Directory: | ./ |
---|---|
File: | include/pinocchio/algorithm/jacobian.hpp |
Date: | 2025-02-12 21:03:38 |
Exec | Total | Coverage | |
---|---|---|---|
Lines: | 4 | 4 | 100.0% |
Branches: | 2 | 4 | 50.0% |
Line | Branch | Exec | Source |
---|---|---|---|
1 | // | ||
2 | // Copyright (c) 2015-2020 CNRS INRIA | ||
3 | // | ||
4 | |||
5 | #ifndef __pinocchio_algorithm_jacobian_hpp__ | ||
6 | #define __pinocchio_algorithm_jacobian_hpp__ | ||
7 | |||
8 | #include "pinocchio/multibody/model.hpp" | ||
9 | #include "pinocchio/multibody/data.hpp" | ||
10 | |||
11 | namespace pinocchio | ||
12 | { | ||
13 | /// | ||
14 | /// \brief Computes the full model Jacobian, i.e. the stack of all motion subspace expressed in | ||
15 | /// the world frame. | ||
16 | /// The result is accessible through data.J. This function computes also the | ||
17 | /// forwardKinematics of the model. | ||
18 | /// | ||
19 | /// \note This Jacobian does not correspond to any specific joint frame Jacobian. From this | ||
20 | /// Jacobian, it is then possible to easily extract the Jacobian of a specific joint frame. \sa | ||
21 | /// pinocchio::getJointJacobian for doing this specific extraction. | ||
22 | /// | ||
23 | /// \tparam JointCollection Collection of Joint types. | ||
24 | /// \tparam ConfigVectorType Type of the joint configuration vector. | ||
25 | /// | ||
26 | /// \param[in] model The model structure of the rigid body system. | ||
27 | /// \param[in] data The data structure of the rigid body system. | ||
28 | /// \param[in] q The joint configuration vector (dim model.nq). | ||
29 | /// | ||
30 | /// \return The full model Jacobian (matrix 6 x model.nv). | ||
31 | /// | ||
32 | template< | ||
33 | typename Scalar, | ||
34 | int Options, | ||
35 | template<typename, int> class JointCollectionTpl, | ||
36 | typename ConfigVectorType> | ||
37 | const typename DataTpl<Scalar, Options, JointCollectionTpl>::Matrix6x & computeJointJacobians( | ||
38 | const ModelTpl<Scalar, Options, JointCollectionTpl> & model, | ||
39 | DataTpl<Scalar, Options, JointCollectionTpl> & data, | ||
40 | const Eigen::MatrixBase<ConfigVectorType> & q); | ||
41 | |||
42 | /// | ||
43 | /// \brief Computes the full model Jacobian, i.e. the stack of all motion subspace expressed in | ||
44 | /// the world frame. | ||
45 | /// The result is accessible through data.J. This function assumes that | ||
46 | /// pinocchio::forwardKinematics has been called before. | ||
47 | /// | ||
48 | /// \note This Jacobian does not correspond to any specific joint frame Jacobian. From this | ||
49 | /// Jacobian, it is then possible to easily extract the Jacobian of a specific joint frame. \sa | ||
50 | /// pinocchio::getJointJacobian for doing this specific extraction. | ||
51 | /// | ||
52 | /// \tparam JointCollection Collection of Joint types. | ||
53 | /// | ||
54 | /// \param[in] model The model structure of the rigid body system. | ||
55 | /// \param[in] data The data structure of the rigid body system. | ||
56 | /// | ||
57 | /// \return The full model Jacobian (matrix 6 x model.nv). | ||
58 | /// | ||
59 | template<typename Scalar, int Options, template<typename, int> class JointCollectionTpl> | ||
60 | const typename DataTpl<Scalar, Options, JointCollectionTpl>::Matrix6x & computeJointJacobians( | ||
61 | const ModelTpl<Scalar, Options, JointCollectionTpl> & model, | ||
62 | DataTpl<Scalar, Options, JointCollectionTpl> & data); | ||
63 | |||
64 | /// \brief Computes the Jacobian of a specific joint frame expressed in one of the | ||
65 | /// pinocchio::ReferenceFrame options. | ||
66 | /// | ||
67 | /// \details For the LOCAL reference frame, the Jacobian \f${}^j J_{0j}\f$ from the joint frame | ||
68 | /// \f$j\f$ to the world frame \f$0\f$ is such that \f${}^j v_{0j} = {}^j J_{0j} \dot{q}\f$, where | ||
69 | /// \f${}^j v_{0j}\f$ is the velocity of the origin of the moving joint frame relative to the | ||
70 | /// fixed world frame, projected into the basis of the joint frame. LOCAL_WORLD_ALIGNED is the | ||
71 | /// same velocity but projected into the world frame basis. | ||
72 | /// | ||
73 | /// For the WORLD reference frame, the Jacobian \f${}^0 J_{0j}\f$ from the joint frame \f$j\f$ to | ||
74 | /// the world frame \f$0\f$ is such that \f${}^0 v_{0j} = {}^0 J_{0j} \dot{q}\f$, where \f${}^0 | ||
75 | /// v_{0j}\f$ is the spatial velocity of the joint frame. The linear component of this spatial | ||
76 | /// velocity is the velocity of a (possibly imaginary) point attached to the moving joint frame j | ||
77 | /// which is traveling through the origin of the world frame at that instant. The angular | ||
78 | /// component is the instantaneous angular velocity of the joint frame as viewed in the world | ||
79 | /// frame. | ||
80 | /// | ||
81 | /// When serialized to a 6D vector, the order of coordinates is: three linear followed by three | ||
82 | /// angular. | ||
83 | /// | ||
84 | /// For further details regarding the different velocities or the Jacobian see Chapters 2 and 3 | ||
85 | /// respectively in [A Mathematical Introduction to Robotic | ||
86 | /// Manipulation](https://www.cse.lehigh.edu/~trink/Courses/RoboticsII/reading/murray-li-sastry-94-complete.pdf) | ||
87 | /// by Murray, Li and Sastry. | ||
88 | /// | ||
89 | /// \note This jacobian is extracted from data.J. You have to run pinocchio::computeJointJacobians | ||
90 | /// before calling it. | ||
91 | /// | ||
92 | /// \tparam JointCollection Collection of Joint types. | ||
93 | /// \tparam Matrix6xLike Type of the matrix containing the joint Jacobian. | ||
94 | /// | ||
95 | /// \param[in] model The model structure of the rigid body system. | ||
96 | /// \param[in] data The data structure of the rigid body system. | ||
97 | /// \param[in] joint_id The id of the joint. | ||
98 | /// \param[in] reference_frame Reference frame in which the result is expressed. | ||
99 | /// \param[out] J A reference on the Jacobian matrix where the results will be stored in (dim 6 x | ||
100 | /// model.nv). You must fill J with zero elements, e.g. J.fill(0.). | ||
101 | /// | ||
102 | template< | ||
103 | typename Scalar, | ||
104 | int Options, | ||
105 | template<typename, int> class JointCollectionTpl, | ||
106 | typename Matrix6Like> | ||
107 | void getJointJacobian( | ||
108 | const ModelTpl<Scalar, Options, JointCollectionTpl> & model, | ||
109 | const DataTpl<Scalar, Options, JointCollectionTpl> & data, | ||
110 | const JointIndex joint_id, | ||
111 | const ReferenceFrame reference_frame, | ||
112 | const Eigen::MatrixBase<Matrix6Like> & J); | ||
113 | /// | ||
114 | /// \brief Computes the Jacobian of a specific joint frame expressed either in the world (rf = | ||
115 | /// WORLD) frame, in the local world aligned (rf = LOCAL_WORLD_ALIGNED) frame or in the local | ||
116 | /// frame (rf = LOCAL) of the joint. \note This jacobian is extracted from data.J. You have to run | ||
117 | /// pinocchio::computeJointJacobians before calling it. | ||
118 | /// | ||
119 | /// \tparam JointCollection Collection of Joint types. | ||
120 | /// | ||
121 | /// \param[in] model The model structure of the rigid body system. | ||
122 | /// \param[in] data The data structure of the rigid body system. | ||
123 | /// \param[in] joint_id The index of the joint. | ||
124 | /// \param[in] reference_frame Reference frame in which the result is expressed. | ||
125 | /// | ||
126 | template<typename Scalar, int Options, template<typename, int> class JointCollectionTpl> | ||
127 | 9 | Eigen::Matrix<Scalar, 6, Eigen::Dynamic, Options> getJointJacobian( | |
128 | const ModelTpl<Scalar, Options, JointCollectionTpl> & model, | ||
129 | const DataTpl<Scalar, Options, JointCollectionTpl> & data, | ||
130 | const JointIndex joint_id, | ||
131 | const ReferenceFrame reference_frame) | ||
132 | { | ||
133 | typedef Eigen::Matrix<Scalar, 6, Eigen::Dynamic, Options> ReturnType; | ||
134 |
1/2✓ Branch 2 taken 9 times.
✗ Branch 3 not taken.
|
9 | ReturnType res(ReturnType::Zero(6, model.nv)); |
135 | |||
136 |
1/2✓ Branch 1 taken 9 times.
✗ Branch 2 not taken.
|
9 | getJointJacobian(model, data, joint_id, reference_frame, res); |
137 | 9 | return res; | |
138 | } | ||
139 | |||
140 | /// | ||
141 | /// \brief Computes the Jacobian of a specific joint frame expressed in the local frame of the | ||
142 | /// joint and store the result in the input argument J. | ||
143 | /// | ||
144 | /// \tparam JointCollection Collection of Joint types. | ||
145 | /// \tparam ConfigVectorType Type of the joint configuration vector. | ||
146 | /// \tparam Matrix6xLike Type of the matrix containing the joint Jacobian. | ||
147 | /// | ||
148 | /// \param[in] model The model structure of the rigid body system. | ||
149 | /// \param[in] data The data structure of the rigid body system. | ||
150 | /// \param[in] q The joint configuration vector (dim model.nq). | ||
151 | /// \param[in] joint_id The id of the joint refering to model.joints[jointId]. | ||
152 | /// \param[out] J A reference on the Jacobian matrix where the results will be stored in (dim 6 x | ||
153 | /// model.nv). You must fill J with zero elements, e.g. J.setZero(). | ||
154 | /// | ||
155 | /// \return The Jacobian of the specific joint frame expressed in the local frame of the joint | ||
156 | /// (matrix 6 x model.nv). | ||
157 | /// | ||
158 | /// \remarks The result of this function is equivalent to call first | ||
159 | /// computeJointJacobians(model,data,q) and then call | ||
160 | /// getJointJacobian(model,data,jointId,LOCAL,J), | ||
161 | /// but forwardKinematics is not fully computed. | ||
162 | /// It is worth to call jacobian if you only need a single Jacobian for a specific joint. | ||
163 | /// Otherwise, for several Jacobians, it is better to call | ||
164 | /// computeJointJacobians(model,data,q) followed by | ||
165 | /// getJointJacobian(model,data,jointId,LOCAL,J) for each Jacobian. | ||
166 | /// | ||
167 | template< | ||
168 | typename Scalar, | ||
169 | int Options, | ||
170 | template<typename, int> class JointCollectionTpl, | ||
171 | typename ConfigVectorType, | ||
172 | typename Matrix6Like> | ||
173 | void computeJointJacobian( | ||
174 | const ModelTpl<Scalar, Options, JointCollectionTpl> & model, | ||
175 | DataTpl<Scalar, Options, JointCollectionTpl> & data, | ||
176 | const Eigen::MatrixBase<ConfigVectorType> & q, | ||
177 | const JointIndex joint_id, | ||
178 | const Eigen::MatrixBase<Matrix6Like> & J); | ||
179 | |||
180 | /// | ||
181 | /// \brief Computes the full model Jacobian variations with respect to time. It corresponds to | ||
182 | /// dJ/dt which depends both on q and v. | ||
183 | /// The result is accessible through data.dJ. | ||
184 | /// | ||
185 | /// \tparam JointCollection Collection of Joint types. | ||
186 | /// \tparam ConfigVectorType Type of the joint configuration vector. | ||
187 | /// \tparam TangentVectorType Type of the joint velocity vector. | ||
188 | /// | ||
189 | /// \param[in] model The model structure of the rigid body system. | ||
190 | /// \param[in] data The data structure of the rigid body system. | ||
191 | /// \param[in] q The joint configuration vector (dim model.nq). | ||
192 | /// \param[in] v The joint velocity vector (dim model.nv). | ||
193 | /// | ||
194 | /// \return The full model Jacobian (matrix 6 x model.nv). | ||
195 | /// | ||
196 | template< | ||
197 | typename Scalar, | ||
198 | int Options, | ||
199 | template<typename, int> class JointCollectionTpl, | ||
200 | typename ConfigVectorType, | ||
201 | typename TangentVectorType> | ||
202 | const typename DataTpl<Scalar, Options, JointCollectionTpl>::Matrix6x & | ||
203 | computeJointJacobiansTimeVariation( | ||
204 | const ModelTpl<Scalar, Options, JointCollectionTpl> & model, | ||
205 | DataTpl<Scalar, Options, JointCollectionTpl> & data, | ||
206 | const Eigen::MatrixBase<ConfigVectorType> & q, | ||
207 | const Eigen::MatrixBase<TangentVectorType> & v); | ||
208 | |||
209 | /// | ||
210 | /// \brief Computes the Jacobian time variation of a specific joint frame expressed either in the | ||
211 | /// world frame (rf = WORLD), in the local world aligned (rf = LOCAL_WORLD_ALIGNED) frame or in | ||
212 | /// the local frame (rf = LOCAL) of the joint. \note This jacobian is extracted from data.dJ. You | ||
213 | /// have to run pinocchio::computeJointJacobiansTimeVariation before calling it. | ||
214 | /// | ||
215 | /// \tparam JointCollection Collection of Joint types. | ||
216 | /// \tparam Matrix6xLike Type of the matrix containing the joint Jacobian. | ||
217 | /// | ||
218 | /// \param[in] model The model structure of the rigid body system. | ||
219 | /// \param[in] data The data structure of the rigid body system. | ||
220 | /// \param[in] joint_id The id of the joint. | ||
221 | /// \param[in] reference_frame Reference frame in which the result is expressed. | ||
222 | /// \param[out] dJ A reference on the Jacobian matrix where the results will be stored in (dim 6 x | ||
223 | /// model.nv). You must fill dJ with zero elements, e.g. dJ.fill(0.). | ||
224 | /// | ||
225 | template< | ||
226 | typename Scalar, | ||
227 | int Options, | ||
228 | template<typename, int> class JointCollectionTpl, | ||
229 | typename Matrix6Like> | ||
230 | void getJointJacobianTimeVariation( | ||
231 | const ModelTpl<Scalar, Options, JointCollectionTpl> & model, | ||
232 | const DataTpl<Scalar, Options, JointCollectionTpl> & data, | ||
233 | const JointIndex joint_id, | ||
234 | const ReferenceFrame reference_frame, | ||
235 | const Eigen::MatrixBase<Matrix6Like> & dJ); | ||
236 | |||
237 | } // namespace pinocchio | ||
238 | |||
239 | /* --- Details -------------------------------------------------------------------- */ | ||
240 | /* --- Details -------------------------------------------------------------------- */ | ||
241 | /* --- Details -------------------------------------------------------------------- */ | ||
242 | |||
243 | #include "pinocchio/algorithm/jacobian.hxx" | ||
244 | |||
245 | #if PINOCCHIO_ENABLE_TEMPLATE_INSTANTIATION | ||
246 | #include "pinocchio/algorithm/jacobian.txx" | ||
247 | #endif // PINOCCHIO_ENABLE_TEMPLATE_INSTANTIATION | ||
248 | |||
249 | #endif // ifndef __pinocchio_algorithm_jacobian_hpp__ | ||
250 |