1 |
|
|
#include "ddp-actuator-solver/inverse_pendulum/modelIP.hh" |
2 |
|
|
|
3 |
|
|
#include <math.h> |
4 |
|
|
#include <sys/time.h> |
5 |
|
|
|
6 |
|
|
#include <eigen3/unsupported/Eigen/MatrixFunctions> |
7 |
|
|
#include <iostream> |
8 |
|
|
|
9 |
|
|
/* |
10 |
|
|
* x0 -> actuator position |
11 |
|
|
* x1 -> actuator speed |
12 |
|
|
* x2 -> motor temperature |
13 |
|
|
* x3 -> external torque |
14 |
|
|
* x4 -> ambiant temperature |
15 |
|
|
*/ |
16 |
|
|
|
17 |
|
|
ModelIP::ModelIP(double& mydt, bool noiseOnParameters) { |
18 |
|
|
stateNb = 5; |
19 |
|
|
commandNb = 1; |
20 |
|
|
dt = mydt; |
21 |
|
|
|
22 |
|
|
if (!noiseOnParameters) { |
23 |
|
|
J = 119e-7; |
24 |
|
|
K_M = 77.1e-3; |
25 |
|
|
f_VL = 0.429e-6; |
26 |
|
|
R_th = 2.8; |
27 |
|
|
tau_th = 15.7; |
28 |
|
|
} else { |
29 |
|
|
J = 119e-17; |
30 |
|
|
K_M = 77.1e-3; |
31 |
|
|
f_VL = 0.429e-6; |
32 |
|
|
R_th = 2.8; |
33 |
|
|
tau_th = 15.7; |
34 |
|
|
} |
35 |
|
|
|
36 |
|
|
Id.setIdentity(); |
37 |
|
|
|
38 |
|
|
fu.setZero(); |
39 |
|
|
fx.setZero(); |
40 |
|
|
|
41 |
|
|
fxx[0].setZero(); |
42 |
|
|
fxx[1].setZero(); |
43 |
|
|
fxx[2].setZero(); |
44 |
|
|
fxx[3].setZero(); |
45 |
|
|
fxx[4].setZero(); |
46 |
|
|
|
47 |
|
|
fxu[0].setZero(); |
48 |
|
|
fxu[0].setZero(); |
49 |
|
|
|
50 |
|
|
fuu[0].setZero(); |
51 |
|
|
fux[0].setZero(); |
52 |
|
|
fxu[0].setZero(); |
53 |
|
|
|
54 |
|
|
QxxCont.setZero(); |
55 |
|
|
QuuCont.setZero(); |
56 |
|
|
QuxCont.setZero(); |
57 |
|
|
|
58 |
|
|
lowerCommandBounds << -1.0; |
59 |
|
|
upperCommandBounds << 1.0; |
60 |
|
|
} |
61 |
|
|
|
62 |
|
|
ModelIP::stateVec_t ModelIP::computeDeriv(double&, const stateVec_t& X, |
63 |
|
|
const commandVec_t& U) { |
64 |
|
|
dX[0] = X[1]; |
65 |
|
|
dX[1] = (K_M / J) * U[0] - (f_VL / J) * X[1] - (1.0 / J) * X[3]; |
66 |
|
|
dX[2] = R_th * U[0] * U[0] - (X[2] - X[4]) / tau_th; |
67 |
|
|
dX[3] = 0.0; |
68 |
|
|
dX[4] = 0.0; |
69 |
|
|
// std::cout << dX.transpose() << std::endl; |
70 |
|
|
return dX; |
71 |
|
|
} |
72 |
|
|
|
73 |
|
|
ModelIP::stateVec_t ModelIP::computeNextState(double& dt, const stateVec_t& X, |
74 |
|
|
const commandVec_t& U) { |
75 |
|
|
k1 = computeDeriv(dt, X, U); |
76 |
|
|
k2 = computeDeriv(dt, X + (dt / 2) * k1, U); |
77 |
|
|
k3 = computeDeriv(dt, X + (dt / 2) * k2, U); |
78 |
|
|
k4 = computeDeriv(dt, X + dt * k3, U); |
79 |
|
|
x_next = X + (dt / 6) * (k1 + 2 * k2 + 2 * k3 + k4); |
80 |
|
|
return x_next; |
81 |
|
|
} |
82 |
|
|
|
83 |
|
|
void ModelIP::computeModelDeriv(double& dt, const stateVec_t& X, |
84 |
|
|
const commandVec_t& U) { |
85 |
|
|
double dh = 1e-7; |
86 |
|
|
stateVec_t Xp, Xm; |
87 |
|
|
Xp = X; |
88 |
|
|
Xm = X; |
89 |
|
|
for (unsigned int i = 0; i < stateNb; i++) { |
90 |
|
|
Xp[i] += dh / 2; |
91 |
|
|
Xm[i] -= dh / 2; |
92 |
|
|
fx.col(i) = |
93 |
|
|
(computeNextState(dt, Xp, U) - computeNextState(dt, Xm, U)) / dh; |
94 |
|
|
Xp = X; |
95 |
|
|
Xm = X; |
96 |
|
|
} |
97 |
|
|
} |
98 |
|
|
|
99 |
|
|
ModelIP::stateMat_t ModelIP::computeTensorContxx(const stateVec_t&) { |
100 |
|
|
return QxxCont; |
101 |
|
|
} |
102 |
|
|
|
103 |
|
|
ModelIP::commandMat_t ModelIP::computeTensorContuu(const stateVec_t&) { |
104 |
|
|
return QuuCont; |
105 |
|
|
} |
106 |
|
|
|
107 |
|
|
ModelIP::commandR_stateC_t ModelIP::computeTensorContux(const stateVec_t&) { |
108 |
|
|
return QuxCont; |
109 |
|
|
} |