Line |
Branch |
Exec |
Source |
1 |
|
|
#ifndef __quadruped_walkgen_quadruped_step_time_hxx__ |
2 |
|
|
#define __quadruped_walkgen_quadruped_step_time_hxx__ |
3 |
|
|
|
4 |
|
|
#include "crocoddyl/core/utils/exception.hpp" |
5 |
|
|
|
6 |
|
|
namespace quadruped_walkgen { |
7 |
|
|
template <typename Scalar> |
8 |
|
✗ |
ActionModelQuadrupedStepTimeTpl<Scalar>::ActionModelQuadrupedStepTimeTpl() |
9 |
|
|
: crocoddyl::ActionModelAbstractTpl<Scalar>( |
10 |
|
✗ |
boost::make_shared<crocoddyl::StateVectorTpl<Scalar> >(21), 8, 29) { |
11 |
|
✗ |
B.setZero(); // x_next = x + B * u |
12 |
|
✗ |
rub_max_.setZero(); |
13 |
|
✗ |
rub_max_bool.setZero(); |
14 |
|
|
|
15 |
|
✗ |
state_weights_ << Scalar(1.), Scalar(1.), Scalar(150.), Scalar(35.), |
16 |
|
✗ |
Scalar(30.), Scalar(8.), Scalar(20.), Scalar(20.), Scalar(15.), |
17 |
|
✗ |
Scalar(4.), Scalar(4.), Scalar(8.); |
18 |
|
✗ |
heuristicWeights.setConstant(Scalar(0.)); |
19 |
|
✗ |
step_weights_.setConstant(Scalar(1)); |
20 |
|
✗ |
pheuristic_.setZero(); |
21 |
|
|
|
22 |
|
|
// Compute heuristic inside update Model |
23 |
|
|
// pshoulder_0 << Scalar(0.1946) , Scalar(0.1946) , Scalar(-0.1946), |
24 |
|
|
// Scalar(-0.1946) , |
25 |
|
|
// Scalar(0.15005) , Scalar(-0.15005) , Scalar(0.15005) , |
26 |
|
|
// Scalar(-0.15005) ; |
27 |
|
|
// pshoulder_tmp.setZero() ; |
28 |
|
|
// pcentrifugal_tmp_1.setZero() ; |
29 |
|
|
// pcentrifugal_tmp_2.setZero() ; |
30 |
|
|
// pcentrifugal_tmp.setZero() ; |
31 |
|
|
// T_gait = Scalar(0.64) ; |
32 |
|
✗ |
centrifugal_term = true; |
33 |
|
✗ |
symmetry_term = true; |
34 |
|
|
|
35 |
|
|
// Weight on the speed ot the feet |
36 |
|
✗ |
nb_nodes = Scalar(15.); |
37 |
|
✗ |
vlim = Scalar(2.); |
38 |
|
✗ |
beta_lim = Scalar((64 * nb_nodes * nb_nodes * vlim * vlim) / |
39 |
|
|
225); // apparent speed used in the cost function |
40 |
|
✗ |
speed_weight = Scalar(10.); |
41 |
|
|
|
42 |
|
|
// Logging cost |
43 |
|
✗ |
cost_.setZero(); |
44 |
|
✗ |
log_cost = true; |
45 |
|
|
|
46 |
|
|
// indicates whether it t the 1st step, otherwise the cost function is much |
47 |
|
|
// simpler (acc, speed = 0) |
48 |
|
✗ |
first_step = false; |
49 |
|
|
|
50 |
|
|
// Coefficients for sample velocity of the feet |
51 |
|
✗ |
nb_alpha_ = 4; |
52 |
|
✗ |
alpha = MathBase::ArrayXs::Zero(nb_alpha_); |
53 |
|
✗ |
alpha2 = |
54 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(nb_alpha_, 4); |
55 |
|
✗ |
b_coeff = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
56 |
|
✗ |
nb_alpha_, 3); // Constant for all feet, avoid re-computing them |
57 |
|
|
|
58 |
|
|
// Cost = DT * b0(alpha) + DT**2 * b1(alpha) + DX * b2(alpha) for x velocity |
59 |
|
✗ |
b_coeff_x0 = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
60 |
|
✗ |
nb_alpha_, 4); // col(i) --> foot i |
61 |
|
✗ |
b_coeff_x1 = |
62 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(nb_alpha_, 4); |
63 |
|
✗ |
b_coeff_x2 = |
64 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(nb_alpha_, 4); |
65 |
|
|
|
66 |
|
|
// Cost = DT * b0(alpha) + DT**2 * b1(alpha) + DX * b2(alpha) for y velocity |
67 |
|
✗ |
b_coeff_y0 = Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
68 |
|
✗ |
nb_alpha_, 4); // col(i) --> foot i |
69 |
|
✗ |
b_coeff_y1 = |
70 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(nb_alpha_, 4); |
71 |
|
✗ |
b_coeff_y2 = |
72 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(nb_alpha_, 4); |
73 |
|
|
|
74 |
|
✗ |
rub_max_first_x = |
75 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(nb_alpha_, 4); |
76 |
|
✗ |
rub_max_first_y = |
77 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(nb_alpha_, 4); |
78 |
|
✗ |
rub_max_first_2 = |
79 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(nb_alpha_, 4); |
80 |
|
✗ |
rub_max_first_bool = |
81 |
|
✗ |
Eigen::Array<Scalar, Eigen::Dynamic, Eigen::Dynamic>::Zero(nb_alpha_, 4); |
82 |
|
|
|
83 |
|
✗ |
alpha.setLinSpaced(nb_alpha_, Scalar(0.0), Scalar(1.0)); |
84 |
|
✗ |
alpha2.col(0) << alpha; |
85 |
|
✗ |
alpha2.col(1) << alpha.pow(2); |
86 |
|
✗ |
alpha2.col(2) << alpha.pow(3); |
87 |
|
✗ |
alpha2.col(3) << alpha.pow(4); |
88 |
|
|
|
89 |
|
✗ |
b_coeff.col(0) = Scalar(1.0) - Scalar(18.) * alpha2.col(1) + |
90 |
|
✗ |
Scalar(32.) * alpha2.col(2) - Scalar(15.) * alpha2.col(3); |
91 |
|
✗ |
b_coeff.col(1) = alpha2.col(0) - Scalar(4.5) * alpha2.col(1) + |
92 |
|
✗ |
Scalar(6.) * alpha2.col(2) - Scalar(2.5) * alpha2.col(3); |
93 |
|
✗ |
b_coeff.col(2) = Scalar(30.) * alpha2.col(1) - Scalar(60.) * alpha2.col(2) + |
94 |
|
✗ |
Scalar(30.) * alpha2.col(3); |
95 |
|
|
|
96 |
|
✗ |
lfeet.setZero(); |
97 |
|
|
} |
98 |
|
|
|
99 |
|
|
template <typename Scalar> |
100 |
|
✗ |
ActionModelQuadrupedStepTimeTpl<Scalar>::~ActionModelQuadrupedStepTimeTpl() {} |
101 |
|
|
|
102 |
|
|
template <typename Scalar> |
103 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::calc( |
104 |
|
|
const boost::shared_ptr<crocoddyl::ActionDataAbstractTpl<Scalar> >& data, |
105 |
|
|
const Eigen::Ref<const typename MathBase::VectorXs>& x, |
106 |
|
|
const Eigen::Ref<const typename MathBase::VectorXs>& u) { |
107 |
|
✗ |
if (static_cast<std::size_t>(x.size()) != state_->get_nx()) { |
108 |
|
✗ |
throw_pretty("Invalid argument: " |
109 |
|
|
<< "x has wrong dimension (it should be " + |
110 |
|
|
std::to_string(state_->get_nx()) + ")"); |
111 |
|
|
} |
112 |
|
✗ |
if (static_cast<std::size_t>(u.size()) != nu_) { |
113 |
|
✗ |
throw_pretty("Invalid argument: " |
114 |
|
|
<< "u has wrong dimension (it should be " + |
115 |
|
|
std::to_string(nu_) + ")"); |
116 |
|
|
} |
117 |
|
|
|
118 |
|
|
ActionDataQuadrupedStepTimeTpl<Scalar>* d = |
119 |
|
✗ |
static_cast<ActionDataQuadrupedStepTimeTpl<Scalar>*>(data.get()); |
120 |
|
|
|
121 |
|
|
// Update position of the feet |
122 |
|
✗ |
d->xnext.template head<12>() = x.head(12); |
123 |
|
✗ |
d->xnext.template segment<8>(12) = x.segment(12, 8) + B * u; |
124 |
|
✗ |
d->xnext.template tail<1>() = x.tail(1); |
125 |
|
|
|
126 |
|
|
// Residual cost on the state and force norm |
127 |
|
✗ |
d->r.template head<12>() = state_weights_.cwiseProduct(x.head(12) - xref_); |
128 |
|
✗ |
d->r.template segment<8>(12) = heuristicWeights.cwiseProduct( |
129 |
|
✗ |
x.segment(12, 8) - |
130 |
|
✗ |
pheuristic_); // Not used, set to 0, S matrix is for moving feet and not |
131 |
|
|
// feet already on the ground |
132 |
|
✗ |
d->r.template tail<4>() = step_weights_.cwiseProduct(u); |
133 |
|
|
|
134 |
|
✗ |
d->cost = Scalar(0.5) * d->r.transpose() * d->r; |
135 |
|
|
|
136 |
|
✗ |
if (first_step) { |
137 |
|
✗ |
for (int i = 0; i < 4; i++) { |
138 |
|
✗ |
if (S_[i] == Scalar(1)) { |
139 |
|
✗ |
rub_max_first_x.col(i) = x(20) * b_coeff_x0.col(i) + |
140 |
|
✗ |
x(20) * x(20) * b_coeff_x1.col(i) + |
141 |
|
✗ |
u(2 * i) * b_coeff_x2.col(i); |
142 |
|
✗ |
rub_max_first_y.col(i) = x(20) * b_coeff_y0.col(i) + |
143 |
|
✗ |
x(20) * x(20) * b_coeff_y1.col(i) + |
144 |
|
✗ |
u(2 * i + 1) * b_coeff_y2.col(i); |
145 |
|
|
|
146 |
|
✗ |
rub_max_first_2.col(i) = |
147 |
|
✗ |
rub_max_first_x.col(i).pow(2) + rub_max_first_y.col(i).pow(2) - |
148 |
|
✗ |
x(20) * x(20) * vlim * vlim * nb_nodes * nb_nodes; |
149 |
|
|
} else { |
150 |
|
✗ |
rub_max_first_2.col(i).setZero(); |
151 |
|
|
} |
152 |
|
|
} |
153 |
|
|
|
154 |
|
✗ |
rub_max_first_bool = |
155 |
|
✗ |
(rub_max_first_2 > Scalar(0.)) |
156 |
|
|
.template cast<Scalar>(); // Usefull to compute the derivatives |
157 |
|
✗ |
rub_max_first_2 = rub_max_first_2.cwiseMax(Scalar(0.)); // Remove <0 terms |
158 |
|
|
|
159 |
|
✗ |
for (int i = 0; i < nb_alpha_; i++) { |
160 |
|
✗ |
d->cost += speed_weight * Scalar(0.5) * rub_max_first_2.row(i).sum(); |
161 |
|
|
} |
162 |
|
|
} else { |
163 |
|
✗ |
rub_max_ << u[0] * u[0] + u[1] * u[1] - beta_lim * x[20] * x[20], |
164 |
|
✗ |
u[2] * u[2] + u[3] * u[3] - beta_lim * x[20] * x[20]; |
165 |
|
|
|
166 |
|
✗ |
rub_max_bool = |
167 |
|
✗ |
(rub_max_.array() >= Scalar(0.)).matrix().template cast<Scalar>(); |
168 |
|
✗ |
rub_max_ = rub_max_.cwiseMax(Scalar(0.)); |
169 |
|
|
|
170 |
|
✗ |
d->cost += speed_weight * Scalar(0.5) * rub_max_.sum(); |
171 |
|
|
} |
172 |
|
|
|
173 |
|
✗ |
if (log_cost) { |
174 |
|
✗ |
cost_[3] = 0; |
175 |
|
|
// Length to be consistent with others models |
176 |
|
✗ |
cost_[0] = |
177 |
|
✗ |
Scalar(0.5) * d->r.head(12).transpose() * d->r.head(12); // State cost |
178 |
|
✗ |
cost_[1] = Scalar(0.5) * d->r.segment(12, 8).transpose() * |
179 |
|
✗ |
d->r.segment(12, 8); // heuristic cost |
180 |
|
✗ |
cost_[2] = Scalar(0.5) * d->r.tail(4).transpose() * |
181 |
|
✗ |
d->r.tail(4); // Delta feet cost |
182 |
|
|
|
183 |
|
✗ |
if (first_step) { |
184 |
|
✗ |
for (int i = 0; i < 3; i++) { |
185 |
|
✗ |
cost_[3] += speed_weight * Scalar(0.5) * rub_max_first_2.row(i).sum(); |
186 |
|
|
} |
187 |
|
|
} else { |
188 |
|
✗ |
cost_[3] = speed_weight * Scalar(0.5) * rub_max_.sum(); |
189 |
|
|
} |
190 |
|
|
} |
191 |
|
|
} |
192 |
|
|
|
193 |
|
|
template <typename Scalar> |
194 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::calcDiff( |
195 |
|
|
const boost::shared_ptr<crocoddyl::ActionDataAbstractTpl<Scalar> >& data, |
196 |
|
|
const Eigen::Ref<const typename MathBase::VectorXs>& x, |
197 |
|
|
const Eigen::Ref<const typename MathBase::VectorXs>& u) { |
198 |
|
✗ |
if (static_cast<std::size_t>(x.size()) != state_->get_nx()) { |
199 |
|
✗ |
throw_pretty("Invalid argument: " |
200 |
|
|
<< "x has wrong dimension (it should be " + |
201 |
|
|
std::to_string(state_->get_nx()) + ")"); |
202 |
|
|
} |
203 |
|
✗ |
if (static_cast<std::size_t>(u.size()) != nu_) { |
204 |
|
✗ |
throw_pretty("Invalid argument: " |
205 |
|
|
<< "u has wrong dimension (it should be " + |
206 |
|
|
std::to_string(nu_) + ")"); |
207 |
|
|
} |
208 |
|
|
|
209 |
|
|
ActionDataQuadrupedStepTimeTpl<Scalar>* d = |
210 |
|
✗ |
static_cast<ActionDataQuadrupedStepTimeTpl<Scalar>*>(data.get()); |
211 |
|
|
|
212 |
|
✗ |
d->Lx.setZero(); |
213 |
|
✗ |
d->Lu.setZero(); |
214 |
|
✗ |
d->Lxu.setZero(); |
215 |
|
✗ |
d->Lxx.setZero(); |
216 |
|
✗ |
d->Luu.setZero(); |
217 |
|
|
// Cost derivatives : Lx |
218 |
|
✗ |
d->Lx.template head<12>() = |
219 |
|
✗ |
(state_weights_.array() * d->r.template head<12>().array()).matrix(); |
220 |
|
✗ |
d->Lx.template segment<8>(12) = |
221 |
|
✗ |
(heuristicWeights.array() * d->r.template segment<8>(12).array()) |
222 |
|
|
.matrix(); |
223 |
|
|
|
224 |
|
✗ |
if (first_step) { |
225 |
|
✗ |
for (int foot = 0; foot < 4; foot++) { |
226 |
|
✗ |
if (S_[foot] == Scalar(1)) { |
227 |
|
✗ |
for (int i = 0; i < nb_alpha_; i++) { |
228 |
|
✗ |
if (rub_max_first_bool(i, foot)) { |
229 |
|
✗ |
d->Lx(20) += |
230 |
|
✗ |
speed_weight * |
231 |
|
✗ |
(b_coeff_x0(i, foot) + |
232 |
|
✗ |
Scalar(2) * x(20) * b_coeff_x1(i, foot)) * |
233 |
|
✗ |
rub_max_first_x(i, foot) + |
234 |
|
✗ |
speed_weight * |
235 |
|
✗ |
(b_coeff_y0(i, foot) + |
236 |
|
✗ |
Scalar(2) * x(20) * b_coeff_y1(i, foot)) * |
237 |
|
✗ |
rub_max_first_y(i, foot) - |
238 |
|
✗ |
speed_weight * x(20) * vlim * vlim * nb_nodes * nb_nodes; |
239 |
|
✗ |
d->Lu(2 * foot) += |
240 |
|
✗ |
speed_weight * b_coeff_x2(i, foot) * rub_max_first_x(i, foot); |
241 |
|
✗ |
d->Lu(2 * foot + 1) += |
242 |
|
✗ |
speed_weight * b_coeff_y2(i, foot) * rub_max_first_y(i, foot); |
243 |
|
|
|
244 |
|
✗ |
d->Luu(2 * foot, 2 * foot) += |
245 |
|
✗ |
speed_weight * b_coeff_x2(i, foot) * b_coeff_x2(i, foot); |
246 |
|
✗ |
d->Luu(2 * foot + 1, 2 * foot + 1) += |
247 |
|
✗ |
speed_weight * b_coeff_y2(i, foot) * b_coeff_y2(i, foot); |
248 |
|
✗ |
d->Lxu(20, 2 * foot) += speed_weight * |
249 |
|
✗ |
(b_coeff_x0(i, foot) + |
250 |
|
✗ |
Scalar(2) * x(20) * b_coeff_x1(i, foot)) * |
251 |
|
✗ |
b_coeff_x2(i, foot); |
252 |
|
✗ |
d->Lxu(20, 2 * foot + 1) += |
253 |
|
✗ |
speed_weight * |
254 |
|
✗ |
(b_coeff_y0(i, foot) + |
255 |
|
✗ |
Scalar(2) * x(20) * b_coeff_y1(i, foot)) * |
256 |
|
✗ |
b_coeff_y2(i, foot); |
257 |
|
✗ |
d->Lxx(20, 20) += |
258 |
|
✗ |
speed_weight * |
259 |
|
✗ |
std::pow(b_coeff_x0(i, foot) + |
260 |
|
✗ |
Scalar(2) * x(20) * b_coeff_x1(i, foot), |
261 |
|
✗ |
2) + |
262 |
|
✗ |
speed_weight * Scalar(2) * b_coeff_x1(i, foot) * |
263 |
|
✗ |
rub_max_first_x(i, foot) + |
264 |
|
✗ |
speed_weight * |
265 |
|
✗ |
std::pow(b_coeff_y0(i, foot) + |
266 |
|
✗ |
Scalar(2) * x(20) * b_coeff_x1(i, foot), |
267 |
|
✗ |
2) + |
268 |
|
✗ |
speed_weight * Scalar(2) * b_coeff_y1(i, foot) * |
269 |
|
✗ |
rub_max_first_y(i, foot) - |
270 |
|
✗ |
speed_weight * vlim * vlim * nb_nodes * nb_nodes; |
271 |
|
|
} |
272 |
|
|
} |
273 |
|
|
} |
274 |
|
|
} |
275 |
|
|
|
276 |
|
|
} |
277 |
|
|
|
278 |
|
|
else { |
279 |
|
✗ |
d->Lx.template tail<1>() |
280 |
|
✗ |
<< -beta_lim * speed_weight * x(20) * rub_max_bool[0] - |
281 |
|
✗ |
beta_lim * speed_weight * x(20) * rub_max_bool[1]; |
282 |
|
|
|
283 |
|
✗ |
d->Lu << speed_weight * u[0] * rub_max_bool[0], |
284 |
|
✗ |
speed_weight * u[1] * rub_max_bool[0], |
285 |
|
✗ |
speed_weight * u[2] * rub_max_bool[1], |
286 |
|
✗ |
speed_weight * u[3] * rub_max_bool[1]; |
287 |
|
|
|
288 |
|
✗ |
d->Lxx(20, 20) = -beta_lim * speed_weight * rub_max_bool[0] - |
289 |
|
✗ |
beta_lim * speed_weight * rub_max_bool[1]; |
290 |
|
|
|
291 |
|
✗ |
d->Luu.diagonal() << speed_weight * rub_max_bool[0], |
292 |
|
✗ |
speed_weight * rub_max_bool[0], speed_weight * rub_max_bool[1], |
293 |
|
✗ |
speed_weight * rub_max_bool[1]; |
294 |
|
|
} |
295 |
|
|
|
296 |
|
✗ |
d->Lu += (step_weights_.array() * d->r.template tail<4>().array()).matrix(); |
297 |
|
|
|
298 |
|
|
// Hessian : Lxx |
299 |
|
✗ |
d->Lxx.diagonal().head(12) = |
300 |
|
✗ |
(state_weights_.array() * state_weights_.array()).matrix(); |
301 |
|
✗ |
d->Lxx.diagonal().segment(12, 8) = |
302 |
|
✗ |
(heuristicWeights.array() * heuristicWeights.array()).matrix(); |
303 |
|
|
|
304 |
|
✗ |
d->Luu.diagonal() += (step_weights_.array() * step_weights_.array()).matrix(); |
305 |
|
|
|
306 |
|
|
// Dynamic derivatives |
307 |
|
✗ |
d->Fx.setIdentity(); |
308 |
|
✗ |
d->Fu.block(12, 0, 8, 8) = B; |
309 |
|
|
} |
310 |
|
|
|
311 |
|
|
template <typename Scalar> |
312 |
|
|
boost::shared_ptr<crocoddyl::ActionDataAbstractTpl<Scalar> > |
313 |
|
✗ |
ActionModelQuadrupedStepTimeTpl<Scalar>::createData() { |
314 |
|
✗ |
return boost::make_shared<ActionDataQuadrupedStepTimeTpl<Scalar> >(this); |
315 |
|
|
} |
316 |
|
|
|
317 |
|
|
//////////////////////////////// |
318 |
|
|
// get & set parameters //////// |
319 |
|
|
//////////////////////////////// |
320 |
|
|
|
321 |
|
|
template <typename Scalar> |
322 |
|
|
const typename Eigen::Matrix<Scalar, 12, 1>& |
323 |
|
✗ |
ActionModelQuadrupedStepTimeTpl<Scalar>::get_state_weights() const { |
324 |
|
✗ |
return state_weights_; |
325 |
|
|
} |
326 |
|
|
template <typename Scalar> |
327 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::set_state_weights( |
328 |
|
|
const typename MathBase::VectorXs& weights) { |
329 |
|
✗ |
if (static_cast<std::size_t>(weights.size()) != 12) { |
330 |
|
✗ |
throw_pretty("Invalid argument: " |
331 |
|
|
<< "Weights vector has wrong dimension (it should be 12)"); |
332 |
|
|
} |
333 |
|
✗ |
state_weights_ = weights; |
334 |
|
|
} |
335 |
|
|
|
336 |
|
|
template <typename Scalar> |
337 |
|
|
const typename Eigen::Matrix<Scalar, 4, 1>& |
338 |
|
✗ |
ActionModelQuadrupedStepTimeTpl<Scalar>::get_step_weights() const { |
339 |
|
✗ |
return step_weights_; |
340 |
|
|
} |
341 |
|
|
template <typename Scalar> |
342 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::set_step_weights( |
343 |
|
|
const typename MathBase::VectorXs& weights) { |
344 |
|
✗ |
if (static_cast<std::size_t>(weights.size()) != 8) { |
345 |
|
✗ |
throw_pretty("Invalid argument: " |
346 |
|
|
<< "Weights vector has wrong dimension (it should be 8)"); |
347 |
|
|
} |
348 |
|
✗ |
step_weights_ = weights; |
349 |
|
|
} |
350 |
|
|
|
351 |
|
|
template <typename Scalar> |
352 |
|
|
const typename Eigen::Matrix<Scalar, 8, 1>& |
353 |
|
✗ |
ActionModelQuadrupedStepTimeTpl<Scalar>::get_heuristic_weights() const { |
354 |
|
✗ |
return heuristicWeights; |
355 |
|
|
} |
356 |
|
|
template <typename Scalar> |
357 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::set_heuristic_weights( |
358 |
|
|
const typename MathBase::VectorXs& weights) { |
359 |
|
✗ |
if (static_cast<std::size_t>(weights.size()) != 8) { |
360 |
|
✗ |
throw_pretty("Invalid argument: " |
361 |
|
|
<< "Weights vector has wrong dimension (it should be 8)"); |
362 |
|
|
} |
363 |
|
✗ |
heuristicWeights = weights; |
364 |
|
|
} |
365 |
|
|
|
366 |
|
|
template <typename Scalar> |
367 |
|
✗ |
const bool& ActionModelQuadrupedStepTimeTpl<Scalar>::get_symmetry_term() const { |
368 |
|
✗ |
return symmetry_term; |
369 |
|
|
} |
370 |
|
|
template <typename Scalar> |
371 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::set_symmetry_term( |
372 |
|
|
const bool& sym_term) { |
373 |
|
|
// The model need to be updated after this changed |
374 |
|
✗ |
symmetry_term = sym_term; |
375 |
|
|
} |
376 |
|
|
|
377 |
|
|
template <typename Scalar> |
378 |
|
✗ |
const bool& ActionModelQuadrupedStepTimeTpl<Scalar>::get_centrifugal_term() |
379 |
|
|
const { |
380 |
|
✗ |
return centrifugal_term; |
381 |
|
|
} |
382 |
|
|
template <typename Scalar> |
383 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::set_centrifugal_term( |
384 |
|
|
const bool& cent_term) { |
385 |
|
|
// The model need to be updated after this changed |
386 |
|
✗ |
centrifugal_term = cent_term; |
387 |
|
|
} |
388 |
|
|
|
389 |
|
|
template <typename Scalar> |
390 |
|
✗ |
const Scalar& ActionModelQuadrupedStepTimeTpl<Scalar>::get_T_gait() const { |
391 |
|
|
// The model need to be updated after this changed |
392 |
|
✗ |
return T_gait; |
393 |
|
|
} |
394 |
|
|
template <typename Scalar> |
395 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::set_T_gait( |
396 |
|
|
const Scalar& T_gait_) { |
397 |
|
|
// The model need to be updated after this changed |
398 |
|
✗ |
T_gait = T_gait_; |
399 |
|
|
} |
400 |
|
|
|
401 |
|
|
///////////////////////////////////////////// |
402 |
|
|
// Get and modify param in speed cost // |
403 |
|
|
///////////////////////////////////////////// |
404 |
|
|
template <typename Scalar> |
405 |
|
✗ |
const Scalar& ActionModelQuadrupedStepTimeTpl<Scalar>::get_speed_weight() |
406 |
|
|
const { |
407 |
|
✗ |
return speed_weight; |
408 |
|
|
} |
409 |
|
|
template <typename Scalar> |
410 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::set_speed_weight( |
411 |
|
|
const Scalar& weight_) { |
412 |
|
✗ |
speed_weight = weight_; |
413 |
|
|
} |
414 |
|
|
|
415 |
|
|
template <typename Scalar> |
416 |
|
✗ |
const Scalar& ActionModelQuadrupedStepTimeTpl<Scalar>::get_nb_nodes() const { |
417 |
|
✗ |
return nb_nodes; |
418 |
|
|
} |
419 |
|
|
template <typename Scalar> |
420 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::set_nb_nodes( |
421 |
|
|
const Scalar& nodes_) { |
422 |
|
✗ |
nb_nodes = nodes_; |
423 |
|
✗ |
beta_lim = Scalar((64 * nb_nodes * nb_nodes * vlim * vlim) / 225); |
424 |
|
|
; |
425 |
|
|
} |
426 |
|
|
|
427 |
|
|
template <typename Scalar> |
428 |
|
✗ |
const Scalar& ActionModelQuadrupedStepTimeTpl<Scalar>::get_vlim() const { |
429 |
|
✗ |
return vlim; |
430 |
|
|
} |
431 |
|
|
template <typename Scalar> |
432 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::set_vlim(const Scalar& vlim_) { |
433 |
|
✗ |
vlim = vlim_; |
434 |
|
✗ |
beta_lim = Scalar((64 * nb_nodes * nb_nodes * vlim * vlim) / 225); |
435 |
|
|
; |
436 |
|
|
} |
437 |
|
|
|
438 |
|
|
/////////////// |
439 |
|
|
// Log cost // |
440 |
|
|
/////////////// |
441 |
|
|
template <typename Scalar> |
442 |
|
|
const typename Eigen::Matrix<Scalar, 7, 1>& |
443 |
|
✗ |
ActionModelQuadrupedStepTimeTpl<Scalar>::get_cost() const { |
444 |
|
✗ |
return cost_; |
445 |
|
|
} |
446 |
|
|
|
447 |
|
|
// indicates whether it t the 1st step, otherwise the cost function is much |
448 |
|
|
// simpler (acc, speed = 0) |
449 |
|
|
template <typename Scalar> |
450 |
|
✗ |
const bool& ActionModelQuadrupedStepTimeTpl<Scalar>::get_first_step() const { |
451 |
|
✗ |
return first_step; |
452 |
|
|
} |
453 |
|
|
template <typename Scalar> |
454 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::set_first_step( |
455 |
|
|
const bool& first) { |
456 |
|
|
// The model need to be updated after this changed |
457 |
|
✗ |
first_step = first; |
458 |
|
|
} |
459 |
|
|
|
460 |
|
|
//////////////////////// |
461 |
|
|
// Update current model |
462 |
|
|
//////////////////////// |
463 |
|
|
|
464 |
|
|
template <typename Scalar> |
465 |
|
✗ |
void ActionModelQuadrupedStepTimeTpl<Scalar>::update_model( |
466 |
|
|
const Eigen::Ref<const typename MathBase::MatrixXs>& l_feet, |
467 |
|
|
const Eigen::Ref<const typename MathBase::MatrixXs>& velocity, |
468 |
|
|
const Eigen::Ref<const typename MathBase::MatrixXs>& acceleration, |
469 |
|
|
const Eigen::Ref<const typename MathBase::MatrixXs>& xref, |
470 |
|
|
const Eigen::Ref<const typename MathBase::VectorXs>& S) { |
471 |
|
✗ |
if (static_cast<std::size_t>(l_feet.size()) != 12) { |
472 |
|
✗ |
throw_pretty("Invalid argument: " |
473 |
|
|
<< "l_feet matrix has wrong dimension (it should be : 3x4)"); |
474 |
|
|
} |
475 |
|
✗ |
if (static_cast<std::size_t>(xref.size()) != 12) { |
476 |
|
✗ |
throw_pretty("Invalid argument: " |
477 |
|
|
<< "Weights vector has wrong dimension (it should be " + |
478 |
|
|
std::to_string(state_->get_nx()) + ")"); |
479 |
|
|
} |
480 |
|
✗ |
if (static_cast<std::size_t>(S.size()) != 4) { |
481 |
|
✗ |
throw_pretty("Invalid argument: " |
482 |
|
|
<< "S vector has wrong dimension (it should be 4x1)"); |
483 |
|
|
} |
484 |
|
|
// Velocity : [[vx_0, vx_1, vx_2, vx_3], |
485 |
|
|
// [vy_0, vy_1, vy_2, vy_3], |
486 |
|
|
// [vz_0, vz_1, vz_2, vz_3]] |
487 |
|
|
|
488 |
|
✗ |
for (int i = 0; i < 4; i = i + 1) { |
489 |
|
✗ |
pheuristic_.block(2 * i, 0, 2, 1) = l_feet.block(0, i, 2, 1); |
490 |
|
|
} |
491 |
|
✗ |
xref_ = xref; |
492 |
|
✗ |
S_ = S; |
493 |
|
|
|
494 |
|
✗ |
for (int i = 0; i < 4; i++) { |
495 |
|
✗ |
if (S[i] == Scalar(1)) { |
496 |
|
|
// Coeff for x velocity |
497 |
|
✗ |
b_coeff_x0.col(i) = nb_nodes * velocity(0, i) * b_coeff.col(0); |
498 |
|
✗ |
b_coeff_x1.col(i) = |
499 |
|
✗ |
nb_nodes * nb_nodes * acceleration(0, i) * b_coeff.col(1); |
500 |
|
✗ |
b_coeff_x2.col(i) = b_coeff.col(2); |
501 |
|
|
|
502 |
|
|
// Coeff for y velocity |
503 |
|
✗ |
b_coeff_y0.col(i) = nb_nodes * velocity(1, i) * b_coeff.col(0); |
504 |
|
✗ |
b_coeff_y1.col(i) = |
505 |
|
✗ |
nb_nodes * nb_nodes * acceleration(1, i) * b_coeff.col(1); |
506 |
|
✗ |
b_coeff_y2.col(i) = b_coeff.col(2); |
507 |
|
|
} else { |
508 |
|
✗ |
b_coeff_x0.col(i).setZero(); |
509 |
|
✗ |
b_coeff_x1.col(i).setZero(); |
510 |
|
✗ |
b_coeff_x2.col(i).setZero(); |
511 |
|
✗ |
b_coeff_y0.col(i).setZero(); |
512 |
|
✗ |
b_coeff_y1.col(i).setZero(); |
513 |
|
✗ |
b_coeff_y2.col(i).setZero(); |
514 |
|
|
} |
515 |
|
|
} |
516 |
|
|
|
517 |
|
|
// Compute heuristic inside update_model |
518 |
|
|
// R_tmp << cos(xref(5,0)) ,-sin(xref(5,0)) , Scalar(0), |
519 |
|
|
// sin(xref(5,0)), cos(xref(5,0)), Scalar(0), |
520 |
|
|
// Scalar(0),Scalar(0),Scalar(1.0) ; |
521 |
|
|
// // Centrifual term |
522 |
|
|
// pcentrifugal_tmp_1 = xref.block(6,0,3,1) ; |
523 |
|
|
// pcentrifugal_tmp_2 = xref.block(9,0,3,1) ; |
524 |
|
|
// pcentrifugal_tmp = 0.5*std::sqrt(xref(2,0)/9.81) * |
525 |
|
|
// pcentrifugal_tmp_1.cross(pcentrifugal_tmp_2) ; |
526 |
|
|
|
527 |
|
|
// for (int i=0; i<4; i=i+1){ |
528 |
|
|
// pshoulder_tmp.block(0,i,2,1) = |
529 |
|
|
// R_tmp.block(0,0,2,2)*(pshoulder_0.block(0,i,2,1) + symmetry_term * |
530 |
|
|
// 0.25*T_gait*xref.block(6,0,2,1) + centrifugal_term * |
531 |
|
|
// pcentrifugal_tmp.block(0,0,2,1) ); pshoulder_[2*i] = pshoulder_tmp(0,i) + |
532 |
|
|
// xref(0,0); pshoulder_[2*i+1] = pshoulder_tmp(1,i) + xref(1,0); |
533 |
|
|
// } |
534 |
|
|
|
535 |
|
✗ |
B.setZero(); |
536 |
|
|
// Set B matrix according to the moving feet : S = gait - gait_old |
537 |
|
✗ |
if (S[0] == Scalar(1)) { |
538 |
|
✗ |
B.block(0, 0, 2, 2).setIdentity(); |
539 |
|
|
} |
540 |
|
✗ |
if (S[1] == Scalar(1)) { |
541 |
|
✗ |
B.block(2, 2, 2, 2).setIdentity(); |
542 |
|
|
} |
543 |
|
✗ |
if (S[2] == Scalar(1)) { |
544 |
|
✗ |
B.block(4, 4, 2, 2).setIdentity(); |
545 |
|
|
} |
546 |
|
✗ |
if (S[3] == Scalar(1)) { |
547 |
|
✗ |
B.block(6, 6, 2, 2).setIdentity(); |
548 |
|
|
} |
549 |
|
|
} |
550 |
|
|
} // namespace quadruped_walkgen |
551 |
|
|
|
552 |
|
|
#endif |
553 |
|
|
|