Line |
Branch |
Exec |
Source |
1 |
|
|
/* |
2 |
|
|
* Copyright 2010, |
3 |
|
|
* Florent Lamiraux |
4 |
|
|
* |
5 |
|
|
* CNRS |
6 |
|
|
* |
7 |
|
|
*/ |
8 |
|
|
|
9 |
|
|
#ifndef DG_TUTORIAL_INVERTED_PENDULUM_HH |
10 |
|
|
#define DG_TUTORIAL_INVERTED_PENDULUM_HH |
11 |
|
|
|
12 |
|
|
#include <dynamic-graph/entity.h> |
13 |
|
|
#include <dynamic-graph/linear-algebra.h> |
14 |
|
|
#include <dynamic-graph/signal-ptr.h> |
15 |
|
|
|
16 |
|
|
namespace dynamicgraph { |
17 |
|
|
namespace tutorial { |
18 |
|
|
|
19 |
|
|
/** |
20 |
|
|
\brief Inverted Pendulum on a cart |
21 |
|
|
|
22 |
|
|
This class represents the classical inverted pendulum on a cart. |
23 |
|
|
The equation of motion is: |
24 |
|
|
|
25 |
|
|
\f{eqnarray*}{ |
26 |
|
|
\left ( M + m \right ) \ddot x - m l \ddot \theta \cos \theta + m l \dot |
27 |
|
|
\theta^2 \sin \theta &=& F\\ m l (-g \sin \theta - \ddot x \cos \theta + l |
28 |
|
|
\ddot \theta) &=& 0 \f} |
29 |
|
|
|
30 |
|
|
where |
31 |
|
|
\li the state is a vector of dimension 4 |
32 |
|
|
\f$(x,\theta,\dot{x},\dot{\theta})\f$ represented by signal |
33 |
|
|
stateSOUT, |
34 |
|
|
\li \f$x\f$ is the position of the cart on an horizontal axis, |
35 |
|
|
\f$\theta\f$ is the angle of the pendulum with respect to the |
36 |
|
|
vertical axis, |
37 |
|
|
\li the input is a vector of dimension 1 \f$(F)\f$ reprensented by signal |
38 |
|
|
forceSIN, |
39 |
|
|
\li m, M and l are respectively the mass of the pendulum, the mass of the |
40 |
|
|
cart and the length of the pendulum. |
41 |
|
|
|
42 |
|
|
A more natural form of the above equation for roboticists is |
43 |
|
|
\f[ |
44 |
|
|
\textbf{M}(\textbf{q})\ddot{\textbf{q}} + |
45 |
|
|
\textbf{N}(\textbf{q},\dot{\textbf{q}})\dot{\textbf{q}} + |
46 |
|
|
\textbf{G}(\textbf{q}) = \textbf{F} |
47 |
|
|
\f] |
48 |
|
|
where |
49 |
|
|
\f{eqnarray*} |
50 |
|
|
\textbf{q} &=& (x, \theta) \\ |
51 |
|
|
\textbf{M}(\textbf{q}) &=& \left( \begin{array}{cc} |
52 |
|
|
M + m & -m\ l\ \cos\theta \\ |
53 |
|
|
-m\ l\ \cos\theta & m\ l^2 \end{array}\right) \\ |
54 |
|
|
\textbf{N}(\textbf{q},\dot{\textbf{q}}) &=& \left( \begin{array}{cc} |
55 |
|
|
0 & m\ l\ \dot{\theta} \sin\theta \\ |
56 |
|
|
0 & 0 \end{array}\right)\\ |
57 |
|
|
\textbf{G}(\textbf{q}) &=& \left( \begin{array}{c} |
58 |
|
|
0 \\ -m\ l\ g\ \sin\theta \end{array}\right)\\ |
59 |
|
|
\textbf{F} &=& \left( \begin{array}{c} |
60 |
|
|
F \\ 0 \end{array}\right) |
61 |
|
|
\f} |
62 |
|
|
In order to make the system intrinsically stable, we add some viscosity |
63 |
|
|
by rewriting: |
64 |
|
|
\f{eqnarray*} |
65 |
|
|
\textbf{N}(\textbf{q},\dot{\textbf{q}}) &=& \left( \begin{array}{cc} |
66 |
|
|
\lambda & m\ l\ \dot{\theta} \sin\theta\\ |
67 |
|
|
0 & \lambda \end{array}\right) |
68 |
|
|
\f} |
69 |
|
|
where \f$\lambda\f$ is a positive coefficient. |
70 |
|
|
*/ |
71 |
|
|
|
72 |
|
|
class InvertedPendulum : public Entity { |
73 |
|
|
public: |
74 |
|
|
/** |
75 |
|
|
\brief Constructor by name |
76 |
|
|
*/ |
77 |
|
|
InvertedPendulum(const std::string& inName); |
78 |
|
|
|
79 |
|
|
~InvertedPendulum(); |
80 |
|
|
|
81 |
|
|
/// Each entity should provide the name of the class it belongs to |
82 |
|
✗ |
virtual const std::string& getClassName(void) const { return CLASS_NAME; } |
83 |
|
|
|
84 |
|
|
/// Header documentation of the python class |
85 |
|
✗ |
virtual std::string getDocString() const { |
86 |
|
✗ |
return "Classical inverted pendulum dynamic model\n"; |
87 |
|
|
} |
88 |
|
|
|
89 |
|
|
/// Integrate equation of motion over time step given as input |
90 |
|
|
void incr(double inTimeStep); |
91 |
|
|
|
92 |
|
|
/** |
93 |
|
|
\name Parameters |
94 |
|
|
@{ |
95 |
|
|
*/ |
96 |
|
|
/** |
97 |
|
|
\brief Set the mass of the cart |
98 |
|
|
*/ |
99 |
|
1 |
void setCartMass(const double& inMass) { cartMass_ = inMass; } |
100 |
|
|
|
101 |
|
|
/** |
102 |
|
|
\brief Get the mass of the cart |
103 |
|
|
*/ |
104 |
|
1 |
double getCartMass() const { return cartMass_; } |
105 |
|
|
|
106 |
|
|
/** |
107 |
|
|
\brief Set the mass of the cart |
108 |
|
|
*/ |
109 |
|
1 |
void setPendulumMass(const double& inMass) { pendulumMass_ = inMass; } |
110 |
|
|
|
111 |
|
|
/** |
112 |
|
|
\brief Get the mass of the pendulum |
113 |
|
|
*/ |
114 |
|
1 |
double getPendulumMass() const { return pendulumMass_; } |
115 |
|
|
|
116 |
|
|
/** |
117 |
|
|
\brief Set the length of the cart |
118 |
|
|
*/ |
119 |
|
1 |
void setPendulumLength(const double& inLength) { pendulumLength_ = inLength; } |
120 |
|
|
|
121 |
|
|
/** |
122 |
|
|
\brief Get the length of the pendulum |
123 |
|
|
*/ |
124 |
|
1 |
double getPendulumLength() const { return pendulumLength_; } |
125 |
|
|
|
126 |
|
|
/** |
127 |
|
|
@} |
128 |
|
|
*/ |
129 |
|
|
|
130 |
|
|
public: |
131 |
|
|
/* |
132 |
|
|
\brief Class name |
133 |
|
|
*/ |
134 |
|
|
static const std::string CLASS_NAME; |
135 |
|
|
|
136 |
|
|
private: |
137 |
|
|
/** |
138 |
|
|
\brief Input force acting on the inverted pendulum |
139 |
|
|
*/ |
140 |
|
|
SignalPtr<double, int> forceSIN; |
141 |
|
|
/** |
142 |
|
|
\brief State of the inverted pendulum |
143 |
|
|
*/ |
144 |
|
|
Signal< ::dynamicgraph::Vector, int> stateSOUT; |
145 |
|
|
|
146 |
|
|
/// \brief Mass of the cart |
147 |
|
|
double cartMass_; |
148 |
|
|
/// \brief Mass of the pendulum |
149 |
|
|
double pendulumMass_; |
150 |
|
|
/// \brief Length of the pendulum |
151 |
|
|
double pendulumLength_; |
152 |
|
|
/// \brief Viscosity coefficient |
153 |
|
|
double viscosity_; |
154 |
|
|
|
155 |
|
|
/** |
156 |
|
|
\brief Compute the evolution of the state of the pendulum |
157 |
|
|
*/ |
158 |
|
|
::dynamicgraph::Vector computeDynamics(const ::dynamicgraph::Vector& inState, |
159 |
|
|
const double& inControl, |
160 |
|
|
double inTimeStep); |
161 |
|
|
}; |
162 |
|
|
} // namespace tutorial |
163 |
|
|
} // namespace dynamicgraph |
164 |
|
|
#endif |
165 |
|
|
|