| Line |
Branch |
Exec |
Source |
| 1 |
|
|
#ifndef __quadruped_walkgen_quadruped_step_time_hxx__ |
| 2 |
|
|
#define __quadruped_walkgen_quadruped_step_time_hxx__ |
| 3 |
|
|
|
| 4 |
|
|
#include "crocoddyl/core/utils/exception.hpp" |
| 5 |
|
|
|
| 6 |
|
|
namespace quadruped_walkgen { |
| 7 |
|
|
template <typename Scalar> |
| 8 |
|
✗ |
ActionModelQuadrupedStepTimeTpl<Scalar>::ActionModelQuadrupedStepTimeTpl() |
| 9 |
|
|
: crocoddyl::ActionModelAbstractTpl<Scalar>( |
| 10 |
|
✗ |
boost::make_shared<crocoddyl::StateVectorTpl<Scalar> >(21), 8, 29) { |
| 11 |
|
✗ |
B.setZero(); // x_next = x + B * u |
| 12 |
|
✗ |
rub_max_.setZero(); |
| 13 |
|
✗ |
rub_max_bool.setZero(); |
| 14 |
|
|
|
| 15 |
|
✗ |
state_weights_ << Scalar(1.), Scalar(1.), Scalar(150.), Scalar(35.), |
| 16 |
|
✗ |
Scalar(30.), Scalar(8.), Scalar(20.), Scalar(20.), Scalar(15.), |
| 17 |
|
✗ |
Scalar(4.), Scalar(4.), Scalar(8.); |
| 18 |
|
✗ |
heuristicWeights.setConstant(Scalar(0.)); |
| 19 |
|
✗ |
step_weights_.setConstant(Scalar(1)); |
| 20 |
|
✗ |
pheuristic_.setZero(); |
| 21 |
|
|
|
| 22 |
|
|
// Compute heuristic inside update Model |
| 23 |
|
|
// pshoulder_0 << Scalar(0.1946) , Scalar(0.1946) , Scalar(-0.1946), |
| 24 |
|
|
// Scalar(-0.1946) , |
| 25 |
|
|
// Scalar(0.15005) , Scalar(-0.15005) , Scalar(0.15005) , |
| 26 |
|
|
// Scalar(-0.15005) ; |
| 27 |
|
|
// pshoulder_tmp.setZero() ; |
| 28 |
|
|
// pcentrifugal_tmp_1.setZero() ; |
| 29 |
|
|
// pcentrifugal_tmp_2.setZero() ; |
| 30 |
|
|
// pcentrifugal_tmp.setZero() ; |
| 31 |
|
|
// T_gait = Scalar(0.64) ; |
| 32 |
|
✗ |
centrifugal_term = true; |
| 33 |
|
✗ |
symmetry_term = true; |
| 34 |
|
|
|
| 35 |
|
|
// Weight on the speed ot the feet |
| 36 |
|
✗ |
nb_nodes = Scalar(15.); |
| 37 |
|
✗ |
vlim = Scalar(2.); |
| 38 |
|
✗ |
beta_lim = Scalar((64 * nb_nodes * nb_nodes * vlim * vlim) / |
| 39 |
|
|
225); // apparent speed used in the cost function |
| 40 |
|
✗ |
speed_weight = Scalar(10.); |
| 41 |
|
|
|
| 42 |
|
|
// Logging cost |
| 43 |
|
✗ |
cost_.setZero(); |
| 44 |
|
✗ |
log_cost = true; |
| 45 |
|
|
|
| 46 |
|
|
// indicates whether it t the 1st step, otherwise the cost function is much |
| 47 |
|
|
// simpler (acc, speed = 0) |
| 48 |
|
✗ |
first_step = false; |
| 49 |
|
|
|
| 50 |
|
|
// Coefficients for sample velocity of the feet |
| 51 |
|
✗ |
nb_alpha_ = 4; |
| 52 |
|
✗ |
alpha = MathBase::ArrayXs::Zero(nb_alpha_); |
| 53 |
|
✗ |
alpha2 = |
| 54 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(nb_alpha_, 4); |
| 55 |
|
✗ |
b_coeff = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
| 56 |
|
✗ |
nb_alpha_, 3); // Constant for all feet, avoid re-computing them |
| 57 |
|
|
|
| 58 |
|
|
// Cost = DT * b0(alpha) + DT**2 * b1(alpha) + DX * b2(alpha) for x velocity |
| 59 |
|
✗ |
b_coeff_x0 = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
| 60 |
|
✗ |
nb_alpha_, 4); // col(i) --> foot i |
| 61 |
|
✗ |
b_coeff_x1 = |
| 62 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(nb_alpha_, 4); |
| 63 |
|
✗ |
b_coeff_x2 = |
| 64 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(nb_alpha_, 4); |
| 65 |
|
|
|
| 66 |
|
|
// Cost = DT * b0(alpha) + DT**2 * b1(alpha) + DX * b2(alpha) for y velocity |
| 67 |
|
✗ |
b_coeff_y0 = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
| 68 |
|
✗ |
nb_alpha_, 4); // col(i) --> foot i |
| 69 |
|
✗ |
b_coeff_y1 = |
| 70 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(nb_alpha_, 4); |
| 71 |
|
✗ |
b_coeff_y2 = |
| 72 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(nb_alpha_, 4); |
| 73 |
|
|
|
| 74 |
|
✗ |
rub_max_first_x = |
| 75 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(nb_alpha_, 4); |
| 76 |
|
✗ |
rub_max_first_y = |
| 77 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(nb_alpha_, 4); |
| 78 |
|
✗ |
rub_max_first_2 = |
| 79 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(nb_alpha_, 4); |
| 80 |
|
✗ |
rub_max_first_bool = |
| 81 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(nb_alpha_, 4); |
| 82 |
|
|
|
| 83 |
|
✗ |
alpha.setLinSpaced(nb_alpha_, Scalar(0.0), Scalar(1.0)); |
| 84 |
|
✗ |
alpha2.col(0) << alpha; |
| 85 |
|
✗ |
alpha2.col(1) << alpha.pow(2); |
| 86 |
|
✗ |
alpha2.col(2) << alpha.pow(3); |
| 87 |
|
✗ |
alpha2.col(3) << alpha.pow(4); |
| 88 |
|
|
|
| 89 |
|
✗ |
b_coeff.col(0) = Scalar(1.0) - Scalar(18.) * alpha2.col(1) + |
| 90 |
|
✗ |
Scalar(32.) * alpha2.col(2) - Scalar(15.) * alpha2.col(3); |
| 91 |
|
✗ |
b_coeff.col(1) = alpha2.col(0) - Scalar(4.5) * alpha2.col(1) + |
| 92 |
|
✗ |
Scalar(6.) * alpha2.col(2) - Scalar(2.5) * alpha2.col(3); |
| 93 |
|
✗ |
b_coeff.col(2) = Scalar(30.) * alpha2.col(1) - Scalar(60.) * alpha2.col(2) + |
| 94 |
|
✗ |
Scalar(30.) * alpha2.col(3); |
| 95 |
|
|
|
| 96 |
|
✗ |
lfeet.setZero(); |
| 97 |
|
|
} |
| 98 |
|
|
|
| 99 |
|
|
template <typename Scalar> |
| 100 |
|
✗ |
ActionModelQuadrupedStepTimeTpl<Scalar>::~ActionModelQuadrupedStepTimeTpl() {} |
| 101 |
|
|
|
| 102 |
|
|
template <typename Scalar> |
| 103 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::calc( |
| 104 |
|
|
const boost::shared_ptr<crocoddyl::ActionDataAbstractTpl<Scalar> >& data, |
| 105 |
|
|
const Eigen::Ref<const typename MathBase::VectorXs>& x, |
| 106 |
|
|
const Eigen::Ref<const typename MathBase::VectorXs>& u) { |
| 107 |
|
✗ |
if (static_cast<std::size_t>(x.size()) != state_->get_nx()) { |
| 108 |
|
✗ |
throw_pretty("Invalid argument: " |
| 109 |
|
|
<< "x has wrong dimension (it should be " + |
| 110 |
|
|
std::to_string(state_->get_nx()) + ")"); |
| 111 |
|
|
} |
| 112 |
|
✗ |
if (static_cast<std::size_t>(u.size()) != nu_) { |
| 113 |
|
✗ |
throw_pretty("Invalid argument: " |
| 114 |
|
|
<< "u has wrong dimension (it should be " + |
| 115 |
|
|
std::to_string(nu_) + ")"); |
| 116 |
|
|
} |
| 117 |
|
|
|
| 118 |
|
|
ActionDataQuadrupedStepTimeTpl<Scalar>* d = |
| 119 |
|
✗ |
static_cast<ActionDataQuadrupedStepTimeTpl<Scalar>*>(data.get()); |
| 120 |
|
|
|
| 121 |
|
|
// Update position of the feet |
| 122 |
|
✗ |
d->xnext.template head<12>() = x.head(12); |
| 123 |
|
✗ |
d->xnext.template segment<8>(12) = x.segment(12, 8) + B * u; |
| 124 |
|
✗ |
d->xnext.template tail<1>() = x.tail(1); |
| 125 |
|
|
|
| 126 |
|
|
// Residual cost on the state and force norm |
| 127 |
|
✗ |
d->r.template head<12>() = state_weights_.cwiseProduct(x.head(12) - xref_); |
| 128 |
|
✗ |
d->r.template segment<8>(12) = heuristicWeights.cwiseProduct( |
| 129 |
|
✗ |
x.segment(12, 8) - |
| 130 |
|
✗ |
pheuristic_); // Not used, set to 0, S matrix is for moving feet and not |
| 131 |
|
|
// feet already on the ground |
| 132 |
|
✗ |
d->r.template tail<4>() = step_weights_.cwiseProduct(u); |
| 133 |
|
|
|
| 134 |
|
✗ |
d->cost = Scalar(0.5) * d->r.transpose() * d->r; |
| 135 |
|
|
|
| 136 |
|
✗ |
if (first_step) { |
| 137 |
|
✗ |
for (int i = 0; i < 4; i++) { |
| 138 |
|
✗ |
if (S_[i] == Scalar(1)) { |
| 139 |
|
✗ |
rub_max_first_x.col(i) = x(20) * b_coeff_x0.col(i) + |
| 140 |
|
✗ |
x(20) * x(20) * b_coeff_x1.col(i) + |
| 141 |
|
✗ |
u(2 * i) * b_coeff_x2.col(i); |
| 142 |
|
✗ |
rub_max_first_y.col(i) = x(20) * b_coeff_y0.col(i) + |
| 143 |
|
✗ |
x(20) * x(20) * b_coeff_y1.col(i) + |
| 144 |
|
✗ |
u(2 * i + 1) * b_coeff_y2.col(i); |
| 145 |
|
|
|
| 146 |
|
✗ |
rub_max_first_2.col(i) = |
| 147 |
|
✗ |
rub_max_first_x.col(i).pow(2) + rub_max_first_y.col(i).pow(2) - |
| 148 |
|
✗ |
x(20) * x(20) * vlim * vlim * nb_nodes * nb_nodes; |
| 149 |
|
|
} else { |
| 150 |
|
✗ |
rub_max_first_2.col(i).setZero(); |
| 151 |
|
|
} |
| 152 |
|
|
} |
| 153 |
|
|
|
| 154 |
|
✗ |
rub_max_first_bool = |
| 155 |
|
✗ |
(rub_max_first_2 > Scalar(0.)) |
| 156 |
|
|
.template cast<Scalar>(); // Usefull to compute the derivatives |
| 157 |
|
✗ |
rub_max_first_2 = rub_max_first_2.cwiseMax(Scalar(0.)); // Remove <0 terms |
| 158 |
|
|
|
| 159 |
|
✗ |
for (int i = 0; i < nb_alpha_; i++) { |
| 160 |
|
✗ |
d->cost += speed_weight * Scalar(0.5) * rub_max_first_2.row(i).sum(); |
| 161 |
|
|
} |
| 162 |
|
|
} else { |
| 163 |
|
✗ |
rub_max_ << u[0] * u[0] + u[1] * u[1] - beta_lim * x[20] * x[20], |
| 164 |
|
✗ |
u[2] * u[2] + u[3] * u[3] - beta_lim * x[20] * x[20]; |
| 165 |
|
|
|
| 166 |
|
✗ |
rub_max_bool = |
| 167 |
|
✗ |
(rub_max_.array() >= Scalar(0.)).matrix().template cast<Scalar>(); |
| 168 |
|
✗ |
rub_max_ = rub_max_.cwiseMax(Scalar(0.)); |
| 169 |
|
|
|
| 170 |
|
✗ |
d->cost += speed_weight * Scalar(0.5) * rub_max_.sum(); |
| 171 |
|
|
} |
| 172 |
|
|
|
| 173 |
|
✗ |
if (log_cost) { |
| 174 |
|
✗ |
cost_[3] = 0; |
| 175 |
|
|
// Length to be consistent with others models |
| 176 |
|
✗ |
cost_[0] = |
| 177 |
|
✗ |
Scalar(0.5) * d->r.head(12).transpose() * d->r.head(12); // State cost |
| 178 |
|
✗ |
cost_[1] = Scalar(0.5) * d->r.segment(12, 8).transpose() * |
| 179 |
|
✗ |
d->r.segment(12, 8); // heuristic cost |
| 180 |
|
✗ |
cost_[2] = Scalar(0.5) * d->r.tail(4).transpose() * |
| 181 |
|
✗ |
d->r.tail(4); // Delta feet cost |
| 182 |
|
|
|
| 183 |
|
✗ |
if (first_step) { |
| 184 |
|
✗ |
for (int i = 0; i < 3; i++) { |
| 185 |
|
✗ |
cost_[3] += speed_weight * Scalar(0.5) * rub_max_first_2.row(i).sum(); |
| 186 |
|
|
} |
| 187 |
|
|
} else { |
| 188 |
|
✗ |
cost_[3] = speed_weight * Scalar(0.5) * rub_max_.sum(); |
| 189 |
|
|
} |
| 190 |
|
|
} |
| 191 |
|
|
} |
| 192 |
|
|
|
| 193 |
|
|
template <typename Scalar> |
| 194 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::calcDiff( |
| 195 |
|
|
const boost::shared_ptr<crocoddyl::ActionDataAbstractTpl<Scalar> >& data, |
| 196 |
|
|
const Eigen::Ref<const typename MathBase::VectorXs>& x, |
| 197 |
|
|
const Eigen::Ref<const typename MathBase::VectorXs>& u) { |
| 198 |
|
✗ |
if (static_cast<std::size_t>(x.size()) != state_->get_nx()) { |
| 199 |
|
✗ |
throw_pretty("Invalid argument: " |
| 200 |
|
|
<< "x has wrong dimension (it should be " + |
| 201 |
|
|
std::to_string(state_->get_nx()) + ")"); |
| 202 |
|
|
} |
| 203 |
|
✗ |
if (static_cast<std::size_t>(u.size()) != nu_) { |
| 204 |
|
✗ |
throw_pretty("Invalid argument: " |
| 205 |
|
|
<< "u has wrong dimension (it should be " + |
| 206 |
|
|
std::to_string(nu_) + ")"); |
| 207 |
|
|
} |
| 208 |
|
|
|
| 209 |
|
|
ActionDataQuadrupedStepTimeTpl<Scalar>* d = |
| 210 |
|
✗ |
static_cast<ActionDataQuadrupedStepTimeTpl<Scalar>*>(data.get()); |
| 211 |
|
|
|
| 212 |
|
✗ |
d->Lx.setZero(); |
| 213 |
|
✗ |
d->Lu.setZero(); |
| 214 |
|
✗ |
d->Lxu.setZero(); |
| 215 |
|
✗ |
d->Lxx.setZero(); |
| 216 |
|
✗ |
d->Luu.setZero(); |
| 217 |
|
|
// Cost derivatives : Lx |
| 218 |
|
✗ |
d->Lx.template head<12>() = |
| 219 |
|
✗ |
(state_weights_.array() * d->r.template head<12>().array()).matrix(); |
| 220 |
|
✗ |
d->Lx.template segment<8>(12) = |
| 221 |
|
✗ |
(heuristicWeights.array() * d->r.template segment<8>(12).array()) |
| 222 |
|
|
.matrix(); |
| 223 |
|
|
|
| 224 |
|
✗ |
if (first_step) { |
| 225 |
|
✗ |
for (int foot = 0; foot < 4; foot++) { |
| 226 |
|
✗ |
if (S_[foot] == Scalar(1)) { |
| 227 |
|
✗ |
for (int i = 0; i < nb_alpha_; i++) { |
| 228 |
|
✗ |
if (rub_max_first_bool(i, foot)) { |
| 229 |
|
✗ |
d->Lx(20) += |
| 230 |
|
✗ |
speed_weight * |
| 231 |
|
✗ |
(b_coeff_x0(i, foot) + |
| 232 |
|
✗ |
Scalar(2) * x(20) * b_coeff_x1(i, foot)) * |
| 233 |
|
✗ |
rub_max_first_x(i, foot) + |
| 234 |
|
✗ |
speed_weight * |
| 235 |
|
✗ |
(b_coeff_y0(i, foot) + |
| 236 |
|
✗ |
Scalar(2) * x(20) * b_coeff_y1(i, foot)) * |
| 237 |
|
✗ |
rub_max_first_y(i, foot) - |
| 238 |
|
✗ |
speed_weight * x(20) * vlim * vlim * nb_nodes * nb_nodes; |
| 239 |
|
✗ |
d->Lu(2 * foot) += |
| 240 |
|
✗ |
speed_weight * b_coeff_x2(i, foot) * rub_max_first_x(i, foot); |
| 241 |
|
✗ |
d->Lu(2 * foot + 1) += |
| 242 |
|
✗ |
speed_weight * b_coeff_y2(i, foot) * rub_max_first_y(i, foot); |
| 243 |
|
|
|
| 244 |
|
✗ |
d->Luu(2 * foot, 2 * foot) += |
| 245 |
|
✗ |
speed_weight * b_coeff_x2(i, foot) * b_coeff_x2(i, foot); |
| 246 |
|
✗ |
d->Luu(2 * foot + 1, 2 * foot + 1) += |
| 247 |
|
✗ |
speed_weight * b_coeff_y2(i, foot) * b_coeff_y2(i, foot); |
| 248 |
|
✗ |
d->Lxu(20, 2 * foot) += speed_weight * |
| 249 |
|
✗ |
(b_coeff_x0(i, foot) + |
| 250 |
|
✗ |
Scalar(2) * x(20) * b_coeff_x1(i, foot)) * |
| 251 |
|
✗ |
b_coeff_x2(i, foot); |
| 252 |
|
✗ |
d->Lxu(20, 2 * foot + 1) += |
| 253 |
|
✗ |
speed_weight * |
| 254 |
|
✗ |
(b_coeff_y0(i, foot) + |
| 255 |
|
✗ |
Scalar(2) * x(20) * b_coeff_y1(i, foot)) * |
| 256 |
|
✗ |
b_coeff_y2(i, foot); |
| 257 |
|
✗ |
d->Lxx(20, 20) += |
| 258 |
|
✗ |
speed_weight * |
| 259 |
|
✗ |
std::pow(b_coeff_x0(i, foot) + |
| 260 |
|
✗ |
Scalar(2) * x(20) * b_coeff_x1(i, foot), |
| 261 |
|
✗ |
2) + |
| 262 |
|
✗ |
speed_weight * Scalar(2) * b_coeff_x1(i, foot) * |
| 263 |
|
✗ |
rub_max_first_x(i, foot) + |
| 264 |
|
✗ |
speed_weight * |
| 265 |
|
✗ |
std::pow(b_coeff_y0(i, foot) + |
| 266 |
|
✗ |
Scalar(2) * x(20) * b_coeff_x1(i, foot), |
| 267 |
|
✗ |
2) + |
| 268 |
|
✗ |
speed_weight * Scalar(2) * b_coeff_y1(i, foot) * |
| 269 |
|
✗ |
rub_max_first_y(i, foot) - |
| 270 |
|
✗ |
speed_weight * vlim * vlim * nb_nodes * nb_nodes; |
| 271 |
|
|
} |
| 272 |
|
|
} |
| 273 |
|
|
} |
| 274 |
|
|
} |
| 275 |
|
|
|
| 276 |
|
|
} |
| 277 |
|
|
|
| 278 |
|
|
else { |
| 279 |
|
✗ |
d->Lx.template tail<1>() |
| 280 |
|
✗ |
<< -beta_lim * speed_weight * x(20) * rub_max_bool[0] - |
| 281 |
|
✗ |
beta_lim * speed_weight * x(20) * rub_max_bool[1]; |
| 282 |
|
|
|
| 283 |
|
✗ |
d->Lu << speed_weight * u[0] * rub_max_bool[0], |
| 284 |
|
✗ |
speed_weight * u[1] * rub_max_bool[0], |
| 285 |
|
✗ |
speed_weight * u[2] * rub_max_bool[1], |
| 286 |
|
✗ |
speed_weight * u[3] * rub_max_bool[1]; |
| 287 |
|
|
|
| 288 |
|
✗ |
d->Lxx(20, 20) = -beta_lim * speed_weight * rub_max_bool[0] - |
| 289 |
|
✗ |
beta_lim * speed_weight * rub_max_bool[1]; |
| 290 |
|
|
|
| 291 |
|
✗ |
d->Luu.diagonal() << speed_weight * rub_max_bool[0], |
| 292 |
|
✗ |
speed_weight * rub_max_bool[0], speed_weight * rub_max_bool[1], |
| 293 |
|
✗ |
speed_weight * rub_max_bool[1]; |
| 294 |
|
|
} |
| 295 |
|
|
|
| 296 |
|
✗ |
d->Lu += (step_weights_.array() * d->r.template tail<4>().array()).matrix(); |
| 297 |
|
|
|
| 298 |
|
|
// Hessian : Lxx |
| 299 |
|
✗ |
d->Lxx.diagonal().head(12) = |
| 300 |
|
✗ |
(state_weights_.array() * state_weights_.array()).matrix(); |
| 301 |
|
✗ |
d->Lxx.diagonal().segment(12, 8) = |
| 302 |
|
✗ |
(heuristicWeights.array() * heuristicWeights.array()).matrix(); |
| 303 |
|
|
|
| 304 |
|
✗ |
d->Luu.diagonal() += (step_weights_.array() * step_weights_.array()).matrix(); |
| 305 |
|
|
|
| 306 |
|
|
// Dynamic derivatives |
| 307 |
|
✗ |
d->Fx.setIdentity(); |
| 308 |
|
✗ |
d->Fu.block(12, 0, 8, 8) = B; |
| 309 |
|
|
} |
| 310 |
|
|
|
| 311 |
|
|
template <typename Scalar> |
| 312 |
|
|
boost::shared_ptr<crocoddyl::ActionDataAbstractTpl<Scalar> > |
| 313 |
|
✗ |
ActionModelQuadrupedStepTimeTpl<Scalar>::createData() { |
| 314 |
|
✗ |
return boost::make_shared<ActionDataQuadrupedStepTimeTpl<Scalar> >(this); |
| 315 |
|
|
} |
| 316 |
|
|
|
| 317 |
|
|
//////////////////////////////// |
| 318 |
|
|
// get & set parameters //////// |
| 319 |
|
|
//////////////////////////////// |
| 320 |
|
|
|
| 321 |
|
|
template <typename Scalar> |
| 322 |
|
|
const typename Eigen::Matrix<Scalar, 12, 1>& |
| 323 |
|
✗ |
ActionModelQuadrupedStepTimeTpl<Scalar>::get_state_weights() const { |
| 324 |
|
✗ |
return state_weights_; |
| 325 |
|
|
} |
| 326 |
|
|
template <typename Scalar> |
| 327 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::set_state_weights( |
| 328 |
|
|
const typename MathBase::VectorXs& weights) { |
| 329 |
|
✗ |
if (static_cast<std::size_t>(weights.size()) != 12) { |
| 330 |
|
✗ |
throw_pretty("Invalid argument: " |
| 331 |
|
|
<< "Weights vector has wrong dimension (it should be 12)"); |
| 332 |
|
|
} |
| 333 |
|
✗ |
state_weights_ = weights; |
| 334 |
|
|
} |
| 335 |
|
|
|
| 336 |
|
|
template <typename Scalar> |
| 337 |
|
|
const typename Eigen::Matrix<Scalar, 4, 1>& |
| 338 |
|
✗ |
ActionModelQuadrupedStepTimeTpl<Scalar>::get_step_weights() const { |
| 339 |
|
✗ |
return step_weights_; |
| 340 |
|
|
} |
| 341 |
|
|
template <typename Scalar> |
| 342 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::set_step_weights( |
| 343 |
|
|
const typename MathBase::VectorXs& weights) { |
| 344 |
|
✗ |
if (static_cast<std::size_t>(weights.size()) != 8) { |
| 345 |
|
✗ |
throw_pretty("Invalid argument: " |
| 346 |
|
|
<< "Weights vector has wrong dimension (it should be 8)"); |
| 347 |
|
|
} |
| 348 |
|
✗ |
step_weights_ = weights; |
| 349 |
|
|
} |
| 350 |
|
|
|
| 351 |
|
|
template <typename Scalar> |
| 352 |
|
|
const typename Eigen::Matrix<Scalar, 8, 1>& |
| 353 |
|
✗ |
ActionModelQuadrupedStepTimeTpl<Scalar>::get_heuristic_weights() const { |
| 354 |
|
✗ |
return heuristicWeights; |
| 355 |
|
|
} |
| 356 |
|
|
template <typename Scalar> |
| 357 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::set_heuristic_weights( |
| 358 |
|
|
const typename MathBase::VectorXs& weights) { |
| 359 |
|
✗ |
if (static_cast<std::size_t>(weights.size()) != 8) { |
| 360 |
|
✗ |
throw_pretty("Invalid argument: " |
| 361 |
|
|
<< "Weights vector has wrong dimension (it should be 8)"); |
| 362 |
|
|
} |
| 363 |
|
✗ |
heuristicWeights = weights; |
| 364 |
|
|
} |
| 365 |
|
|
|
| 366 |
|
|
template <typename Scalar> |
| 367 |
|
✗ |
const bool& ActionModelQuadrupedStepTimeTpl<Scalar>::get_symmetry_term() const { |
| 368 |
|
✗ |
return symmetry_term; |
| 369 |
|
|
} |
| 370 |
|
|
template <typename Scalar> |
| 371 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::set_symmetry_term( |
| 372 |
|
|
const bool& sym_term) { |
| 373 |
|
|
// The model need to be updated after this changed |
| 374 |
|
✗ |
symmetry_term = sym_term; |
| 375 |
|
|
} |
| 376 |
|
|
|
| 377 |
|
|
template <typename Scalar> |
| 378 |
|
✗ |
const bool& ActionModelQuadrupedStepTimeTpl<Scalar>::get_centrifugal_term() |
| 379 |
|
|
const { |
| 380 |
|
✗ |
return centrifugal_term; |
| 381 |
|
|
} |
| 382 |
|
|
template <typename Scalar> |
| 383 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::set_centrifugal_term( |
| 384 |
|
|
const bool& cent_term) { |
| 385 |
|
|
// The model need to be updated after this changed |
| 386 |
|
✗ |
centrifugal_term = cent_term; |
| 387 |
|
|
} |
| 388 |
|
|
|
| 389 |
|
|
template <typename Scalar> |
| 390 |
|
✗ |
const Scalar& ActionModelQuadrupedStepTimeTpl<Scalar>::get_T_gait() const { |
| 391 |
|
|
// The model need to be updated after this changed |
| 392 |
|
✗ |
return T_gait; |
| 393 |
|
|
} |
| 394 |
|
|
template <typename Scalar> |
| 395 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::set_T_gait( |
| 396 |
|
|
const Scalar& T_gait_) { |
| 397 |
|
|
// The model need to be updated after this changed |
| 398 |
|
✗ |
T_gait = T_gait_; |
| 399 |
|
|
} |
| 400 |
|
|
|
| 401 |
|
|
///////////////////////////////////////////// |
| 402 |
|
|
// Get and modify param in speed cost // |
| 403 |
|
|
///////////////////////////////////////////// |
| 404 |
|
|
template <typename Scalar> |
| 405 |
|
✗ |
const Scalar& ActionModelQuadrupedStepTimeTpl<Scalar>::get_speed_weight() |
| 406 |
|
|
const { |
| 407 |
|
✗ |
return speed_weight; |
| 408 |
|
|
} |
| 409 |
|
|
template <typename Scalar> |
| 410 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::set_speed_weight( |
| 411 |
|
|
const Scalar& weight_) { |
| 412 |
|
✗ |
speed_weight = weight_; |
| 413 |
|
|
} |
| 414 |
|
|
|
| 415 |
|
|
template <typename Scalar> |
| 416 |
|
✗ |
const Scalar& ActionModelQuadrupedStepTimeTpl<Scalar>::get_nb_nodes() const { |
| 417 |
|
✗ |
return nb_nodes; |
| 418 |
|
|
} |
| 419 |
|
|
template <typename Scalar> |
| 420 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::set_nb_nodes( |
| 421 |
|
|
const Scalar& nodes_) { |
| 422 |
|
✗ |
nb_nodes = nodes_; |
| 423 |
|
✗ |
beta_lim = Scalar((64 * nb_nodes * nb_nodes * vlim * vlim) / 225); |
| 424 |
|
|
; |
| 425 |
|
|
} |
| 426 |
|
|
|
| 427 |
|
|
template <typename Scalar> |
| 428 |
|
✗ |
const Scalar& ActionModelQuadrupedStepTimeTpl<Scalar>::get_vlim() const { |
| 429 |
|
✗ |
return vlim; |
| 430 |
|
|
} |
| 431 |
|
|
template <typename Scalar> |
| 432 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::set_vlim(const Scalar& vlim_) { |
| 433 |
|
✗ |
vlim = vlim_; |
| 434 |
|
✗ |
beta_lim = Scalar((64 * nb_nodes * nb_nodes * vlim * vlim) / 225); |
| 435 |
|
|
; |
| 436 |
|
|
} |
| 437 |
|
|
|
| 438 |
|
|
/////////////// |
| 439 |
|
|
// Log cost // |
| 440 |
|
|
/////////////// |
| 441 |
|
|
template <typename Scalar> |
| 442 |
|
|
const typename Eigen::Matrix<Scalar, 7, 1>& |
| 443 |
|
✗ |
ActionModelQuadrupedStepTimeTpl<Scalar>::get_cost() const { |
| 444 |
|
✗ |
return cost_; |
| 445 |
|
|
} |
| 446 |
|
|
|
| 447 |
|
|
// indicates whether it t the 1st step, otherwise the cost function is much |
| 448 |
|
|
// simpler (acc, speed = 0) |
| 449 |
|
|
template <typename Scalar> |
| 450 |
|
✗ |
const bool& ActionModelQuadrupedStepTimeTpl<Scalar>::get_first_step() const { |
| 451 |
|
✗ |
return first_step; |
| 452 |
|
|
} |
| 453 |
|
|
template <typename Scalar> |
| 454 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::set_first_step( |
| 455 |
|
|
const bool& first) { |
| 456 |
|
|
// The model need to be updated after this changed |
| 457 |
|
✗ |
first_step = first; |
| 458 |
|
|
} |
| 459 |
|
|
|
| 460 |
|
|
//////////////////////// |
| 461 |
|
|
// Update current model |
| 462 |
|
|
//////////////////////// |
| 463 |
|
|
|
| 464 |
|
|
template <typename Scalar> |
| 465 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::update_model( |
| 466 |
|
|
const Eigen::Ref<const typename MathBase::MatrixXs>& l_feet, |
| 467 |
|
|
const Eigen::Ref<const typename MathBase::MatrixXs>& velocity, |
| 468 |
|
|
const Eigen::Ref<const typename MathBase::MatrixXs>& acceleration, |
| 469 |
|
|
const Eigen::Ref<const typename MathBase::MatrixXs>& xref, |
| 470 |
|
|
const Eigen::Ref<const typename MathBase::VectorXs>& S) { |
| 471 |
|
✗ |
if (static_cast<std::size_t>(l_feet.size()) != 12) { |
| 472 |
|
✗ |
throw_pretty("Invalid argument: " |
| 473 |
|
|
<< "l_feet matrix has wrong dimension (it should be : 3x4)"); |
| 474 |
|
|
} |
| 475 |
|
✗ |
if (static_cast<std::size_t>(xref.size()) != 12) { |
| 476 |
|
✗ |
throw_pretty("Invalid argument: " |
| 477 |
|
|
<< "Weights vector has wrong dimension (it should be " + |
| 478 |
|
|
std::to_string(state_->get_nx()) + ")"); |
| 479 |
|
|
} |
| 480 |
|
✗ |
if (static_cast<std::size_t>(S.size()) != 4) { |
| 481 |
|
✗ |
throw_pretty("Invalid argument: " |
| 482 |
|
|
<< "S vector has wrong dimension (it should be 4x1)"); |
| 483 |
|
|
} |
| 484 |
|
|
// Velocity : [[vx_0, vx_1, vx_2, vx_3], |
| 485 |
|
|
// [vy_0, vy_1, vy_2, vy_3], |
| 486 |
|
|
// [vz_0, vz_1, vz_2, vz_3]] |
| 487 |
|
|
|
| 488 |
|
✗ |
for (int i = 0; i < 4; i = i + 1) { |
| 489 |
|
✗ |
pheuristic_.block(2 * i, 0, 2, 1) = l_feet.block(0, i, 2, 1); |
| 490 |
|
|
} |
| 491 |
|
✗ |
xref_ = xref; |
| 492 |
|
✗ |
S_ = S; |
| 493 |
|
|
|
| 494 |
|
✗ |
for (int i = 0; i < 4; i++) { |
| 495 |
|
✗ |
if (S[i] == Scalar(1)) { |
| 496 |
|
|
// Coeff for x velocity |
| 497 |
|
✗ |
b_coeff_x0.col(i) = nb_nodes * velocity(0, i) * b_coeff.col(0); |
| 498 |
|
✗ |
b_coeff_x1.col(i) = |
| 499 |
|
✗ |
nb_nodes * nb_nodes * acceleration(0, i) * b_coeff.col(1); |
| 500 |
|
✗ |
b_coeff_x2.col(i) = b_coeff.col(2); |
| 501 |
|
|
|
| 502 |
|
|
// Coeff for y velocity |
| 503 |
|
✗ |
b_coeff_y0.col(i) = nb_nodes * velocity(1, i) * b_coeff.col(0); |
| 504 |
|
✗ |
b_coeff_y1.col(i) = |
| 505 |
|
✗ |
nb_nodes * nb_nodes * acceleration(1, i) * b_coeff.col(1); |
| 506 |
|
✗ |
b_coeff_y2.col(i) = b_coeff.col(2); |
| 507 |
|
|
} else { |
| 508 |
|
✗ |
b_coeff_x0.col(i).setZero(); |
| 509 |
|
✗ |
b_coeff_x1.col(i).setZero(); |
| 510 |
|
✗ |
b_coeff_x2.col(i).setZero(); |
| 511 |
|
✗ |
b_coeff_y0.col(i).setZero(); |
| 512 |
|
✗ |
b_coeff_y1.col(i).setZero(); |
| 513 |
|
✗ |
b_coeff_y2.col(i).setZero(); |
| 514 |
|
|
} |
| 515 |
|
|
} |
| 516 |
|
|
|
| 517 |
|
|
// Compute heuristic inside update_model |
| 518 |
|
|
// R_tmp << cos(xref(5,0)) ,-sin(xref(5,0)) , Scalar(0), |
| 519 |
|
|
// sin(xref(5,0)), cos(xref(5,0)), Scalar(0), |
| 520 |
|
|
// Scalar(0),Scalar(0),Scalar(1.0) ; |
| 521 |
|
|
// // Centrifual term |
| 522 |
|
|
// pcentrifugal_tmp_1 = xref.block(6,0,3,1) ; |
| 523 |
|
|
// pcentrifugal_tmp_2 = xref.block(9,0,3,1) ; |
| 524 |
|
|
// pcentrifugal_tmp = 0.5*std::sqrt(xref(2,0)/9.81) * |
| 525 |
|
|
// pcentrifugal_tmp_1.cross(pcentrifugal_tmp_2) ; |
| 526 |
|
|
|
| 527 |
|
|
// for (int i=0; i<4; i=i+1){ |
| 528 |
|
|
// pshoulder_tmp.block(0,i,2,1) = |
| 529 |
|
|
// R_tmp.block(0,0,2,2)*(pshoulder_0.block(0,i,2,1) + symmetry_term * |
| 530 |
|
|
// 0.25*T_gait*xref.block(6,0,2,1) + centrifugal_term * |
| 531 |
|
|
// pcentrifugal_tmp.block(0,0,2,1) ); pshoulder_[2*i] = pshoulder_tmp(0,i) + |
| 532 |
|
|
// xref(0,0); pshoulder_[2*i+1] = pshoulder_tmp(1,i) + xref(1,0); |
| 533 |
|
|
// } |
| 534 |
|
|
|
| 535 |
|
✗ |
B.setZero(); |
| 536 |
|
|
// Set B matrix according to the moving feet : S = gait - gait_old |
| 537 |
|
✗ |
if (S[0] == Scalar(1)) { |
| 538 |
|
✗ |
B.block(0, 0, 2, 2).setIdentity(); |
| 539 |
|
|
} |
| 540 |
|
✗ |
if (S[1] == Scalar(1)) { |
| 541 |
|
✗ |
B.block(2, 2, 2, 2).setIdentity(); |
| 542 |
|
|
} |
| 543 |
|
✗ |
if (S[2] == Scalar(1)) { |
| 544 |
|
✗ |
B.block(4, 4, 2, 2).setIdentity(); |
| 545 |
|
|
} |
| 546 |
|
✗ |
if (S[3] == Scalar(1)) { |
| 547 |
|
✗ |
B.block(6, 6, 2, 2).setIdentity(); |
| 548 |
|
|
} |
| 549 |
|
|
} |
| 550 |
|
|
} // namespace quadruped_walkgen |
| 551 |
|
|
|
| 552 |
|
|
#endif |
| 553 |
|
|
|