GCC Code Coverage Report


Directory: ./
File: include/eiquadprog/eiquadprog-rt.hpp
Date: 2024-12-04 10:05:36
Exec Total Coverage
Lines: 10 10 100.0%
Branches: 12 24 50.0%

Line Branch Exec Source
1 //
2 // Copyright (c) 2017 CNRS
3 //
4 // This file is part of eiquadprog.
5 //
6 // eiquadprog is free software: you can redistribute it and/or modify
7 // it under the terms of the GNU Lesser General Public License as published by
8 // the Free Software Foundation, either version 3 of the License, or
9 //(at your option) any later version.
10
11 // eiquadprog is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU Lesser General Public License for more details.
15
16 // You should have received a copy of the GNU Lesser General Public License
17 // along with eiquadprog. If not, see <https://www.gnu.org/licenses/>.
18
19 #ifndef __eiquadprog_rt_hpp__
20 #define __eiquadprog_rt_hpp__
21
22 #include <Eigen/Dense>
23
24 #include "eiquadprog/eiquadprog-utils.hxx"
25
26 #define OPTIMIZE_STEP_1_2 // compute s(x) = ci^T * x + ci0
27 #define OPTIMIZE_COMPUTE_D // use noalias
28 #define OPTIMIZE_UPDATE_Z // use noalias
29 #define OPTIMIZE_HESSIAN_INVERSE // use solveInPlace
30 #define OPTIMIZE_UNCONSTR_MINIM
31
32 // #define USE_WARM_START
33 // #define PROFILE_EIQUADPROG
34 // #define DEBUG_STREAM(msg) std::cout<<msg;
35 #define DEBUG_STREAM(msg)
36
37 #ifdef PROFILE_EIQUADPROG
38 #define START_PROFILER_EIQUADPROG_RT(x) START_PROFILER(x)
39 #define STOP_PROFILER_EIQUADPROG_RT(x) STOP_PROFILER(x)
40 #else
41 #define START_PROFILER_EIQUADPROG_RT(x)
42 #define STOP_PROFILER_EIQUADPROG_RT(x)
43 #endif
44
45 #define PROFILE_EIQUADPROG_CHOWLESKY_DECOMPOSITION "EIQUADPROG_RT Chowlesky dec"
46 #define PROFILE_EIQUADPROG_CHOWLESKY_INVERSE "EIQUADPROG_RT Chowlesky inv"
47 #define PROFILE_EIQUADPROG_ADD_EQ_CONSTR "EIQUADPROG_RT ADD_EQ_CONSTR"
48 #define PROFILE_EIQUADPROG_ADD_EQ_CONSTR_1 "EIQUADPROG_RT ADD_EQ_CONSTR_1"
49 #define PROFILE_EIQUADPROG_ADD_EQ_CONSTR_2 "EIQUADPROG_RT ADD_EQ_CONSTR_2"
50 #define PROFILE_EIQUADPROG_STEP_1 "EIQUADPROG_RT STEP_1"
51 #define PROFILE_EIQUADPROG_STEP_1_1 "EIQUADPROG_RT STEP_1_1"
52 #define PROFILE_EIQUADPROG_STEP_1_2 "EIQUADPROG_RT STEP_1_2"
53 #define PROFILE_EIQUADPROG_STEP_1_UNCONSTR_MINIM \
54 "EIQUADPROG_RT STEP_1_UNCONSTR_MINIM"
55 #define PROFILE_EIQUADPROG_STEP_2 "EIQUADPROG_RT STEP_2"
56 #define PROFILE_EIQUADPROG_STEP_2A "EIQUADPROG_RT STEP_2A"
57 #define PROFILE_EIQUADPROG_STEP_2B "EIQUADPROG_RT STEP_2B"
58 #define PROFILE_EIQUADPROG_STEP_2C "EIQUADPROG_RT STEP_2C"
59
60 #define DEFAULT_MAX_ITER 1000
61
62 template <int Rows, int Cols>
63 struct RtMatrixX {
64 typedef Eigen::Matrix<double, Rows, Cols> d;
65 };
66
67 template <int Rows>
68 struct RtVectorX {
69 typedef Eigen::Matrix<double, Rows, 1> d;
70 typedef Eigen::Matrix<int, Rows, 1> i;
71 };
72
73 namespace eiquadprog {
74
75 namespace solvers {
76
77 /**
78 * Possible states of the solver.
79 */
80 enum RtEiquadprog_status {
81 RT_EIQUADPROG_OPTIMAL = 0,
82 RT_EIQUADPROG_INFEASIBLE = 1,
83 RT_EIQUADPROG_UNBOUNDED = 2,
84 RT_EIQUADPROG_MAX_ITER_REACHED = 3,
85 RT_EIQUADPROG_REDUNDANT_EQUALITIES = 4
86 };
87
88 template <int nVars, int nEqCon, int nIneqCon>
89 class RtEiquadprog {
90 public:
91 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
92
93 RtEiquadprog();
94 virtual ~RtEiquadprog();
95
96 int getMaxIter() const { return m_maxIter; }
97
98 bool setMaxIter(int maxIter) {
99 if (maxIter < 0) return false;
100 m_maxIter = maxIter;
101 return true;
102 }
103
104 /**
105 * @return The size of the active set, namely the number of
106 * active constraints (including the equalities).
107 */
108 int getActiveSetSize() const { return q; }
109
110 /**
111 * @return The number of active-set iteratios.
112 */
113 int getIteratios() const { return iter; }
114
115 /**
116 * @return The value of the objective function.
117 */
118 16 double getObjValue() const { return f_value; }
119
120 /**
121 * @return The Lagrange multipliers
122 */
123 const typename RtVectorX<nIneqCon + nEqCon>::d& getLagrangeMultipliers()
124 const {
125 return u;
126 }
127
128 /**
129 * Return the active set, namely the indeces of active constraints.
130 * The first nEqCon indexes are for the equalities and are negative.
131 * The last nIneqCon indexes are for the inequalities and start from 0.
132 * Only the first q elements of the return vector are valid, where q
133 * is the size of the active set.
134 * @return The set of indexes of the active constraints.
135 */
136 const typename RtVectorX<nIneqCon + nEqCon>::i& getActiveSet() const {
137 return A;
138 }
139
140 /**
141 * solves the problem
142 * min. x' Hess x + 2 g0' x
143 * s.t. CE x + ce0 = 0
144 * CI x + ci0 >= 0
145 */
146 RtEiquadprog_status solve_quadprog(
147 const typename RtMatrixX<nVars, nVars>::d& Hess,
148 const typename RtVectorX<nVars>::d& g0,
149 const typename RtMatrixX<nEqCon, nVars>::d& CE,
150 const typename RtVectorX<nEqCon>::d& ce0,
151 const typename RtMatrixX<nIneqCon, nVars>::d& CI,
152 const typename RtVectorX<nIneqCon>::d& ci0,
153 typename RtVectorX<nVars>::d& x);
154
155 typename RtMatrixX<nVars, nVars>::d m_J; // J * J' = Hessian
156 bool is_inverse_provided_;
157
158 private:
159 int m_maxIter; /// max number of active-set iterations
160 double f_value; /// current value of cost function
161
162 Eigen::LLT<typename RtMatrixX<nVars, nVars>::d, Eigen::Lower> chol_;
163 double solver_return_;
164
165 /// from QR of L' N, where L is Cholewsky factor of Hessian, and N is the
166 /// matrix of active constraints
167 typename RtMatrixX<nVars, nVars>::d R;
168
169 /// CI*x+ci0
170 typename RtVectorX<nIneqCon>::d s;
171
172 /// infeasibility multipliers, i.e. negative step direction in dual space
173 typename RtVectorX<nIneqCon + nEqCon>::d r;
174
175 /// Lagrange multipliers
176 typename RtVectorX<nIneqCon + nEqCon>::d u;
177
178 /// step direction in primal space
179 typename RtVectorX<nVars>::d z;
180
181 /// J' np
182 typename RtVectorX<nVars>::d d;
183
184 /// current constraint normal
185 typename RtVectorX<nVars>::d np;
186
187 /// active set (indeces of active constraints)
188 /// the first nEqCon indeces are for the equalities and are negative
189 /// the last nIneqCon indeces are for the inequalities are start from 0
190 typename RtVectorX<nIneqCon + nEqCon>::i A;
191
192 /// initialized as K \ A
193 /// iai(i)=-1 iff inequality constraint i is in the active set
194 /// iai(i)=i otherwise
195 typename RtVectorX<nIneqCon>::i iai;
196
197 /// initialized as [1, ..., 1, .]
198 /// if iaexcl(i)!=1 inequality constraint i cannot be added to the active set
199 /// if adding ineq constraint i fails => iaexcl(i)=0
200 /// iaexcl(i)=0 iff ineq constraint i is linearly dependent to other active
201 /// constraints iaexcl(i)=1 otherwise
202 typename RtVectorX<nIneqCon>::i iaexcl;
203
204 typename RtVectorX<nVars>::d x_old; // old value of x
205 typename RtVectorX<nIneqCon + nEqCon>::d u_old; // old value of u
206 typename RtVectorX<nIneqCon + nEqCon>::i A_old; // old value of A
207
208 #ifdef OPTIMIZE_ADD_CONSTRAINT
209 typename RtVectorX<nVars>::d T1; // tmp vector
210 #endif
211
212 /// size of the active set A (containing the indices of the active
213 /// constraints)
214 int q;
215
216 /// number of active-set iterations
217 int iter;
218
219 template <typename Scalar>
220 inline Scalar distance(Scalar a, Scalar b) {
221 Scalar a1, b1, t;
222 a1 = std::abs(a);
223 b1 = std::abs(b);
224 if (a1 > b1) {
225 t = (b1 / a1);
226 return a1 * std::sqrt(1.0 + t * t);
227 } else if (b1 > a1) {
228 t = (a1 / b1);
229 return b1 * std::sqrt(1.0 + t * t);
230 }
231 return a1 * std::sqrt(2.0);
232 }
233
234 26 inline void compute_d(typename RtVectorX<nVars>::d& d,
235 const typename RtMatrixX<nVars, nVars>::d& J,
236 const typename RtVectorX<nVars>::d& np) {
237 #ifdef OPTIMIZE_COMPUTE_D
238
3/6
✓ Branch 2 taken 13 times.
✗ Branch 3 not taken.
✓ Branch 5 taken 13 times.
✗ Branch 6 not taken.
✓ Branch 8 taken 13 times.
✗ Branch 9 not taken.
26 d.noalias() = J.adjoint() * np;
239 #else
240 d = J.adjoint() * np;
241 #endif
242 }
243
244 24 inline void update_z(typename RtVectorX<nVars>::d& z,
245 const typename RtMatrixX<nVars, nVars>::d& J,
246 const typename RtVectorX<nVars>::d& d, int iq) {
247 #ifdef OPTIMIZE_UPDATE_Z
248
4/8
✓ Branch 2 taken 12 times.
✗ Branch 3 not taken.
✓ Branch 5 taken 12 times.
✗ Branch 6 not taken.
✓ Branch 8 taken 12 times.
✗ Branch 9 not taken.
✓ Branch 11 taken 12 times.
✗ Branch 12 not taken.
24 z.noalias() = J.rightCols(nVars - iq) * d.tail(nVars - iq);
249 #else
250 z = J.rightCols(J.cols() - iq) * d.tail(J.cols() - iq);
251 #endif
252 }
253
254 26 inline void update_r(const typename RtMatrixX<nVars, nVars>::d& R,
255 typename RtVectorX<nIneqCon + nEqCon>::d& r,
256 const typename RtVectorX<nVars>::d& d, int iq) {
257
2/4
✓ Branch 2 taken 13 times.
✗ Branch 3 not taken.
✓ Branch 5 taken 13 times.
✗ Branch 6 not taken.
26 r.head(iq) = d.head(iq);
258 26 R.topLeftCorner(iq, iq)
259
1/2
✓ Branch 1 taken 13 times.
✗ Branch 2 not taken.
26 .template triangularView<Eigen::Upper>()
260
2/4
✓ Branch 1 taken 13 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 13 times.
✗ Branch 5 not taken.
26 .solveInPlace(r.head(iq));
261 }
262
263 bool add_constraint(typename RtMatrixX<nVars, nVars>::d& R,
264 typename RtMatrixX<nVars, nVars>::d& J,
265 typename RtVectorX<nVars>::d& d, int& iq, double& R_norm);
266
267 void delete_constraint(typename RtMatrixX<nVars, nVars>::d& R,
268 typename RtMatrixX<nVars, nVars>::d& J,
269 typename RtVectorX<nIneqCon + nEqCon>::i& A,
270 typename RtVectorX<nIneqCon + nEqCon>::d& u, int& iq,
271 int l);
272 };
273
274 } /* namespace solvers */
275 } /* namespace eiquadprog */
276
277 #include "eiquadprog/eiquadprog-rt.hxx"
278 /* --- Details
279 * -------------------------------------------------------------------- */
280
281 #endif /* __eiquadprog_rt_hpp__ */
282