Directory: | ./ |
---|---|
File: | include/eiquadprog/eiquadprog-rt.hxx |
Date: | 2024-12-04 10:05:36 |
Exec | Total | Coverage | |
---|---|---|---|
Lines: | 120 | 190 | 63.2% |
Branches: | 24 | 66 | 36.4% |
Line | Branch | Exec | Source |
---|---|---|---|
1 | // | ||
2 | // Copyright (c) 2017 CNRS | ||
3 | // | ||
4 | // This file is part of eiquadprog. | ||
5 | // | ||
6 | // eiquadprog is free software: you can redistribute it and/or modify | ||
7 | // it under the terms of the GNU Lesser General Public License as published by | ||
8 | // the Free Software Foundation, either version 3 of the License, or | ||
9 | //(at your option) any later version. | ||
10 | |||
11 | // eiquadprog is distributed in the hope that it will be useful, | ||
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
14 | // GNU Lesser General Public License for more details. | ||
15 | |||
16 | // You should have received a copy of the GNU Lesser General Public License | ||
17 | // along with eiquadprog. If not, see <https://www.gnu.org/licenses/>. | ||
18 | |||
19 | #ifndef __eiquadprog_rt_hxx__ | ||
20 | #define __eiquadprog_rt_hxx__ | ||
21 | |||
22 | #include "eiquadprog/eiquadprog-utils.hxx" | ||
23 | |||
24 | namespace eiquadprog { | ||
25 | |||
26 | namespace solvers { | ||
27 | |||
28 | template <int nVars, int nEqCon, int nIneqCon> | ||
29 | 24 | RtEiquadprog<nVars, nEqCon, nIneqCon>::RtEiquadprog() | |
30 |
13/26✓ Branch 4 taken 12 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 12 times.
✗ Branch 8 not taken.
✓ Branch 10 taken 12 times.
✗ Branch 11 not taken.
✓ Branch 13 taken 12 times.
✗ Branch 14 not taken.
✓ Branch 16 taken 12 times.
✗ Branch 17 not taken.
✓ Branch 19 taken 12 times.
✗ Branch 20 not taken.
✓ Branch 22 taken 12 times.
✗ Branch 23 not taken.
✓ Branch 25 taken 12 times.
✗ Branch 26 not taken.
✓ Branch 28 taken 12 times.
✗ Branch 29 not taken.
✓ Branch 31 taken 12 times.
✗ Branch 32 not taken.
✓ Branch 34 taken 12 times.
✗ Branch 35 not taken.
✓ Branch 37 taken 12 times.
✗ Branch 38 not taken.
✓ Branch 40 taken 12 times.
✗ Branch 41 not taken.
|
24 | : solver_return_(std::numeric_limits<double>::infinity()) { |
31 | 24 | m_maxIter = DEFAULT_MAX_ITER; | |
32 | 24 | q = 0; // size of the active set A | |
33 | // (containing the indices of the active constraints) | ||
34 | 24 | is_inverse_provided_ = false; | |
35 | 24 | } | |
36 | |||
37 | template <int nVars, int nEqCon, int nIneqCon> | ||
38 | 24 | RtEiquadprog<nVars, nEqCon, nIneqCon>::~RtEiquadprog() {} | |
39 | |||
40 | template <int nVars, int nEqCon, int nIneqCon> | ||
41 | 22 | bool RtEiquadprog<nVars, nEqCon, nIneqCon>::add_constraint( | |
42 | typename RtMatrixX<nVars, nVars>::d &R, | ||
43 | typename RtMatrixX<nVars, nVars>::d &J, typename RtVectorX<nVars>::d &d, | ||
44 | int &iq, double &R_norm) { | ||
45 | // int n=J.rows(); | ||
46 | #ifdef EIQGUADPROG_TRACE_SOLVER | ||
47 | std::cerr << "Add constraint " << iq << '/'; | ||
48 | #endif | ||
49 | int j, k; | ||
50 | double cc, ss, h, t1, t2, xny; | ||
51 | |||
52 | #ifdef OPTIMIZE_ADD_CONSTRAINT | ||
53 | Eigen::Vector2d cc_ss; | ||
54 | #endif | ||
55 | |||
56 | /* we have to find the Givens rotation which will reduce the element | ||
57 | d(j) to zero. | ||
58 | if it is already zero we don't have to do anything, except of | ||
59 | decreasing j */ | ||
60 |
2/2✓ Branch 0 taken 7 times.
✓ Branch 1 taken 11 times.
|
36 | for (j = nVars - 1; j >= iq + 1; j--) { |
61 | /* The Givens rotation is done with the matrix (cc cs, cs -cc). | ||
62 | If cc is one, then element (j) of d is zero compared with | ||
63 | element (j - 1). Hence we don't have to do anything. If cc is zero, then | ||
64 | we just have to switch column (j) and column (j - 1) of J. Since we only | ||
65 | switch columns in J, we have to be careful how we update d depending on | ||
66 | the sign of gs. Otherwise we have to apply the Givens rotation to these | ||
67 | columns. The i - 1 element of d has to be updated to h. */ | ||
68 | 14 | cc = d(j - 1); | |
69 | 14 | ss = d(j); | |
70 | 14 | h = utils::distance(cc, ss); | |
71 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 7 times.
|
14 | if (h == 0.0) continue; |
72 | 14 | d(j) = 0.0; | |
73 | 14 | ss = ss / h; | |
74 | 14 | cc = cc / h; | |
75 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 7 times.
|
14 | if (cc < 0.0) { |
76 | ✗ | cc = -cc; | |
77 | ✗ | ss = -ss; | |
78 | ✗ | d(j - 1) = -h; | |
79 | } else | ||
80 | 14 | d(j - 1) = h; | |
81 | 14 | xny = ss / (1.0 + cc); | |
82 | |||
83 | // #define OPTIMIZE_ADD_CONSTRAINT | ||
84 | #ifdef OPTIMIZE_ADD_CONSTRAINT // the optimized code is actually slower than | ||
85 | // the original | ||
86 | T1 = J.col(j - 1); | ||
87 | cc_ss(0) = cc; | ||
88 | cc_ss(1) = ss; | ||
89 | J.col(j - 1).noalias() = J.template middleCols<2>(j - 1) * cc_ss; | ||
90 | J.col(j) = xny * (T1 + J.col(j - 1)) - J.col(j); | ||
91 | #else | ||
92 | // J.col(j-1) = J[:,j-1:j] * [cc; ss] | ||
93 |
2/2✓ Branch 0 taken 14 times.
✓ Branch 1 taken 7 times.
|
42 | for (k = 0; k < nVars; k++) { |
94 | 28 | t1 = J(k, j - 1); | |
95 | 28 | t2 = J(k, j); | |
96 | 28 | J(k, j - 1) = t1 * cc + t2 * ss; | |
97 | 28 | J(k, j) = xny * (t1 + J(k, j - 1)) - t2; | |
98 | } | ||
99 | #endif | ||
100 | } | ||
101 | /* update the number of constraints added*/ | ||
102 | 22 | iq++; | |
103 | /* To update R we have to put the iq components of the d vector | ||
104 | into column iq - 1 of R | ||
105 | */ | ||
106 |
3/6✓ Branch 2 taken 11 times.
✗ Branch 3 not taken.
✓ Branch 5 taken 11 times.
✗ Branch 6 not taken.
✓ Branch 8 taken 11 times.
✗ Branch 9 not taken.
|
22 | R.col(iq - 1).head(iq) = d.head(iq); |
107 | #ifdef EIQGUADPROG_TRACE_SOLVER | ||
108 | std::cerr << iq << std::endl; | ||
109 | #endif | ||
110 | |||
111 |
2/2✓ Branch 3 taken 1 times.
✓ Branch 4 taken 10 times.
|
22 | if (std::abs(d(iq - 1)) <= std::numeric_limits<double>::epsilon() * R_norm) |
112 | // problem degenerate | ||
113 | 2 | return false; | |
114 | 20 | R_norm = std::max<double>(R_norm, std::abs(d(iq - 1))); | |
115 | 20 | return true; | |
116 | } | ||
117 | |||
118 | template <int nVars, int nEqCon, int nIneqCon> | ||
119 | ✗ | void RtEiquadprog<nVars, nEqCon, nIneqCon>::delete_constraint( | |
120 | typename RtMatrixX<nVars, nVars>::d &R, | ||
121 | typename RtMatrixX<nVars, nVars>::d &J, | ||
122 | typename RtVectorX<nIneqCon + nEqCon>::i &A, | ||
123 | typename RtVectorX<nIneqCon + nEqCon>::d &u, int &iq, int l) { | ||
124 | // int n = J.rows(); | ||
125 | #ifdef EIQGUADPROG_TRACE_SOLVER | ||
126 | std::cerr << "Delete constraint " << l << ' ' << iq; | ||
127 | #endif | ||
128 | int i, j, k; | ||
129 | ✗ | int qq = 0; | |
130 | double cc, ss, h, xny, t1, t2; | ||
131 | |||
132 | /* Find the index qq for active constraint l to be removed */ | ||
133 | ✗ | for (i = nEqCon; i < iq; i++) | |
134 | ✗ | if (A(i) == l) { | |
135 | ✗ | qq = i; | |
136 | ✗ | break; | |
137 | } | ||
138 | |||
139 | /* remove the constraint from the active set and the duals */ | ||
140 | ✗ | for (i = qq; i < iq - 1; i++) { | |
141 | ✗ | A(i) = A(i + 1); | |
142 | ✗ | u(i) = u(i + 1); | |
143 | ✗ | R.col(i) = R.col(i + 1); | |
144 | } | ||
145 | |||
146 | ✗ | A(iq - 1) = A(iq); | |
147 | ✗ | u(iq - 1) = u(iq); | |
148 | ✗ | A(iq) = 0; | |
149 | ✗ | u(iq) = 0.0; | |
150 | ✗ | for (j = 0; j < iq; j++) R(j, iq - 1) = 0.0; | |
151 | /* constraint has been fully removed */ | ||
152 | ✗ | iq--; | |
153 | #ifdef EIQGUADPROG_TRACE_SOLVER | ||
154 | std::cerr << '/' << iq << std::endl; | ||
155 | #endif | ||
156 | |||
157 | ✗ | if (iq == 0) return; | |
158 | |||
159 | ✗ | for (j = qq; j < iq; j++) { | |
160 | ✗ | cc = R(j, j); | |
161 | ✗ | ss = R(j + 1, j); | |
162 | ✗ | h = utils::distance(cc, ss); | |
163 | ✗ | if (h == 0.0) continue; | |
164 | ✗ | cc = cc / h; | |
165 | ✗ | ss = ss / h; | |
166 | ✗ | R(j + 1, j) = 0.0; | |
167 | ✗ | if (cc < 0.0) { | |
168 | ✗ | R(j, j) = -h; | |
169 | ✗ | cc = -cc; | |
170 | ✗ | ss = -ss; | |
171 | } else | ||
172 | ✗ | R(j, j) = h; | |
173 | |||
174 | ✗ | xny = ss / (1.0 + cc); | |
175 | ✗ | for (k = j + 1; k < iq; k++) { | |
176 | ✗ | t1 = R(j, k); | |
177 | ✗ | t2 = R(j + 1, k); | |
178 | ✗ | R(j, k) = t1 * cc + t2 * ss; | |
179 | ✗ | R(j + 1, k) = xny * (t1 + R(j, k)) - t2; | |
180 | } | ||
181 | ✗ | for (k = 0; k < nVars; k++) { | |
182 | ✗ | t1 = J(k, j); | |
183 | ✗ | t2 = J(k, j + 1); | |
184 | ✗ | J(k, j) = t1 * cc + t2 * ss; | |
185 | ✗ | J(k, j + 1) = xny * (J(k, j) + t1) - t2; | |
186 | } | ||
187 | } | ||
188 | } | ||
189 | |||
190 | template <int nVars, int nEqCon, int nIneqCon> | ||
191 | 12 | RtEiquadprog_status RtEiquadprog<nVars, nEqCon, nIneqCon>::solve_quadprog( | |
192 | const typename RtMatrixX<nVars, nVars>::d &Hess, | ||
193 | const typename RtVectorX<nVars>::d &g0, | ||
194 | const typename RtMatrixX<nEqCon, nVars>::d &CE, | ||
195 | const typename RtVectorX<nEqCon>::d &ce0, | ||
196 | const typename RtMatrixX<nIneqCon, nVars>::d &CI, | ||
197 | const typename RtVectorX<nIneqCon>::d &ci0, | ||
198 | typename RtVectorX<nVars>::d &x) { | ||
199 | int i, k, l; // indices | ||
200 | int ip; // index of the chosen violated constraint | ||
201 | int iq; // current number of active constraints | ||
202 | double psi; // current sum of constraint violations | ||
203 | double c1; // Hessian trace | ||
204 | double c2; // Hessian Chowlesky factor trace | ||
205 | double ss; // largest constraint violation (negative for violation) | ||
206 | double R_norm; // norm of matrix R | ||
207 | 12 | const double inf = std::numeric_limits<double>::infinity(); | |
208 | double t, t1, t2; | ||
209 | /* t is the step length, which is the minimum of the partial step length t1 | ||
210 | * and the full step length t2 */ | ||
211 | |||
212 | 12 | iter = 0; // active-set iteration number | |
213 | |||
214 | /* | ||
215 | * Preprocessing phase | ||
216 | */ | ||
217 | /* compute the trace of the original matrix Hess */ | ||
218 | 12 | c1 = Hess.trace(); | |
219 | |||
220 | /* decompose the matrix Hess in the form LL^T */ | ||
221 | 12 | if (!is_inverse_provided_) { | |
222 | START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_CHOWLESKY_DECOMPOSITION); | ||
223 | 12 | chol_.compute(Hess); | |
224 | STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_CHOWLESKY_DECOMPOSITION); | ||
225 | } | ||
226 | |||
227 | /* initialize the matrix R */ | ||
228 | 12 | d.setZero(nVars); | |
229 | 12 | R.setZero(nVars, nVars); | |
230 | 12 | R_norm = 1.0; | |
231 | |||
232 | /* compute the inverse of the factorized matrix Hess^-1, this is the initial | ||
233 | * value for H */ | ||
234 | // m_J = L^-T | ||
235 | 12 | if (!is_inverse_provided_) { | |
236 | START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_CHOWLESKY_INVERSE); | ||
237 | 12 | m_J.setIdentity(nVars, nVars); | |
238 | #ifdef OPTIMIZE_HESSIAN_INVERSE | ||
239 | 12 | chol_.matrixU().solveInPlace(m_J); | |
240 | #else | ||
241 | m_J = chol_.matrixU().solve(m_J); | ||
242 | #endif | ||
243 | STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_CHOWLESKY_INVERSE); | ||
244 | } | ||
245 | |||
246 | 12 | c2 = m_J.trace(); | |
247 | #ifdef EIQGUADPROG_TRACE_SOLVER | ||
248 | utils::print_matrix("m_J", m_J); | ||
249 | #endif | ||
250 | |||
251 | /* c1 * c2 is an estimate for cond(Hess) */ | ||
252 | |||
253 | /* | ||
254 | * Find the unconstrained minimizer of the quadratic form 0.5 * x Hess x + g0 | ||
255 | * x this is a feasible point in the dual space x = Hess^-1 * g0 | ||
256 | */ | ||
257 | START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_1_UNCONSTR_MINIM); | ||
258 | 12 | if (is_inverse_provided_) { | |
259 | ✗ | x = m_J * (m_J.transpose() * g0); | |
260 | } else { | ||
261 | #ifdef OPTIMIZE_UNCONSTR_MINIM | ||
262 | 12 | x = -g0; | |
263 | 12 | chol_.solveInPlace(x); | |
264 | } | ||
265 | #else | ||
266 | x = chol_.solve(g0); | ||
267 | } | ||
268 | x = -x; | ||
269 | #endif | ||
270 | /* and compute the current solution value */ | ||
271 | 12 | f_value = 0.5 * g0.dot(x); | |
272 | #ifdef EIQGUADPROG_TRACE_SOLVER | ||
273 | std::cerr << "Unconstrained solution: " << f_value << std::endl; | ||
274 | utils::print_vector("x", x); | ||
275 | #endif | ||
276 | STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_1_UNCONSTR_MINIM); | ||
277 | |||
278 | /* Add equality constraints to the working set A */ | ||
279 | |||
280 | START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_ADD_EQ_CONSTR); | ||
281 | 12 | iq = 0; | |
282 | 17 | for (i = 0; i < nEqCon; i++) { | |
283 | START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_ADD_EQ_CONSTR_1); | ||
284 | // np = CE.row(i); // does not compile if nEqCon=0 | ||
285 | 18 | for (int tmp = 0; tmp < nVars; tmp++) np[tmp] = CE(i, tmp); | |
286 | 6 | compute_d(d, m_J, np); | |
287 | 6 | update_z(z, m_J, d, iq); | |
288 | 6 | update_r(R, r, d, iq); | |
289 | |||
290 | #ifdef EIQGUADPROG_TRACE_SOLVER | ||
291 | utils::print_matrix("R", R); | ||
292 | utils::print_vector("z", z); | ||
293 | utils::print_vector("r", r); | ||
294 | utils::print_vector("d", d); | ||
295 | #endif | ||
296 | |||
297 | /* compute full step length t2: i.e., the minimum step in primal space s.t. | ||
298 | the contraint becomes feasible */ | ||
299 | 6 | t2 = 0.0; | |
300 | 12 | if (std::abs(z.dot(z)) > | |
301 | 6 | std::numeric_limits<double>::epsilon()) // i.e. z != 0 | |
302 | 5 | t2 = (-np.dot(x) - ce0(i)) / z.dot(np); | |
303 | |||
304 | 6 | x += t2 * z; | |
305 | |||
306 | /* set u = u+ */ | ||
307 | 6 | u(iq) = t2; | |
308 | 6 | u.head(iq) -= t2 * r.head(iq); | |
309 | |||
310 | /* compute the new solution value */ | ||
311 | 6 | f_value += 0.5 * (t2 * t2) * z.dot(np); | |
312 | 6 | A(i) = -i - 1; | |
313 | STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_ADD_EQ_CONSTR_1); | ||
314 | |||
315 | START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_ADD_EQ_CONSTR_2); | ||
316 | 6 | if (!add_constraint(R, m_J, d, iq, R_norm)) { | |
317 | // Equality constraints are linearly dependent | ||
318 | 1 | return RT_EIQUADPROG_REDUNDANT_EQUALITIES; | |
319 | } | ||
320 | STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_ADD_EQ_CONSTR_2); | ||
321 | } | ||
322 | STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_ADD_EQ_CONSTR); | ||
323 | |||
324 | /* set iai = K \ A */ | ||
325 | 22 | for (i = 0; i < nIneqCon; i++) iai(i) = i; | |
326 | |||
327 | #ifdef USE_WARM_START | ||
328 | // DEBUG_STREAM("Gonna warm start using previous active | ||
329 | // set:\n"<<A.transpose()<<"\n") | ||
330 | for (i = nEqCon; i < q; i++) { | ||
331 | iai(i - nEqCon) = -1; | ||
332 | ip = A(i); | ||
333 | np = CI.row(ip); | ||
334 | compute_d(d, m_J, np); | ||
335 | update_z(z, m_J, d, iq); | ||
336 | update_r(R, r, d, iq); | ||
337 | |||
338 | /* compute full step length t2: i.e., the minimum step in primal space s.t. | ||
339 | the contraint becomes feasible */ | ||
340 | t2 = 0.0; | ||
341 | if (std::abs(z.dot(z)) > | ||
342 | std::numeric_limits<double>::epsilon()) // i.e. z != 0 | ||
343 | t2 = (-np.dot(x) - ci0(ip)) / z.dot(np); | ||
344 | else | ||
345 | DEBUG_STREAM("[WARM START] z=0\n") | ||
346 | |||
347 | x += t2 * z; | ||
348 | |||
349 | /* set u = u+ */ | ||
350 | u(iq) = t2; | ||
351 | u.head(iq) -= t2 * r.head(iq); | ||
352 | |||
353 | /* compute the new solution value */ | ||
354 | f_value += 0.5 * (t2 * t2) * z.dot(np); | ||
355 | |||
356 | if (!add_constraint(R, m_J, d, iq, R_norm)) { | ||
357 | // constraints are linearly dependent | ||
358 | std::cerr << "[WARM START] Constraints are linearly dependent\n"; | ||
359 | return RT_EIQUADPROG_REDUNDANT_EQUALITIES; | ||
360 | } | ||
361 | } | ||
362 | #else | ||
363 | |||
364 | #endif | ||
365 | |||
366 | 11 | l1: | |
367 | START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_1); | ||
368 | 16 | iter++; | |
369 | 16 | if (iter >= m_maxIter) { | |
370 | ✗ | q = iq; | |
371 | ✗ | return RT_EIQUADPROG_MAX_ITER_REACHED; | |
372 | } | ||
373 | |||
374 | #ifdef EIQGUADPROG_TRACE_SOLVER | ||
375 | utils::print_vector("x", x); | ||
376 | #endif | ||
377 | /* step 1: choose a violated constraint */ | ||
378 | 22 | for (i = nEqCon; i < iq; i++) { | |
379 | 6 | ip = A(i); | |
380 | 6 | iai(ip) = -1; | |
381 | } | ||
382 | |||
383 | /* compute s(x) = ci^T * x + ci0 for all elements of K \ A */ | ||
384 | START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_1_2); | ||
385 | 16 | ss = 0.0; | |
386 | 16 | ip = 0; /* ip will be the index of the chosen violated constraint */ | |
387 | |||
388 | #ifdef OPTIMIZE_STEP_1_2 | ||
389 | 16 | s = ci0; | |
390 | 16 | s.noalias() += CI * x; | |
391 | 16 | iaexcl.setOnes(); | |
392 | 16 | psi = (s.cwiseMin(RtVectorX<nIneqCon>::d::Zero())).sum(); | |
393 | #else | ||
394 | psi = 0.0; /* this value will contain the sum of all infeasibilities */ | ||
395 | for (i = 0; i < nIneqCon; i++) { | ||
396 | iaexcl(i) = 1; | ||
397 | s(i) = CI.row(i).dot(x) + ci0(i); | ||
398 | psi += std::min(0.0, s(i)); | ||
399 | } | ||
400 | #endif | ||
401 | STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_1_2); | ||
402 | #ifdef EIQGUADPROG_TRACE_SOLVER | ||
403 | utils::print_vector("s", s); | ||
404 | #endif | ||
405 | |||
406 | STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_1); | ||
407 | |||
408 | 16 | if (std::abs(psi) <= | |
409 | 16 | nIneqCon * std::numeric_limits<double>::epsilon() * c1 * c2 * 100.0) { | |
410 | /* numerically there are not infeasibilities anymore */ | ||
411 | 9 | q = iq; | |
412 | // DEBUG_STREAM("Optimal active | ||
413 | // set:\n"<<A.head(iq).transpose()<<"\n\n") | ||
414 | 9 | return RT_EIQUADPROG_OPTIMAL; | |
415 | } | ||
416 | |||
417 | /* save old values for u, x and A */ | ||
418 | 7 | u_old.head(iq) = u.head(iq); | |
419 | 7 | A_old.head(iq) = A.head(iq); | |
420 | 7 | x_old = x; | |
421 | |||
422 | 7 | l2: /* Step 2: check for feasibility and determine a new S-pair */ | |
423 | START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2); | ||
424 | // find constraint with highest violation (what about normalizing | ||
425 | // constraints?) | ||
426 | 20 | for (i = 0; i < nIneqCon; i++) { | |
427 | 13 | if (s(i) < ss && iai(i) != -1 && iaexcl(i)) { | |
428 | 7 | ss = s(i); | |
429 | 7 | ip = i; | |
430 | } | ||
431 | } | ||
432 | 7 | if (ss >= 0.0) { | |
433 | ✗ | q = iq; | |
434 | // DEBUG_STREAM("Optimal active set:\n"<<A.transpose()<<"\n\n") | ||
435 | ✗ | return RT_EIQUADPROG_OPTIMAL; | |
436 | } | ||
437 | |||
438 | /* set np = n(ip) */ | ||
439 | // np = CI.row(ip); // does not compile if nIneqCon=0 | ||
440 | 21 | for (int tmp = 0; tmp < nVars; tmp++) np[tmp] = CI(ip, tmp); | |
441 | /* set u = (u 0)^T */ | ||
442 | 7 | u(iq) = 0.0; | |
443 | /* add ip to the active set A */ | ||
444 | 7 | A(iq) = ip; | |
445 | |||
446 | // DEBUG_STREAM("Add constraint "<<ip<<" to active set\n") | ||
447 | |||
448 | #ifdef EIQGUADPROG_TRACE_SOLVER | ||
449 | std::cerr << "Trying with constraint " << ip << std::endl; | ||
450 | utils::print_vector("np", np); | ||
451 | #endif | ||
452 | STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2); | ||
453 | |||
454 | 7 | l2a: /* Step 2a: determine step direction */ | |
455 | START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2A); | ||
456 | /* compute z = H np: the step direction in the primal space (through m_J, see | ||
457 | * the paper) */ | ||
458 | 7 | compute_d(d, m_J, np); | |
459 | // update_z(z, m_J, d, iq); | ||
460 | 7 | if (iq >= nVars) { | |
461 | // throw std::runtime_error("iq >= m_J.cols()"); | ||
462 | 1 | z.setZero(); | |
463 | } else { | ||
464 | 6 | update_z(z, m_J, d, iq); | |
465 | } | ||
466 | /* compute N* np (if q > 0): the negative of the step direction in the dual | ||
467 | * space */ | ||
468 | 7 | update_r(R, r, d, iq); | |
469 | #ifdef EIQGUADPROG_TRACE_SOLVER | ||
470 | std::cerr << "Step direction z" << std::endl; | ||
471 | utils::print_vector("z", z); | ||
472 | utils::print_vector("r", r); | ||
473 | utils::print_vector("u", u); | ||
474 | utils::print_vector("d", d); | ||
475 | utils::print_vector("A", A); | ||
476 | #endif | ||
477 | STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2A); | ||
478 | |||
479 | /* Step 2b: compute step length */ | ||
480 | START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2B); | ||
481 | 7 | l = 0; | |
482 | /* Compute t1: partial step length (maximum step in dual space without | ||
483 | * violating dual feasibility */ | ||
484 | 7 | t1 = inf; /* +inf */ | |
485 | /* find the index l s.t. it reaches the minimum of u+(x) / r */ | ||
486 | // l: index of constraint to drop (maybe) | ||
487 | 10 | for (k = nEqCon; k < iq; k++) { | |
488 | double tmp; | ||
489 | 3 | if (r(k) > 0.0 && ((tmp = u(k) / r(k)) < t1)) { | |
490 | ✗ | t1 = tmp; | |
491 | ✗ | l = A(k); | |
492 | } | ||
493 | } | ||
494 | /* Compute t2: full step length (minimum step in primal space such that the | ||
495 | * constraint ip becomes feasible */ | ||
496 | 14 | if (std::abs(z.dot(z)) > | |
497 | 7 | std::numeric_limits<double>::epsilon()) // i.e. z != 0 | |
498 | 5 | t2 = -s(ip) / z.dot(np); | |
499 | else | ||
500 | 2 | t2 = inf; /* +inf */ | |
501 | |||
502 | /* the step is chosen as the minimum of t1 and t2 */ | ||
503 | 7 | t = std::min(t1, t2); | |
504 | #ifdef EIQGUADPROG_TRACE_SOLVER | ||
505 | std::cerr << "Step sizes: " << t << " (t1 = " << t1 << ", t2 = " << t2 | ||
506 | << ") "; | ||
507 | #endif | ||
508 | STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2B); | ||
509 | |||
510 | /* Step 2c: determine new S-pair and take step: */ | ||
511 | START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2C); | ||
512 | /* case (i): no step in primal or dual space */ | ||
513 | 7 | if (t >= inf) { | |
514 | /* QPP is infeasible */ | ||
515 | 2 | q = iq; | |
516 | STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2C); | ||
517 | 2 | return RT_EIQUADPROG_UNBOUNDED; | |
518 | } | ||
519 | /* case (ii): step in dual space */ | ||
520 | 5 | if (t2 >= inf) { | |
521 | /* set u = u + t * [-r 1) and drop constraint l from the active set A */ | ||
522 | ✗ | u.head(iq) -= t * r.head(iq); | |
523 | ✗ | u(iq) += t; | |
524 | ✗ | iai(l) = l; | |
525 | ✗ | delete_constraint(R, m_J, A, u, iq, l); | |
526 | #ifdef EIQGUADPROG_TRACE_SOLVER | ||
527 | std::cerr << " in dual space: " << f_value << std::endl; | ||
528 | utils::print_vector("x", x); | ||
529 | utils::print_vector("z", z); | ||
530 | utils::print_vector("A", A); | ||
531 | #endif | ||
532 | STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2C); | ||
533 | ✗ | goto l2a; | |
534 | } | ||
535 | |||
536 | /* case (iii): step in primal and dual space */ | ||
537 | 5 | x += t * z; | |
538 | /* update the solution value */ | ||
539 | 5 | f_value += t * z.dot(np) * (0.5 * t + u(iq)); | |
540 | |||
541 | 5 | u.head(iq) -= t * r.head(iq); | |
542 | 5 | u(iq) += t; | |
543 | |||
544 | #ifdef EIQGUADPROG_TRACE_SOLVER | ||
545 | std::cerr << " in both spaces: " << f_value << std::endl; | ||
546 | utils::print_vector("x", x); | ||
547 | utils::print_vector("u", u); | ||
548 | utils::print_vector("r", r); | ||
549 | utils::print_vector("A", A); | ||
550 | #endif | ||
551 | |||
552 | 5 | if (t == t2) { | |
553 | #ifdef EIQGUADPROG_TRACE_SOLVER | ||
554 | std::cerr << "Full step has taken " << t << std::endl; | ||
555 | utils::print_vector("x", x); | ||
556 | #endif | ||
557 | /* full step has taken */ | ||
558 | /* add constraint ip to the active set*/ | ||
559 | 5 | if (!add_constraint(R, m_J, d, iq, R_norm)) { | |
560 | ✗ | iaexcl(ip) = 0; | |
561 | ✗ | delete_constraint(R, m_J, A, u, iq, ip); | |
562 | #ifdef EIQGUADPROG_TRACE_SOLVER | ||
563 | utils::print_matrix("R", R); | ||
564 | utils::print_vector("A", A); | ||
565 | #endif | ||
566 | ✗ | for (i = 0; i < nIneqCon; i++) iai(i) = i; | |
567 | ✗ | for (i = 0; i < iq; i++) { | |
568 | ✗ | A(i) = A_old(i); | |
569 | ✗ | iai(A(i)) = -1; | |
570 | ✗ | u(i) = u_old(i); | |
571 | } | ||
572 | ✗ | x = x_old; | |
573 | STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2C); | ||
574 | ✗ | goto l2; /* go to step 2 */ | |
575 | } else | ||
576 | 5 | iai(ip) = -1; | |
577 | #ifdef EIQGUADPROG_TRACE_SOLVER | ||
578 | utils::print_matrix("R", R); | ||
579 | utils::print_vector("A", A); | ||
580 | #endif | ||
581 | STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2C); | ||
582 | 5 | goto l1; | |
583 | } | ||
584 | |||
585 | /* a partial step has been taken => drop constraint l */ | ||
586 | ✗ | iai(l) = l; | |
587 | ✗ | delete_constraint(R, m_J, A, u, iq, l); | |
588 | // s(ip) = CI.row(ip).dot(x) + ci0(ip); // does not compile if nIneqCon=0 | ||
589 | ✗ | s(ip) = ci0(ip); | |
590 | ✗ | for (int tmp = 0; tmp < nVars; tmp++) s(ip) += CI(ip, tmp) * x[tmp]; | |
591 | |||
592 | #ifdef EIQGUADPROG_TRACE_SOLVER | ||
593 | std::cerr << "Partial step has taken " << t << std::endl; | ||
594 | utils::print_vector("x", x); | ||
595 | utils::print_matrix("R", R); | ||
596 | utils::print_vector("A", A); | ||
597 | utils::print_vector("s", s); | ||
598 | #endif | ||
599 | STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2C); | ||
600 | |||
601 | ✗ | goto l2a; | |
602 | } | ||
603 | } /* namespace solvers */ | ||
604 | } /* namespace eiquadprog */ | ||
605 | #endif /* __eiquadprog_rt_hxx__ */ | ||
606 |