GCC Code Coverage Report


Directory: ./
File: include/eiquadprog/eiquadprog-rt.hxx
Date: 2024-12-04 10:05:36
Exec Total Coverage
Lines: 120 190 63.2%
Branches: 24 66 36.4%

Line Branch Exec Source
1 //
2 // Copyright (c) 2017 CNRS
3 //
4 // This file is part of eiquadprog.
5 //
6 // eiquadprog is free software: you can redistribute it and/or modify
7 // it under the terms of the GNU Lesser General Public License as published by
8 // the Free Software Foundation, either version 3 of the License, or
9 //(at your option) any later version.
10
11 // eiquadprog is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU Lesser General Public License for more details.
15
16 // You should have received a copy of the GNU Lesser General Public License
17 // along with eiquadprog. If not, see <https://www.gnu.org/licenses/>.
18
19 #ifndef __eiquadprog_rt_hxx__
20 #define __eiquadprog_rt_hxx__
21
22 #include "eiquadprog/eiquadprog-utils.hxx"
23
24 namespace eiquadprog {
25
26 namespace solvers {
27
28 template <int nVars, int nEqCon, int nIneqCon>
29 24 RtEiquadprog<nVars, nEqCon, nIneqCon>::RtEiquadprog()
30
13/26
✓ Branch 4 taken 12 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 12 times.
✗ Branch 8 not taken.
✓ Branch 10 taken 12 times.
✗ Branch 11 not taken.
✓ Branch 13 taken 12 times.
✗ Branch 14 not taken.
✓ Branch 16 taken 12 times.
✗ Branch 17 not taken.
✓ Branch 19 taken 12 times.
✗ Branch 20 not taken.
✓ Branch 22 taken 12 times.
✗ Branch 23 not taken.
✓ Branch 25 taken 12 times.
✗ Branch 26 not taken.
✓ Branch 28 taken 12 times.
✗ Branch 29 not taken.
✓ Branch 31 taken 12 times.
✗ Branch 32 not taken.
✓ Branch 34 taken 12 times.
✗ Branch 35 not taken.
✓ Branch 37 taken 12 times.
✗ Branch 38 not taken.
✓ Branch 40 taken 12 times.
✗ Branch 41 not taken.
24 : solver_return_(std::numeric_limits<double>::infinity()) {
31 24 m_maxIter = DEFAULT_MAX_ITER;
32 24 q = 0; // size of the active set A
33 // (containing the indices of the active constraints)
34 24 is_inverse_provided_ = false;
35 24 }
36
37 template <int nVars, int nEqCon, int nIneqCon>
38 24 RtEiquadprog<nVars, nEqCon, nIneqCon>::~RtEiquadprog() {}
39
40 template <int nVars, int nEqCon, int nIneqCon>
41 22 bool RtEiquadprog<nVars, nEqCon, nIneqCon>::add_constraint(
42 typename RtMatrixX<nVars, nVars>::d &R,
43 typename RtMatrixX<nVars, nVars>::d &J, typename RtVectorX<nVars>::d &d,
44 int &iq, double &R_norm) {
45 // int n=J.rows();
46 #ifdef EIQGUADPROG_TRACE_SOLVER
47 std::cerr << "Add constraint " << iq << '/';
48 #endif
49 int j, k;
50 double cc, ss, h, t1, t2, xny;
51
52 #ifdef OPTIMIZE_ADD_CONSTRAINT
53 Eigen::Vector2d cc_ss;
54 #endif
55
56 /* we have to find the Givens rotation which will reduce the element
57 d(j) to zero.
58 if it is already zero we don't have to do anything, except of
59 decreasing j */
60
2/2
✓ Branch 0 taken 7 times.
✓ Branch 1 taken 11 times.
36 for (j = nVars - 1; j >= iq + 1; j--) {
61 /* The Givens rotation is done with the matrix (cc cs, cs -cc).
62 If cc is one, then element (j) of d is zero compared with
63 element (j - 1). Hence we don't have to do anything. If cc is zero, then
64 we just have to switch column (j) and column (j - 1) of J. Since we only
65 switch columns in J, we have to be careful how we update d depending on
66 the sign of gs. Otherwise we have to apply the Givens rotation to these
67 columns. The i - 1 element of d has to be updated to h. */
68 14 cc = d(j - 1);
69 14 ss = d(j);
70 14 h = utils::distance(cc, ss);
71
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 7 times.
14 if (h == 0.0) continue;
72 14 d(j) = 0.0;
73 14 ss = ss / h;
74 14 cc = cc / h;
75
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 7 times.
14 if (cc < 0.0) {
76 cc = -cc;
77 ss = -ss;
78 d(j - 1) = -h;
79 } else
80 14 d(j - 1) = h;
81 14 xny = ss / (1.0 + cc);
82
83 // #define OPTIMIZE_ADD_CONSTRAINT
84 #ifdef OPTIMIZE_ADD_CONSTRAINT // the optimized code is actually slower than
85 // the original
86 T1 = J.col(j - 1);
87 cc_ss(0) = cc;
88 cc_ss(1) = ss;
89 J.col(j - 1).noalias() = J.template middleCols<2>(j - 1) * cc_ss;
90 J.col(j) = xny * (T1 + J.col(j - 1)) - J.col(j);
91 #else
92 // J.col(j-1) = J[:,j-1:j] * [cc; ss]
93
2/2
✓ Branch 0 taken 14 times.
✓ Branch 1 taken 7 times.
42 for (k = 0; k < nVars; k++) {
94 28 t1 = J(k, j - 1);
95 28 t2 = J(k, j);
96 28 J(k, j - 1) = t1 * cc + t2 * ss;
97 28 J(k, j) = xny * (t1 + J(k, j - 1)) - t2;
98 }
99 #endif
100 }
101 /* update the number of constraints added*/
102 22 iq++;
103 /* To update R we have to put the iq components of the d vector
104 into column iq - 1 of R
105 */
106
3/6
✓ Branch 2 taken 11 times.
✗ Branch 3 not taken.
✓ Branch 5 taken 11 times.
✗ Branch 6 not taken.
✓ Branch 8 taken 11 times.
✗ Branch 9 not taken.
22 R.col(iq - 1).head(iq) = d.head(iq);
107 #ifdef EIQGUADPROG_TRACE_SOLVER
108 std::cerr << iq << std::endl;
109 #endif
110
111
2/2
✓ Branch 3 taken 1 times.
✓ Branch 4 taken 10 times.
22 if (std::abs(d(iq - 1)) <= std::numeric_limits<double>::epsilon() * R_norm)
112 // problem degenerate
113 2 return false;
114 20 R_norm = std::max<double>(R_norm, std::abs(d(iq - 1)));
115 20 return true;
116 }
117
118 template <int nVars, int nEqCon, int nIneqCon>
119 void RtEiquadprog<nVars, nEqCon, nIneqCon>::delete_constraint(
120 typename RtMatrixX<nVars, nVars>::d &R,
121 typename RtMatrixX<nVars, nVars>::d &J,
122 typename RtVectorX<nIneqCon + nEqCon>::i &A,
123 typename RtVectorX<nIneqCon + nEqCon>::d &u, int &iq, int l) {
124 // int n = J.rows();
125 #ifdef EIQGUADPROG_TRACE_SOLVER
126 std::cerr << "Delete constraint " << l << ' ' << iq;
127 #endif
128 int i, j, k;
129 int qq = 0;
130 double cc, ss, h, xny, t1, t2;
131
132 /* Find the index qq for active constraint l to be removed */
133 for (i = nEqCon; i < iq; i++)
134 if (A(i) == l) {
135 qq = i;
136 break;
137 }
138
139 /* remove the constraint from the active set and the duals */
140 for (i = qq; i < iq - 1; i++) {
141 A(i) = A(i + 1);
142 u(i) = u(i + 1);
143 R.col(i) = R.col(i + 1);
144 }
145
146 A(iq - 1) = A(iq);
147 u(iq - 1) = u(iq);
148 A(iq) = 0;
149 u(iq) = 0.0;
150 for (j = 0; j < iq; j++) R(j, iq - 1) = 0.0;
151 /* constraint has been fully removed */
152 iq--;
153 #ifdef EIQGUADPROG_TRACE_SOLVER
154 std::cerr << '/' << iq << std::endl;
155 #endif
156
157 if (iq == 0) return;
158
159 for (j = qq; j < iq; j++) {
160 cc = R(j, j);
161 ss = R(j + 1, j);
162 h = utils::distance(cc, ss);
163 if (h == 0.0) continue;
164 cc = cc / h;
165 ss = ss / h;
166 R(j + 1, j) = 0.0;
167 if (cc < 0.0) {
168 R(j, j) = -h;
169 cc = -cc;
170 ss = -ss;
171 } else
172 R(j, j) = h;
173
174 xny = ss / (1.0 + cc);
175 for (k = j + 1; k < iq; k++) {
176 t1 = R(j, k);
177 t2 = R(j + 1, k);
178 R(j, k) = t1 * cc + t2 * ss;
179 R(j + 1, k) = xny * (t1 + R(j, k)) - t2;
180 }
181 for (k = 0; k < nVars; k++) {
182 t1 = J(k, j);
183 t2 = J(k, j + 1);
184 J(k, j) = t1 * cc + t2 * ss;
185 J(k, j + 1) = xny * (J(k, j) + t1) - t2;
186 }
187 }
188 }
189
190 template <int nVars, int nEqCon, int nIneqCon>
191 12 RtEiquadprog_status RtEiquadprog<nVars, nEqCon, nIneqCon>::solve_quadprog(
192 const typename RtMatrixX<nVars, nVars>::d &Hess,
193 const typename RtVectorX<nVars>::d &g0,
194 const typename RtMatrixX<nEqCon, nVars>::d &CE,
195 const typename RtVectorX<nEqCon>::d &ce0,
196 const typename RtMatrixX<nIneqCon, nVars>::d &CI,
197 const typename RtVectorX<nIneqCon>::d &ci0,
198 typename RtVectorX<nVars>::d &x) {
199 int i, k, l; // indices
200 int ip; // index of the chosen violated constraint
201 int iq; // current number of active constraints
202 double psi; // current sum of constraint violations
203 double c1; // Hessian trace
204 double c2; // Hessian Chowlesky factor trace
205 double ss; // largest constraint violation (negative for violation)
206 double R_norm; // norm of matrix R
207 12 const double inf = std::numeric_limits<double>::infinity();
208 double t, t1, t2;
209 /* t is the step length, which is the minimum of the partial step length t1
210 * and the full step length t2 */
211
212 12 iter = 0; // active-set iteration number
213
214 /*
215 * Preprocessing phase
216 */
217 /* compute the trace of the original matrix Hess */
218 12 c1 = Hess.trace();
219
220 /* decompose the matrix Hess in the form LL^T */
221 12 if (!is_inverse_provided_) {
222 START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_CHOWLESKY_DECOMPOSITION);
223 12 chol_.compute(Hess);
224 STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_CHOWLESKY_DECOMPOSITION);
225 }
226
227 /* initialize the matrix R */
228 12 d.setZero(nVars);
229 12 R.setZero(nVars, nVars);
230 12 R_norm = 1.0;
231
232 /* compute the inverse of the factorized matrix Hess^-1, this is the initial
233 * value for H */
234 // m_J = L^-T
235 12 if (!is_inverse_provided_) {
236 START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_CHOWLESKY_INVERSE);
237 12 m_J.setIdentity(nVars, nVars);
238 #ifdef OPTIMIZE_HESSIAN_INVERSE
239 12 chol_.matrixU().solveInPlace(m_J);
240 #else
241 m_J = chol_.matrixU().solve(m_J);
242 #endif
243 STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_CHOWLESKY_INVERSE);
244 }
245
246 12 c2 = m_J.trace();
247 #ifdef EIQGUADPROG_TRACE_SOLVER
248 utils::print_matrix("m_J", m_J);
249 #endif
250
251 /* c1 * c2 is an estimate for cond(Hess) */
252
253 /*
254 * Find the unconstrained minimizer of the quadratic form 0.5 * x Hess x + g0
255 * x this is a feasible point in the dual space x = Hess^-1 * g0
256 */
257 START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_1_UNCONSTR_MINIM);
258 12 if (is_inverse_provided_) {
259 x = m_J * (m_J.transpose() * g0);
260 } else {
261 #ifdef OPTIMIZE_UNCONSTR_MINIM
262 12 x = -g0;
263 12 chol_.solveInPlace(x);
264 }
265 #else
266 x = chol_.solve(g0);
267 }
268 x = -x;
269 #endif
270 /* and compute the current solution value */
271 12 f_value = 0.5 * g0.dot(x);
272 #ifdef EIQGUADPROG_TRACE_SOLVER
273 std::cerr << "Unconstrained solution: " << f_value << std::endl;
274 utils::print_vector("x", x);
275 #endif
276 STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_1_UNCONSTR_MINIM);
277
278 /* Add equality constraints to the working set A */
279
280 START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_ADD_EQ_CONSTR);
281 12 iq = 0;
282 17 for (i = 0; i < nEqCon; i++) {
283 START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_ADD_EQ_CONSTR_1);
284 // np = CE.row(i); // does not compile if nEqCon=0
285 18 for (int tmp = 0; tmp < nVars; tmp++) np[tmp] = CE(i, tmp);
286 6 compute_d(d, m_J, np);
287 6 update_z(z, m_J, d, iq);
288 6 update_r(R, r, d, iq);
289
290 #ifdef EIQGUADPROG_TRACE_SOLVER
291 utils::print_matrix("R", R);
292 utils::print_vector("z", z);
293 utils::print_vector("r", r);
294 utils::print_vector("d", d);
295 #endif
296
297 /* compute full step length t2: i.e., the minimum step in primal space s.t.
298 the contraint becomes feasible */
299 6 t2 = 0.0;
300 12 if (std::abs(z.dot(z)) >
301 6 std::numeric_limits<double>::epsilon()) // i.e. z != 0
302 5 t2 = (-np.dot(x) - ce0(i)) / z.dot(np);
303
304 6 x += t2 * z;
305
306 /* set u = u+ */
307 6 u(iq) = t2;
308 6 u.head(iq) -= t2 * r.head(iq);
309
310 /* compute the new solution value */
311 6 f_value += 0.5 * (t2 * t2) * z.dot(np);
312 6 A(i) = -i - 1;
313 STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_ADD_EQ_CONSTR_1);
314
315 START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_ADD_EQ_CONSTR_2);
316 6 if (!add_constraint(R, m_J, d, iq, R_norm)) {
317 // Equality constraints are linearly dependent
318 1 return RT_EIQUADPROG_REDUNDANT_EQUALITIES;
319 }
320 STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_ADD_EQ_CONSTR_2);
321 }
322 STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_ADD_EQ_CONSTR);
323
324 /* set iai = K \ A */
325 22 for (i = 0; i < nIneqCon; i++) iai(i) = i;
326
327 #ifdef USE_WARM_START
328 // DEBUG_STREAM("Gonna warm start using previous active
329 // set:\n"<<A.transpose()<<"\n")
330 for (i = nEqCon; i < q; i++) {
331 iai(i - nEqCon) = -1;
332 ip = A(i);
333 np = CI.row(ip);
334 compute_d(d, m_J, np);
335 update_z(z, m_J, d, iq);
336 update_r(R, r, d, iq);
337
338 /* compute full step length t2: i.e., the minimum step in primal space s.t.
339 the contraint becomes feasible */
340 t2 = 0.0;
341 if (std::abs(z.dot(z)) >
342 std::numeric_limits<double>::epsilon()) // i.e. z != 0
343 t2 = (-np.dot(x) - ci0(ip)) / z.dot(np);
344 else
345 DEBUG_STREAM("[WARM START] z=0\n")
346
347 x += t2 * z;
348
349 /* set u = u+ */
350 u(iq) = t2;
351 u.head(iq) -= t2 * r.head(iq);
352
353 /* compute the new solution value */
354 f_value += 0.5 * (t2 * t2) * z.dot(np);
355
356 if (!add_constraint(R, m_J, d, iq, R_norm)) {
357 // constraints are linearly dependent
358 std::cerr << "[WARM START] Constraints are linearly dependent\n";
359 return RT_EIQUADPROG_REDUNDANT_EQUALITIES;
360 }
361 }
362 #else
363
364 #endif
365
366 11 l1:
367 START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_1);
368 16 iter++;
369 16 if (iter >= m_maxIter) {
370 q = iq;
371 return RT_EIQUADPROG_MAX_ITER_REACHED;
372 }
373
374 #ifdef EIQGUADPROG_TRACE_SOLVER
375 utils::print_vector("x", x);
376 #endif
377 /* step 1: choose a violated constraint */
378 22 for (i = nEqCon; i < iq; i++) {
379 6 ip = A(i);
380 6 iai(ip) = -1;
381 }
382
383 /* compute s(x) = ci^T * x + ci0 for all elements of K \ A */
384 START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_1_2);
385 16 ss = 0.0;
386 16 ip = 0; /* ip will be the index of the chosen violated constraint */
387
388 #ifdef OPTIMIZE_STEP_1_2
389 16 s = ci0;
390 16 s.noalias() += CI * x;
391 16 iaexcl.setOnes();
392 16 psi = (s.cwiseMin(RtVectorX<nIneqCon>::d::Zero())).sum();
393 #else
394 psi = 0.0; /* this value will contain the sum of all infeasibilities */
395 for (i = 0; i < nIneqCon; i++) {
396 iaexcl(i) = 1;
397 s(i) = CI.row(i).dot(x) + ci0(i);
398 psi += std::min(0.0, s(i));
399 }
400 #endif
401 STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_1_2);
402 #ifdef EIQGUADPROG_TRACE_SOLVER
403 utils::print_vector("s", s);
404 #endif
405
406 STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_1);
407
408 16 if (std::abs(psi) <=
409 16 nIneqCon * std::numeric_limits<double>::epsilon() * c1 * c2 * 100.0) {
410 /* numerically there are not infeasibilities anymore */
411 9 q = iq;
412 // DEBUG_STREAM("Optimal active
413 // set:\n"<<A.head(iq).transpose()<<"\n\n")
414 9 return RT_EIQUADPROG_OPTIMAL;
415 }
416
417 /* save old values for u, x and A */
418 7 u_old.head(iq) = u.head(iq);
419 7 A_old.head(iq) = A.head(iq);
420 7 x_old = x;
421
422 7 l2: /* Step 2: check for feasibility and determine a new S-pair */
423 START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2);
424 // find constraint with highest violation (what about normalizing
425 // constraints?)
426 20 for (i = 0; i < nIneqCon; i++) {
427 13 if (s(i) < ss && iai(i) != -1 && iaexcl(i)) {
428 7 ss = s(i);
429 7 ip = i;
430 }
431 }
432 7 if (ss >= 0.0) {
433 q = iq;
434 // DEBUG_STREAM("Optimal active set:\n"<<A.transpose()<<"\n\n")
435 return RT_EIQUADPROG_OPTIMAL;
436 }
437
438 /* set np = n(ip) */
439 // np = CI.row(ip); // does not compile if nIneqCon=0
440 21 for (int tmp = 0; tmp < nVars; tmp++) np[tmp] = CI(ip, tmp);
441 /* set u = (u 0)^T */
442 7 u(iq) = 0.0;
443 /* add ip to the active set A */
444 7 A(iq) = ip;
445
446 // DEBUG_STREAM("Add constraint "<<ip<<" to active set\n")
447
448 #ifdef EIQGUADPROG_TRACE_SOLVER
449 std::cerr << "Trying with constraint " << ip << std::endl;
450 utils::print_vector("np", np);
451 #endif
452 STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2);
453
454 7 l2a: /* Step 2a: determine step direction */
455 START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2A);
456 /* compute z = H np: the step direction in the primal space (through m_J, see
457 * the paper) */
458 7 compute_d(d, m_J, np);
459 // update_z(z, m_J, d, iq);
460 7 if (iq >= nVars) {
461 // throw std::runtime_error("iq >= m_J.cols()");
462 1 z.setZero();
463 } else {
464 6 update_z(z, m_J, d, iq);
465 }
466 /* compute N* np (if q > 0): the negative of the step direction in the dual
467 * space */
468 7 update_r(R, r, d, iq);
469 #ifdef EIQGUADPROG_TRACE_SOLVER
470 std::cerr << "Step direction z" << std::endl;
471 utils::print_vector("z", z);
472 utils::print_vector("r", r);
473 utils::print_vector("u", u);
474 utils::print_vector("d", d);
475 utils::print_vector("A", A);
476 #endif
477 STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2A);
478
479 /* Step 2b: compute step length */
480 START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2B);
481 7 l = 0;
482 /* Compute t1: partial step length (maximum step in dual space without
483 * violating dual feasibility */
484 7 t1 = inf; /* +inf */
485 /* find the index l s.t. it reaches the minimum of u+(x) / r */
486 // l: index of constraint to drop (maybe)
487 10 for (k = nEqCon; k < iq; k++) {
488 double tmp;
489 3 if (r(k) > 0.0 && ((tmp = u(k) / r(k)) < t1)) {
490 t1 = tmp;
491 l = A(k);
492 }
493 }
494 /* Compute t2: full step length (minimum step in primal space such that the
495 * constraint ip becomes feasible */
496 14 if (std::abs(z.dot(z)) >
497 7 std::numeric_limits<double>::epsilon()) // i.e. z != 0
498 5 t2 = -s(ip) / z.dot(np);
499 else
500 2 t2 = inf; /* +inf */
501
502 /* the step is chosen as the minimum of t1 and t2 */
503 7 t = std::min(t1, t2);
504 #ifdef EIQGUADPROG_TRACE_SOLVER
505 std::cerr << "Step sizes: " << t << " (t1 = " << t1 << ", t2 = " << t2
506 << ") ";
507 #endif
508 STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2B);
509
510 /* Step 2c: determine new S-pair and take step: */
511 START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2C);
512 /* case (i): no step in primal or dual space */
513 7 if (t >= inf) {
514 /* QPP is infeasible */
515 2 q = iq;
516 STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2C);
517 2 return RT_EIQUADPROG_UNBOUNDED;
518 }
519 /* case (ii): step in dual space */
520 5 if (t2 >= inf) {
521 /* set u = u + t * [-r 1) and drop constraint l from the active set A */
522 u.head(iq) -= t * r.head(iq);
523 u(iq) += t;
524 iai(l) = l;
525 delete_constraint(R, m_J, A, u, iq, l);
526 #ifdef EIQGUADPROG_TRACE_SOLVER
527 std::cerr << " in dual space: " << f_value << std::endl;
528 utils::print_vector("x", x);
529 utils::print_vector("z", z);
530 utils::print_vector("A", A);
531 #endif
532 STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2C);
533 goto l2a;
534 }
535
536 /* case (iii): step in primal and dual space */
537 5 x += t * z;
538 /* update the solution value */
539 5 f_value += t * z.dot(np) * (0.5 * t + u(iq));
540
541 5 u.head(iq) -= t * r.head(iq);
542 5 u(iq) += t;
543
544 #ifdef EIQGUADPROG_TRACE_SOLVER
545 std::cerr << " in both spaces: " << f_value << std::endl;
546 utils::print_vector("x", x);
547 utils::print_vector("u", u);
548 utils::print_vector("r", r);
549 utils::print_vector("A", A);
550 #endif
551
552 5 if (t == t2) {
553 #ifdef EIQGUADPROG_TRACE_SOLVER
554 std::cerr << "Full step has taken " << t << std::endl;
555 utils::print_vector("x", x);
556 #endif
557 /* full step has taken */
558 /* add constraint ip to the active set*/
559 5 if (!add_constraint(R, m_J, d, iq, R_norm)) {
560 iaexcl(ip) = 0;
561 delete_constraint(R, m_J, A, u, iq, ip);
562 #ifdef EIQGUADPROG_TRACE_SOLVER
563 utils::print_matrix("R", R);
564 utils::print_vector("A", A);
565 #endif
566 for (i = 0; i < nIneqCon; i++) iai(i) = i;
567 for (i = 0; i < iq; i++) {
568 A(i) = A_old(i);
569 iai(A(i)) = -1;
570 u(i) = u_old(i);
571 }
572 x = x_old;
573 STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2C);
574 goto l2; /* go to step 2 */
575 } else
576 5 iai(ip) = -1;
577 #ifdef EIQGUADPROG_TRACE_SOLVER
578 utils::print_matrix("R", R);
579 utils::print_vector("A", A);
580 #endif
581 STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2C);
582 5 goto l1;
583 }
584
585 /* a partial step has been taken => drop constraint l */
586 iai(l) = l;
587 delete_constraint(R, m_J, A, u, iq, l);
588 // s(ip) = CI.row(ip).dot(x) + ci0(ip); // does not compile if nIneqCon=0
589 s(ip) = ci0(ip);
590 for (int tmp = 0; tmp < nVars; tmp++) s(ip) += CI(ip, tmp) * x[tmp];
591
592 #ifdef EIQGUADPROG_TRACE_SOLVER
593 std::cerr << "Partial step has taken " << t << std::endl;
594 utils::print_vector("x", x);
595 utils::print_matrix("R", R);
596 utils::print_vector("A", A);
597 utils::print_vector("s", s);
598 #endif
599 STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2C);
600
601 goto l2a;
602 }
603 } /* namespace solvers */
604 } /* namespace eiquadprog */
605 #endif /* __eiquadprog_rt_hxx__ */
606