GCC Code Coverage Report


Directory: ./
File: src/tools/kalman.cpp
Date: 2024-11-13 12:35:17
Exec Total Coverage
Lines: 0 62 0.0%
Branches: 0 166 0.0%

Line Branch Exec Source
1 /*
2 * Copyright 2010,
3 * Nicolas Mansard,
4 * François Bleibel,
5 * Olivier Stasse,
6 * Florent Lamiraux
7 *
8 * CNRS/AIST
9 *
10 */
11
12 /* --- SOT --- */
13 #include <dynamic-graph/command-setter.h>
14 #include <dynamic-graph/factory.h>
15
16 #include <sot/core/debug.hh>
17 #include <sot/core/exception-tools.hh>
18 #include <sot/core/factory.hh>
19 #include <sot/core/kalman.hh> /* Header of the class implemented here. */
20
21 namespace dynamicgraph {
22 using command::Setter;
23 namespace sot {
24
25 DYNAMICGRAPH_FACTORY_ENTITY_PLUGIN(Kalman, "Kalman");
26
27 Kalman::Kalman(const std::string &name)
28 : Entity(name),
29 measureSIN(NULL, "Kalman(" + name + ")::input(vector)::y"),
30 modelTransitionSIN(NULL, "Kalman(" + name + ")::input(matrix)::F"),
31 modelMeasureSIN(NULL, "Kalman(" + name + ")::input(matrix)::H"),
32 noiseTransitionSIN(NULL, "Kalman(" + name + ")::input(matrix)::Q"),
33 noiseMeasureSIN(NULL, "Kalman(" + name + ")::input(matrix)::R")
34
35 ,
36 statePredictedSIN(0, "Kalman(" + name + ")::input(vector)::x_pred"),
37 observationPredictedSIN(0, "Kalman(" + name + ")::input(vector)::y_pred"),
38 varianceUpdateSOUT("Kalman(" + name + ")::output(vector)::P"),
39 stateUpdateSOUT("Kalman(" + name + ")::output(vector)::x_est"),
40 stateEstimation_(),
41 stateVariance_() {
42 sotDEBUGIN(15);
43 varianceUpdateSOUT.setFunction(
44 boost::bind(&Kalman::computeVarianceUpdate, this, _1, _2));
45 stateUpdateSOUT.setFunction(
46 boost::bind(&Kalman::computeStateUpdate, this, _1, _2));
47
48 signalRegistration(measureSIN << observationPredictedSIN << modelTransitionSIN
49 << modelMeasureSIN << noiseTransitionSIN
50 << noiseMeasureSIN << statePredictedSIN
51 << stateUpdateSOUT << varianceUpdateSOUT);
52
53 std::string docstring =
54 " Set initial state estimation\n"
55 "\n"
56 " input:\n"
57 " - a vector: initial state\n";
58 addCommand("setInitialState",
59 new Setter<Kalman, Vector>(*this, &Kalman::setStateEstimation,
60 docstring));
61
62 docstring =
63 " Set variance of initial state estimation\n"
64 "\n"
65 " input:\n"
66 " - a matrix: variance covariance matrix\n";
67 addCommand(
68 "setInitialVariance",
69 new Setter<Kalman, Matrix>(*this, &Kalman::setStateVariance, docstring));
70 sotDEBUGOUT(15);
71 }
72
73 Matrix &Kalman::computeVarianceUpdate(Matrix &Pk_k, const int &time) {
74 sotDEBUGIN(15);
75 if (time == 0) {
76 // First time return variance initial state
77 Pk_k = stateVariance_;
78 // Set dependency to input signals for latter computations
79 varianceUpdateSOUT.addDependency(noiseTransitionSIN);
80 varianceUpdateSOUT.addDependency(modelTransitionSIN);
81 } else {
82 const Matrix &Q = noiseTransitionSIN(time);
83 const Matrix &R = noiseMeasureSIN(time);
84 const Matrix &F = modelTransitionSIN(time);
85 const Matrix &H = modelMeasureSIN(time);
86 const Matrix &Pk_1_k_1 = stateVariance_;
87
88 sotDEBUG(15) << "Q=" << Q << std::endl;
89 sotDEBUG(15) << "R=" << R << std::endl;
90 sotDEBUG(15) << "F=" << F << std::endl;
91 sotDEBUG(15) << "H=" << H << std::endl;
92 sotDEBUG(15) << "Pk_1_k_1=" << Pk_1_k_1 << std::endl;
93
94 FP_ = F * Pk_1_k_1;
95 Pk_k_1_ = FP_ * F.transpose();
96 Pk_k_1_ += Q;
97
98 sotDEBUG(15) << "F " << std::endl << F << std::endl;
99 sotDEBUG(15) << "P_{k-1|k-1} " << std::endl << Pk_1_k_1 << std::endl;
100 sotDEBUG(15) << "F^T " << std::endl << F.transpose() << std::endl;
101 sotDEBUG(15) << "P_{k|k-1} " << std::endl << Pk_k_1_ << std::endl;
102
103 S_ = H * Pk_k_1_ * H.transpose() + R;
104 K_ = Pk_k_1_ * H.transpose() * S_.inverse();
105 Pk_k = Pk_k_1_ - K_ * H * Pk_k_1_;
106
107 sotDEBUG(15) << "S_{k} " << std::endl << S_ << std::endl;
108 sotDEBUG(15) << "K_{k} " << std::endl << K_ << std::endl;
109 sotDEBUG(15) << "P_{k|k} " << std::endl << Pk_k << std::endl;
110
111 sotDEBUGOUT(15);
112
113 stateVariance_ = Pk_k;
114 }
115 return Pk_k;
116 }
117
118 // ^
119 // z = y - h (x )
120 // k k k|k-1
121 //
122 // ^ ^
123 // x = x + K z
124 // k|k k|k-1 k k
125 //
126 // T
127 // S = H P H + R
128 // k k k|k-1 k
129 //
130 // T -1
131 // K = P H S
132 // k k|k-1 k k
133 //
134 // P = (I - K H ) P
135 // k|k k k k|k-1
136
137 Vector &Kalman::computeStateUpdate(Vector &x_est, const int &time) {
138 sotDEBUGIN(15);
139 if (time == 0) {
140 // First time return variance initial state
141 x_est = stateEstimation_;
142 // Set dependency to input signals for latter computations
143 stateUpdateSOUT.addDependency(measureSIN);
144 stateUpdateSOUT.addDependency(observationPredictedSIN);
145 stateUpdateSOUT.addDependency(modelMeasureSIN);
146 stateUpdateSOUT.addDependency(noiseTransitionSIN);
147 stateUpdateSOUT.addDependency(noiseMeasureSIN);
148 stateUpdateSOUT.addDependency(statePredictedSIN);
149 stateUpdateSOUT.addDependency(varianceUpdateSOUT);
150 } else {
151 varianceUpdateSOUT.recompute(time);
152 const Vector &x_pred = statePredictedSIN(time);
153 const Vector &y_pred = observationPredictedSIN(time);
154 const Vector &y = measureSIN(time);
155
156 sotDEBUG(25) << "K_{k} = " << std::endl << K_ << std::endl;
157 sotDEBUG(25) << "y = " << y << std::endl;
158 sotDEBUG(25) << "h (\\hat{x}_{k|k-1}) = " << y_pred << std::endl;
159 sotDEBUG(25) << "y = " << y << std::endl;
160
161 // Innovation: z_ = y - Hx
162 z_ = y - y_pred;
163 // x_est = x_pred + (K*(y-(H*x_pred)));
164 x_est = x_pred + K_ * z_;
165
166 sotDEBUG(25) << "z_{k} = " << z_ << std::endl;
167 sotDEBUG(25) << "x_{k|k} = " << x_est << std::endl;
168
169 stateEstimation_ = x_est;
170 }
171 sotDEBUGOUT(15);
172 return x_est;
173 }
174
175 /* -------------------------------------------------------------------------- */
176 /* --- MODELE --------------------------------------------------------------- */
177 /* -------------------------------------------------------------------------- */
178
179 void Kalman::display(std::ostream &) const {}
180
181 } // namespace sot
182 } // namespace dynamicgraph
183
184 /*!
185 \file Kalman.cpp
186 \brief Generic kalman filtering implementation
187 */
188