| Line |
Branch |
Exec |
Source |
| 1 |
|
|
// |
| 2 |
|
|
// Copyright (c) 2024 INRIA |
| 3 |
|
|
// |
| 4 |
|
|
|
| 5 |
|
|
#ifndef __pinocchio_math_lanczos_decomposition_hpp__ |
| 6 |
|
|
#define __pinocchio_math_lanczos_decomposition_hpp__ |
| 7 |
|
|
|
| 8 |
|
|
#include "pinocchio/math/fwd.hpp" |
| 9 |
|
|
#include "pinocchio/math/tridiagonal-matrix.hpp" |
| 10 |
|
|
#include "pinocchio/math/gram-schmidt-orthonormalisation.hpp" |
| 11 |
|
|
|
| 12 |
|
|
namespace pinocchio |
| 13 |
|
|
{ |
| 14 |
|
|
|
| 15 |
|
|
/// \brief Compute the largest eigenvalues and the associated principle eigenvector via power |
| 16 |
|
|
/// iteration |
| 17 |
|
|
template<typename _Matrix> |
| 18 |
|
|
struct LanczosDecompositionTpl |
| 19 |
|
|
{ |
| 20 |
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW |
| 21 |
|
|
|
| 22 |
|
|
typedef typename PINOCCHIO_EIGEN_PLAIN_TYPE(_Matrix) PlainMatrix; |
| 23 |
|
|
typedef typename PINOCCHIO_EIGEN_PLAIN_TYPE(typename PlainMatrix::ColXpr) Vector; |
| 24 |
|
|
typedef typename _Matrix::Scalar Scalar; |
| 25 |
|
|
enum |
| 26 |
|
|
{ |
| 27 |
|
|
Options = _Matrix::Options |
| 28 |
|
|
}; |
| 29 |
|
|
typedef TridiagonalSymmetricMatrixTpl<Scalar, Options> TridiagonalMatrix; |
| 30 |
|
|
|
| 31 |
|
|
/// \brief Default constructor for the Lanczos decomposition from an input matrix |
| 32 |
|
|
template<typename MatrixLikeType> |
| 33 |
|
✗ |
LanczosDecompositionTpl(const MatrixLikeType & mat, const Eigen::DenseIndex decomposition_size) |
| 34 |
|
✗ |
: m_Qs(mat.rows(), decomposition_size) |
| 35 |
|
✗ |
, m_Ts(decomposition_size) |
| 36 |
|
✗ |
, m_A_times_q(mat.rows()) |
| 37 |
|
✗ |
, m_rank(-1) |
| 38 |
|
|
{ |
| 39 |
|
✗ |
PINOCCHIO_CHECK_INPUT_ARGUMENT(mat.rows() == mat.cols(), "The input matrix is not square."); |
| 40 |
|
✗ |
PINOCCHIO_CHECK_INPUT_ARGUMENT( |
| 41 |
|
|
decomposition_size >= 1, "The size of the decomposition should be greater than one."); |
| 42 |
|
✗ |
PINOCCHIO_CHECK_INPUT_ARGUMENT( |
| 43 |
|
|
decomposition_size <= mat.rows(), |
| 44 |
|
|
"The size of the decomposition should not be larger than the number of rows."); |
| 45 |
|
|
|
| 46 |
|
✗ |
compute(mat); |
| 47 |
|
|
} |
| 48 |
|
|
|
| 49 |
|
✗ |
bool operator==(const LanczosDecompositionTpl & other) const |
| 50 |
|
|
{ |
| 51 |
|
✗ |
if (this == &other) |
| 52 |
|
✗ |
return true; |
| 53 |
|
✗ |
return m_Qs == other.m_Qs && m_Ts == other.m_Ts && m_rank == other.m_rank; |
| 54 |
|
|
} |
| 55 |
|
|
|
| 56 |
|
✗ |
bool operator!=(const LanczosDecompositionTpl & other) const |
| 57 |
|
|
{ |
| 58 |
|
✗ |
return !(*this == other); |
| 59 |
|
|
} |
| 60 |
|
|
|
| 61 |
|
|
/// |
| 62 |
|
|
/// \brief Computes the Lanczos decomposition of the input matrix A |
| 63 |
|
|
/// |
| 64 |
|
|
/// \param[in] A The matrix to decompose |
| 65 |
|
|
/// |
| 66 |
|
|
template<typename MatrixLikeType> |
| 67 |
|
✗ |
void compute(const MatrixLikeType & A) |
| 68 |
|
|
{ |
| 69 |
|
✗ |
PINOCCHIO_CHECK_INPUT_ARGUMENT(A.rows() == A.cols(), "The input matrix is not square."); |
| 70 |
|
✗ |
PINOCCHIO_CHECK_INPUT_ARGUMENT( |
| 71 |
|
|
A.rows() == m_Qs.rows(), "The input matrix is of correct size."); |
| 72 |
|
|
|
| 73 |
|
✗ |
const Eigen::DenseIndex decomposition_size = m_Ts.cols(); |
| 74 |
|
✗ |
auto & alphas = m_Ts.diagonal(); |
| 75 |
|
✗ |
auto & betas = m_Ts.subDiagonal(); |
| 76 |
|
|
|
| 77 |
|
✗ |
m_Qs.col(0).fill(Scalar(1) / math::sqrt(Scalar(m_Qs.rows()))); |
| 78 |
|
✗ |
m_Ts.setZero(); |
| 79 |
|
|
Eigen::DenseIndex k; |
| 80 |
|
✗ |
for (k = 0; k < decomposition_size; ++k) |
| 81 |
|
|
{ |
| 82 |
|
✗ |
const auto q = m_Qs.col(k); |
| 83 |
|
✗ |
m_A_times_q.noalias() = A * q; |
| 84 |
|
✗ |
alphas[k] = q.dot(m_A_times_q); |
| 85 |
|
|
|
| 86 |
|
✗ |
if (k < decomposition_size - 1) |
| 87 |
|
|
{ |
| 88 |
|
✗ |
auto q_next = m_Qs.col(k + 1); |
| 89 |
|
✗ |
m_A_times_q -= alphas[k] * q; |
| 90 |
|
✗ |
if (k > 0) |
| 91 |
|
|
{ |
| 92 |
|
✗ |
m_A_times_q -= betas[k - 1] * m_Qs.col(k - 1); |
| 93 |
|
|
} |
| 94 |
|
|
|
| 95 |
|
|
// Perform Gram-Schmidt orthogonalization procedure. |
| 96 |
|
✗ |
if (k > 0) |
| 97 |
|
✗ |
orthonormalisation(m_Qs.leftCols(k), m_A_times_q); |
| 98 |
|
|
|
| 99 |
|
|
// Compute beta |
| 100 |
|
✗ |
betas[k] = m_A_times_q.norm(); |
| 101 |
|
✗ |
if (betas[k] <= 1e2 * Eigen::NumTraits<Scalar>::epsilon()) |
| 102 |
|
|
{ |
| 103 |
|
✗ |
break; |
| 104 |
|
|
} |
| 105 |
|
|
else |
| 106 |
|
|
{ |
| 107 |
|
✗ |
q_next.noalias() = m_A_times_q / betas[k]; |
| 108 |
|
|
} |
| 109 |
|
|
} |
| 110 |
|
|
} |
| 111 |
|
✗ |
m_rank = math::max(Eigen::DenseIndex(1), k); |
| 112 |
|
|
} |
| 113 |
|
|
|
| 114 |
|
|
/// |
| 115 |
|
|
/// \brief Computes the residual associated with the decomposition, namely, the quantity \f$ A |
| 116 |
|
|
/// Q_s - Q_s T_s \f$ |
| 117 |
|
|
/// |
| 118 |
|
|
/// \param[in] A the matrix that have been decomposed. |
| 119 |
|
|
/// |
| 120 |
|
|
/// \returns The residual of the decomposition |
| 121 |
|
|
/// |
| 122 |
|
|
template<typename MatrixLikeType> |
| 123 |
|
✗ |
PlainMatrix computeDecompositionResidual(const MatrixLikeType & A) const |
| 124 |
|
|
{ |
| 125 |
|
✗ |
const Eigen::DenseIndex last_col_id = m_Ts.cols() - 1; |
| 126 |
|
✗ |
const auto & alphas = m_Ts.diagonal(); |
| 127 |
|
✗ |
const auto & betas = m_Ts.subDiagonal(); |
| 128 |
|
|
|
| 129 |
|
✗ |
PlainMatrix residual = A * m_Qs; |
| 130 |
|
✗ |
residual -= (m_Qs * m_Ts).eval(); |
| 131 |
|
|
|
| 132 |
|
✗ |
const auto & q = m_Qs.col(last_col_id); |
| 133 |
|
|
|
| 134 |
|
✗ |
auto & tmp_vec = m_A_times_q; // use m_A_times_q as a temporary vector |
| 135 |
|
✗ |
tmp_vec.noalias() = A * q; |
| 136 |
|
✗ |
tmp_vec -= alphas[last_col_id] * q; |
| 137 |
|
✗ |
if (last_col_id > 0) |
| 138 |
|
✗ |
tmp_vec -= betas[last_col_id - 1] * m_Qs.col(last_col_id - 1); |
| 139 |
|
|
|
| 140 |
|
✗ |
residual.col(last_col_id) -= tmp_vec; |
| 141 |
|
|
|
| 142 |
|
✗ |
return residual; |
| 143 |
|
|
} |
| 144 |
|
|
|
| 145 |
|
|
/// \brief Returns the tridiagonal matrix associated with the Lanczos decomposition |
| 146 |
|
|
const TridiagonalMatrix & Ts() const |
| 147 |
|
|
{ |
| 148 |
|
|
return m_Ts; |
| 149 |
|
|
} |
| 150 |
|
|
/// \brief Returns the tridiagonal matrix associated with the Lanczos decomposition |
| 151 |
|
✗ |
TridiagonalMatrix & Ts() |
| 152 |
|
|
{ |
| 153 |
|
✗ |
return m_Ts; |
| 154 |
|
|
} |
| 155 |
|
|
|
| 156 |
|
|
/// \brief Returns the orthogonal basis associated with the Lanczos decomposition |
| 157 |
|
|
const PlainMatrix & Qs() const |
| 158 |
|
|
{ |
| 159 |
|
|
return m_Qs; |
| 160 |
|
|
} |
| 161 |
|
|
/// \brief Returns the orthogonal basis associated with the Lanczos decomposition |
| 162 |
|
✗ |
PlainMatrix & Qs() |
| 163 |
|
|
{ |
| 164 |
|
✗ |
return m_Qs; |
| 165 |
|
|
} |
| 166 |
|
|
|
| 167 |
|
|
/// \brief Returns the rank of the decomposition |
| 168 |
|
✗ |
Eigen::DenseIndex rank() const |
| 169 |
|
|
{ |
| 170 |
|
✗ |
return m_rank; |
| 171 |
|
|
} |
| 172 |
|
|
|
| 173 |
|
|
protected: |
| 174 |
|
|
PlainMatrix m_Qs; |
| 175 |
|
|
TridiagonalMatrix m_Ts; |
| 176 |
|
|
mutable Vector m_A_times_q; |
| 177 |
|
|
Eigen::DenseIndex m_rank; |
| 178 |
|
|
}; |
| 179 |
|
|
} // namespace pinocchio |
| 180 |
|
|
|
| 181 |
|
|
#endif // ifndef __pinocchio_math_lanczos_decomposition_hpp__ |
| 182 |
|
|
|