
|
✗ |
const Scalar& ActionModelQuadrupedStepTpl<Scalar>::get_T_gait() const { |
979 |
|
|
// The model need to be updated after this changed |
980 |
|
✗ |
return T_gait; |
981 |
|
|
} |
982 |
|
|
template <typename Scalar> |
983 |
|
✗ |
void ActionModelQuadrupedStepTpl<Scalar>::set_T_gait(const Scalar& T_gait_) { |
984 |
|
|
// The model need to be updated after this changed |
985 |
|
✗ |
T_gait = T_gait_; |
986 |
|
|
} |
987 |
|
|
|
988 |
|
|
template <typename Scalar> |
989 |
|
✗ |
const bool& ActionModelQuadrupedStepTpl<Scalar>::get_acc_activated() const { |
990 |
|
✗ |
return is_acc_activated_; |
991 |
|
|
} |
992 |
|
|
template <typename Scalar> |
993 |
|
✗ |
void ActionModelQuadrupedStepTpl<Scalar>::set_acc_activated( |
994 |
|
|
const bool& is_activated) { |
995 |
|
✗ |
is_acc_activated_ = is_activated; |
996 |
|
|
} |
997 |
|
|
|
998 |
|
|
template <typename Scalar> |
999 |
|
|
const typename Eigen::Matrix<Scalar, 2, 1>& |
1000 |
|
✗ |
ActionModelQuadrupedStepTpl<Scalar>::get_acc_lim() const { |
1001 |
|
✗ |
return acc_lim_; |
1002 |
|
|
} |
1003 |
|
|
template <typename Scalar> |
1004 |
|
✗ |
void ActionModelQuadrupedStepTpl<Scalar>::set_acc_lim( |
1005 |
|
|
const typename MathBase::VectorXs& acceleration_lim_) { |
1006 |
|
✗ |
if (static_cast<std::size_t>(acceleration_lim_.size()) != 2) { |
1007 |
|
✗ |
throw_pretty("Invalid argument: " |
1008 |
|
|
<< "Acceleration limit vector [ax_max, ay_max] has wrong " |
1009 |
|
|
"dimension (it should be 2)"); |
1010 |
|
|
} |
1011 |
|
✗ |
acc_lim_ = acceleration_lim_; |
1012 |
|
|
} |
1013 |
|
|
|
1014 |
|
|
template <typename Scalar> |
1015 |
|
✗ |
const Scalar& ActionModelQuadrupedStepTpl<Scalar>::get_acc_weight() const { |
1016 |
|
✗ |
return acc_weight_; |
1017 |
|
|
} |
1018 |
|
|
template <typename Scalar> |
1019 |
|
✗ |
void ActionModelQuadrupedStepTpl<Scalar>::set_acc_weight( |
1020 |
|
|
const Scalar& weight_) { |
1021 |
|
✗ |
acc_weight_ = weight_; |
1022 |
|
|
} |
1023 |
|
|
|
1024 |
|
|
template <typename Scalar> |
1025 |
|
✗ |
const bool& ActionModelQuadrupedStepTpl<Scalar>::get_vel_activated() const { |
1026 |
|
✗ |
return is_vel_activated_; |
1027 |
|
|
} |
1028 |
|
|
template <typename Scalar> |
1029 |
|
✗ |
void ActionModelQuadrupedStepTpl<Scalar>::set_vel_activated( |
1030 |
|
|
const bool& is_activated) { |
1031 |
|
✗ |
is_vel_activated_ = is_activated; |
1032 |
|
|
} |
1033 |
|
|
|
1034 |
|
|
template <typename Scalar> |
1035 |
|
|
const typename Eigen::Matrix<Scalar, 2, 1>& |
1036 |
|
✗ |
ActionModelQuadrupedStepTpl<Scalar>::get_vel_lim() const { |
1037 |
|
✗ |
return vel_lim_; |
1038 |
|
|
} |
1039 |
|
|
template <typename Scalar> |
1040 |
|
✗ |
void ActionModelQuadrupedStepTpl<Scalar>::set_vel_lim( |
1041 |
|
|
const typename MathBase::VectorXs& velocity_lim_) { |
1042 |
|
✗ |
if (static_cast<std::size_t>(velocity_lim_.size()) != 2) { |
1043 |
|
✗ |
throw_pretty("Invalid argument: " |
1044 |
|
|
<< "Velocity limit vector [vx_max, vy_max] has wrong " |
1045 |
|
|
"dimension (it should be 2)"); |
1046 |
|
|
} |
1047 |
|
✗ |
vel_lim_ = velocity_lim_; |
1048 |
|
|
} |
1049 |
|
|
|
1050 |
|
|
template <typename Scalar> |
1051 |
|
✗ |
const Scalar& ActionModelQuadrupedStepTpl<Scalar>::get_vel_weight() const { |
1052 |
|
✗ |
return vel_weight_; |
1053 |
|
|
} |
1054 |
|
|
template <typename Scalar> |
1055 |
|
✗ |
void ActionModelQuadrupedStepTpl<Scalar>::set_vel_weight( |
1056 |
|
|
const Scalar& weight_) { |
1057 |
|
✗ |
vel_weight_ = weight_; |
1058 |
|
|
} |
1059 |
|
|
|
1060 |
|
|
template <typename Scalar> |
1061 |
|
✗ |
const Scalar& ActionModelQuadrupedStepTpl<Scalar>::get_jerk_weight() const { |
1062 |
|
✗ |
return jerk_weight_; |
1063 |
|
|
} |
1064 |
|
|
template <typename Scalar> |
1065 |
|
✗ |
void ActionModelQuadrupedStepTpl<Scalar>::set_jerk_weight( |
1066 |
|
|
const Scalar& weight_) { |
1067 |
|
✗ |
jerk_weight_ = weight_; |
1068 |
|
|
} |
1069 |
|
|
|
1070 |
|
|
template <typename Scalar> |
1071 |
|
✗ |
const bool& ActionModelQuadrupedStepTpl<Scalar>::get_jerk_activated() const { |
1072 |
|
✗ |
return is_jerk_activated_; |
1073 |
|
|
} |
1074 |
|
|
template <typename Scalar> |
1075 |
|
✗ |
void ActionModelQuadrupedStepTpl<Scalar>::set_jerk_activated( |
1076 |
|
|
const bool& is_activated) { |
1077 |
|
✗ |
is_jerk_activated_ = is_activated; |
1078 |
|
|
} |
1079 |
|
|
|
1080 |
|
|
template <typename Scalar> |
1081 |
|
✗ |
void ActionModelQuadrupedStepTpl<Scalar>::set_sample_feet_traj( |
1082 |
|
|
const int& n_sample) { |
1083 |
|
✗ |
N_sampling = n_sample; |
1084 |
|
|
|
1085 |
|
|
// Acceleration cost |
1086 |
|
✗ |
delta_ = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
1087 |
|
✗ |
N_sampling - 1, 4); |
1088 |
|
✗ |
gamma_ = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
1089 |
|
✗ |
N_sampling - 1, 3); |
1090 |
|
✗ |
for (int k = 1; k < N_sampling; k++) { |
1091 |
|
✗ |
delta_(k - 1, 0) = |
1092 |
|
✗ |
(float)k / (float)N_sampling; // [1/N, 2/N, ... , (N-1)/N] |
1093 |
|
|
} |
1094 |
|
✗ |
delta_.col(1) << delta_.col(0).pow(2); |
1095 |
|
✗ |
delta_.col(2) << delta_.col(0).pow(3); |
1096 |
|
✗ |
delta_.col(3) << delta_.col(0).pow(4); |
1097 |
|
|
|
1098 |
|
✗ |
gamma_.col(0) = |
1099 |
|
✗ |
60 * delta_.col(0) - 180 * delta_.col(1) + 120 * delta_.col(2); |
1100 |
|
✗ |
gamma_.col(1) = -36 * delta_.col(0) + 96 * delta_.col(1) - 60 * delta_.col(2); |
1101 |
|
✗ |
gamma_.col(2) = -9 * delta_.col(0) + 18 * delta_.col(1) - 10 * delta_.col(2); |
1102 |
|
|
|
1103 |
|
✗ |
alpha_ = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
1104 |
|
✗ |
N_sampling - 1, 1); // Common for 4 feet |
1105 |
|
✗ |
beta_x_ = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
1106 |
|
✗ |
N_sampling - 1, 4); // Depends on ao,vo of feet |
1107 |
|
✗ |
beta_y_ = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
1108 |
|
✗ |
N_sampling - 1, 4); // Depends on ao,vo of feet |
1109 |
|
✗ |
tmp_ones_ = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Ones( |
1110 |
|
✗ |
N_sampling - 1, 1); |
1111 |
|
|
|
1112 |
|
✗ |
rb_accx_max_ = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
1113 |
|
✗ |
N_sampling - 1, 8); |
1114 |
|
✗ |
rb_accy_max_ = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
1115 |
|
✗ |
N_sampling - 1, 8); |
1116 |
|
✗ |
rb_accx_max_bool_ = |
1117 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(N_sampling - 1, |
1118 |
|
|
8); |
1119 |
|
✗ |
rb_accy_max_bool_ = |
1120 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(N_sampling - 1, |
1121 |
|
|
8); |
1122 |
|
|
|
1123 |
|
|
// Velocity cost |
1124 |
|
✗ |
gamma_v = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
1125 |
|
✗ |
N_sampling - 1, 4); |
1126 |
|
✗ |
gamma_v.col(0) = 30 * delta_.col(1) - 60 * delta_.col(2) + 30 * delta_.col(3); |
1127 |
|
✗ |
gamma_v.col(1) = delta_.col(0); |
1128 |
|
✗ |
gamma_v.col(2) = |
1129 |
|
✗ |
-18 * delta_.col(1) + 32 * delta_.col(2) - 15 * delta_.col(3); |
1130 |
|
✗ |
gamma_v.col(3) = |
1131 |
|
✗ |
-4.5 * delta_.col(1) + 6 * delta_.col(2) - 2.5 * delta_.col(3); |
1132 |
|
|
|
1133 |
|
✗ |
alpha_v = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
1134 |
|
✗ |
N_sampling - 1, 1); // Common for 4 feet |
1135 |
|
✗ |
beta_x_v = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
1136 |
|
✗ |
N_sampling - 1, 4); // Depends on a0_x, v0_x of feet |
1137 |
|
✗ |
beta_y_v = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
1138 |
|
✗ |
N_sampling - 1, 4); // Depends on a0_y, v0_y of feet |
1139 |
|
|
|
1140 |
|
✗ |
rb_velx_max_ = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
1141 |
|
✗ |
N_sampling - 1, 8); |
1142 |
|
✗ |
rb_vely_max_ = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
1143 |
|
✗ |
N_sampling - 1, 8); |
1144 |
|
✗ |
rb_velx_max_bool_ = |
1145 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(N_sampling - 1, |
1146 |
|
|
8); |
1147 |
|
✗ |
rb_vely_max_bool_ = |
1148 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(N_sampling - 1, |
1149 |
|
|
8); |
1150 |
|
|
} |
1151 |
|
|
|
1152 |
|
|
//////////////////////// |
1153 |
|
|
// Update current model |
1154 |
|
|
//////////////////////// |
1155 |
|
|
|
1156 |
|
|
template <typename Scalar> |
1157 |
|
✗ |
void ActionModelQuadrupedStepTpl<Scalar>::update_model( |
1158 |
|
|
const Eigen::Ref<const typename MathBase::MatrixXs>& l_feet, |
1159 |
|
|
const Eigen::Ref<const typename MathBase::MatrixXs>& xref, |
1160 |
|
|
const Eigen::Ref<const typename MathBase::VectorXs>& S, |
1161 |
|
|
const Eigen::Ref<const typename MathBase::MatrixXs>& position, |
1162 |
|
|
const Eigen::Ref<const typename MathBase::MatrixXs>& velocity, |
1163 |
|
|
const Eigen::Ref<const typename MathBase::MatrixXs>& acceleration, |
1164 |
|
|
const Eigen::Ref<const typename MathBase::MatrixXs>& jerk, |
1165 |
|
|
const Eigen::Ref<const typename MathBase::MatrixXs>& oRh, |
1166 |
|
|
const Eigen::Ref<const typename MathBase::MatrixXs>& oTh, |
1167 |
|
|
const Scalar& delta_T) { |
1168 |
|
✗ |
if (static_cast<std::size_t>(l_feet.size()) != 12) { |
1169 |
|
✗ |
throw_pretty("Invalid argument: " |
1170 |
|
|
<< "l_feet matrix has wrong dimension (it should be : 3x4)"); |
1171 |
|
|
} |
1172 |
|
✗ |
if (static_cast<std::size_t>(xref.size()) != 12) { |
1173 |
|
✗ |
throw_pretty("Invalid argument: " |
1174 |
|
|
<< "Weights vector has wrong dimension (it should be " + |
1175 |
|
|
std::to_string(state_->get_nx()) + ")"); |
1176 |
|
|
} |
1177 |
|
✗ |
if (static_cast<std::size_t>(S.size()) != 4) { |
1178 |
|
✗ |
throw_pretty("Invalid argument: " |
1179 |
|
|
<< "S vector has wrong dimension (it should be 4x1)"); |
1180 |
|
|
} |
1181 |
|
|
|
1182 |
|
|
// Velocity : [[vx_0, vx_1, vx_2, vx_3], |
1183 |
|
|
// [vy_0, vy_1, vy_2, vy_3], |
1184 |
|
|
// [vz_0, vz_1, vz_2, vz_3]] |
1185 |
|
|
|
1186 |
|
✗ |
xref_ = xref; |
1187 |
|
✗ |
S_ = S; |
1188 |
|
✗ |
position_ = position; |
1189 |
|
✗ |
oRh_ = oRh; |
1190 |
|
✗ |
oTh_ = oTh; |
1191 |
|
✗ |
jerk_ = jerk; |
1192 |
|
|
|
1193 |
|
|
/* R_tmp << cos(xref(5, 0)), -sin(xref(5, 0)), Scalar(0), sin(xref(5, 0)), |
1194 |
|
|
cos(xref(5, 0)), Scalar(0), Scalar(0), Scalar(0), Scalar(1.0); |
1195 |
|
|
|
1196 |
|
|
// Centrifual term |
1197 |
|
|
pcentrifugal_tmp_1 = xref.block(6, 0, 3, 1); |
1198 |
|
|
pcentrifugal_tmp_2 = xref.block(9, 0, 3, 1); |
1199 |
|
|
pcentrifugal_tmp = 0.5 * std::sqrt(xref(2, 0) / 9.81) * |
1200 |
|
|
pcentrifugal_tmp_1.cross(pcentrifugal_tmp_2); |
1201 |
|
|
|
1202 |
|
|
for (int i = 0; i < 4; i = i + 1) { |
1203 |
|
|
pshoulder_tmp.block(0, i, 2, 1) = |
1204 |
|
|
R_tmp.block(0, 0, 2, 2) * |
1205 |
|
|
(pshoulder_0.block(0, i, 2, 1) + symmetry_term * 0.25 * T_gait * |
1206 |
|
|
xref.block(6, 0, 2, 1) + centrifugal_term * pcentrifugal_tmp.block(0, 0, 2, |
1207 |
|
|
1)); pshoulder_[2 * i] = pshoulder_tmp(0, i) + xref(0, 0); pshoulder_[2 * i + |
1208 |
|
|
1] = pshoulder_tmp(1, i) + xref(1, 0); |
1209 |
|
|
} */ |
1210 |
|
|
|
1211 |
|
✗ |
for (int i = 0; i < 4; i = i + 1) { |
1212 |
|
✗ |
pheuristic_[2 * i] = l_feet(0, i); |
1213 |
|
✗ |
pheuristic_[2 * i + 1] = l_feet(1, i); |
1214 |
|
|
} |
1215 |
|
|
|
1216 |
|
|
/* std::cout << pshoulder_ << std::endl; */ |
1217 |
|
|
|
1218 |
|
✗ |
B.setZero(); |
1219 |
|
|
|
1220 |
|
✗ |
if (S[0] == Scalar(1)) { |
1221 |
|
✗ |
B.block(0, 0, 2, 2).setIdentity(); |
1222 |
|
|
} |
1223 |
|
✗ |
if (S[1] == Scalar(1)) { |
1224 |
|
✗ |
B.block(2, 2, 2, 2).setIdentity(); |
1225 |
|
|
} |
1226 |
|
✗ |
if (S[2] == Scalar(1)) { |
1227 |
|
✗ |
B.block(4, 4, 2, 2).setIdentity(); |
1228 |
|
|
} |
1229 |
|
✗ |
if (S[3] == Scalar(1)) { |
1230 |
|
✗ |
B.block(6, 6, 2, 2).setIdentity(); |
1231 |
|
|
} |
1232 |
|
|
|
1233 |
|
✗ |
alpha_ = (1 / pow(delta_T, 2)) * gamma_.col(0); |
1234 |
|
✗ |
alpha_j = (60 / pow(delta_T, 3)); |
1235 |
|
✗ |
alpha_v = (1 / delta_T) * gamma_v.col(0); |
1236 |
|
|
|
1237 |
|
✗ |
for (int i = 0; i < 4; i++) { |
1238 |
|
✗ |
if (S[i] == Scalar(1) && is_acc_activated_) { |
1239 |
|
✗ |
beta_x_.col(i) = acceleration(0, i) * tmp_ones_ + |
1240 |
|
✗ |
(velocity(0, i) / delta_T) * gamma_.col(1) + |
1241 |
|
✗ |
acceleration(0, i) * gamma_.col(2); |
1242 |
|
✗ |
beta_y_.col(i) = acceleration(1, i) * tmp_ones_ + |
1243 |
|
✗ |
(velocity(1, i) / delta_T) * gamma_.col(1) + |
1244 |
|
✗ |
acceleration(1, i) * gamma_.col(2); |
1245 |
|
|
} else { |
1246 |
|
✗ |
beta_x_.col(i).setZero(); |
1247 |
|
✗ |
beta_y_.col(i).setZero(); |
1248 |
|
|
} |
1249 |
|
|
|
1250 |
|
✗ |
if (S[i] == Scalar(1) && is_vel_activated_) { |
1251 |
|
✗ |
beta_x_v.col(i) = velocity(0, i) * tmp_ones_ + |
1252 |
|
✗ |
(acceleration(0, i) * delta_T) * gamma_v.col(1) + |
1253 |
|
✗ |
velocity(0, i) * gamma_.col(2) + |
1254 |
|
✗ |
(acceleration(0, i) * delta_T) * gamma_v.col(3); |
1255 |
|
✗ |
beta_y_v.col(i) = velocity(1, i) * tmp_ones_ + |
1256 |
|
✗ |
(acceleration(1, i) * delta_T) * gamma_v.col(1) + |
1257 |
|
✗ |
velocity(1, i) * gamma_.col(2) + |
1258 |
|
✗ |
(acceleration(1, i) * delta_T) * gamma_v.col(3); |
1259 |
|
|
} else { |
1260 |
|
✗ |
beta_x_v.col(i).setZero(); |
1261 |
|
✗ |
beta_y_v.col(i).setZero(); |
1262 |
|
|
} |
1263 |
|
|
|
1264 |
|
✗ |
if (S[i] == Scalar(1) && is_jerk_activated_) { |
1265 |
|
✗ |
beta_j(0, i) = -(36 * velocity(0, i)) / pow(delta_T, 2) - |
1266 |
|
✗ |
(9 * acceleration(0, i)) / delta_T; |
1267 |
|
✗ |
beta_j(1, i) = -(36 * velocity(1, i)) / pow(delta_T, 2) - |
1268 |
|
✗ |
(9 * acceleration(1, i)) / delta_T; |
1269 |
|
|
} else { |
1270 |
|
✗ |
beta_j.col(i).setZero(); |
1271 |
|
|
} |
1272 |
|
|
} |
1273 |
|
|
} |
1274 |
|
|
} // namespace quadruped_walkgen |
1275 |
|
|
|
1276 |
|
|
#endif |
1277 |
|
|
|