Line |
Branch |
Exec |
Source |
1 |
|
|
/* |
2 |
|
|
* Copyright 2010, 2011, 2012 |
3 |
|
|
* Nicolas Mansard, |
4 |
|
|
* François Bleibel, |
5 |
|
|
* Olivier Stasse, |
6 |
|
|
* Florent Lamiraux |
7 |
|
|
* |
8 |
|
|
* CNRS/AIST |
9 |
|
|
* |
10 |
|
|
*/ |
11 |
|
|
|
12 |
|
|
#ifndef __SOT_KALMAN_H |
13 |
|
|
#define __SOT_KALMAN_H |
14 |
|
|
|
15 |
|
|
/* -------------------------------------------------------------------------- */ |
16 |
|
|
/* --- INCLUDE -------------------------------------------------------------- */ |
17 |
|
|
/* -------------------------------------------------------------------------- */ |
18 |
|
|
|
19 |
|
|
#include <dynamic-graph/all-signals.h> |
20 |
|
|
#include <dynamic-graph/entity.h> |
21 |
|
|
#include <dynamic-graph/linear-algebra.h> |
22 |
|
|
|
23 |
|
|
#include <Eigen/LU> |
24 |
|
|
|
25 |
|
|
/* -------------------------------------------------------------------------- */ |
26 |
|
|
/* --- API ------------------------------------------------------------------ */ |
27 |
|
|
/* -------------------------------------------------------------------------- */ |
28 |
|
|
|
29 |
|
|
#if defined(WIN32) |
30 |
|
|
#if defined(kalman_EXPORTS) |
31 |
|
|
#define SOT_KALMAN_EXPORT __declspec(dllexport) |
32 |
|
|
#else |
33 |
|
|
#define SOT_KALMAN_EXPORT __declspec(dllimport) |
34 |
|
|
#endif |
35 |
|
|
#else |
36 |
|
|
#define SOT_KALMAN_EXPORT |
37 |
|
|
#endif |
38 |
|
|
|
39 |
|
|
/* -------------------------------------------------------------------------- */ |
40 |
|
|
/* --- CLASSE --------------------------------------------------------------- */ |
41 |
|
|
/* -------------------------------------------------------------------------- */ |
42 |
|
|
|
43 |
|
|
namespace dynamicgraph { |
44 |
|
|
namespace sot { |
45 |
|
|
|
46 |
|
|
class SOT_KALMAN_EXPORT Kalman : public Entity { |
47 |
|
|
public: |
48 |
|
|
static const std::string CLASS_NAME; |
49 |
|
✗ |
virtual const std::string &getClassName(void) const { return CLASS_NAME; } |
50 |
|
|
|
51 |
|
|
protected: |
52 |
|
|
unsigned int size_state; |
53 |
|
|
unsigned int size_measure; |
54 |
|
|
double dt; |
55 |
|
|
|
56 |
|
|
public: |
57 |
|
|
SignalPtr<Vector, int> measureSIN; // y |
58 |
|
|
SignalPtr<Matrix, int> modelTransitionSIN; // F |
59 |
|
|
SignalPtr<Matrix, int> modelMeasureSIN; // H |
60 |
|
|
SignalPtr<Matrix, int> noiseTransitionSIN; // Q |
61 |
|
|
SignalPtr<Matrix, int> noiseMeasureSIN; // R |
62 |
|
|
|
63 |
|
|
SignalPtr<Vector, int> statePredictedSIN; // x_{k|k-1} |
64 |
|
|
SignalPtr<Vector, int> observationPredictedSIN; // y_pred = h (x_{k|k-1}) |
65 |
|
|
SignalTimeDependent<Matrix, int> varianceUpdateSOUT; // P |
66 |
|
|
SignalTimeDependent<Vector, int> stateUpdateSOUT; // X_est |
67 |
|
|
|
68 |
|
|
SignalTimeDependent<Matrix, int> gainSINTERN; // K |
69 |
|
|
SignalTimeDependent<Matrix, int> innovationSINTERN; // S |
70 |
|
|
|
71 |
|
|
public: |
72 |
|
✗ |
virtual std::string getDocString() const { |
73 |
|
|
return "Implementation of extended Kalman filter \n" |
74 |
|
|
"\n" |
75 |
|
|
" Dynamics of the system: \n" |
76 |
|
|
"\n" |
77 |
|
|
" x = f (x , u ) + w (state) \n" |
78 |
|
|
" k k-1 k-1 k-1 \n" |
79 |
|
|
"\n" |
80 |
|
|
" y = h (x ) + v (observation)\n" |
81 |
|
|
" k k k \n" |
82 |
|
|
"\n" |
83 |
|
|
" Prediction:\n" |
84 |
|
|
"\n" |
85 |
|
|
" ^ ^ \n" |
86 |
|
|
" x = f (x , u ) (state) \n" |
87 |
|
|
" k|k-1 k-1|k-1 k-1 \n" |
88 |
|
|
"\n" |
89 |
|
|
" T \n" |
90 |
|
|
" P = F P F + Q (covariance)\n" |
91 |
|
|
" k|k-1 k-1 k-1|k-1 k-1 \n" |
92 |
|
|
"\n" |
93 |
|
|
" with\n" |
94 |
|
|
" \\ \n" |
95 |
|
|
" d f ^ \n" |
96 |
|
|
" F = --- (x , u ) \n" |
97 |
|
|
" k-1 \\ k-1|k-1 k-1 \n" |
98 |
|
|
" d x \n" |
99 |
|
|
"\n" |
100 |
|
|
" \\ \n" |
101 |
|
|
" d h ^ \n" |
102 |
|
|
" H = --- (x ) \n" |
103 |
|
|
" k \\ k-1|k-1 \n" |
104 |
|
|
" d x \n" |
105 |
|
|
|
106 |
|
|
" Update:\n" |
107 |
|
|
"\n" |
108 |
|
|
" ^ \n" |
109 |
|
|
" z = y - h (x ) (innovation)\n" |
110 |
|
|
" k k k|k-1 \n" |
111 |
|
|
" T \n" |
112 |
|
|
" S = H P H + R (innovation covariance)\n" |
113 |
|
|
" k k k|k-1 k \n" |
114 |
|
|
" T -1 \n" |
115 |
|
|
" K = P H S (Kalman gain)\n" |
116 |
|
|
" k k|k-1 k k \n" |
117 |
|
|
" ^ ^ \n" |
118 |
|
|
" x = x + K z (state) \n" |
119 |
|
|
" k|k k|k-1 k k \n" |
120 |
|
|
"\n" |
121 |
|
|
" P =(I - K H ) P \n" |
122 |
|
|
" k|k k k k|k-1 \n" |
123 |
|
|
"\n" |
124 |
|
|
" Signals\n" |
125 |
|
|
" - input(vector)::x_pred: state prediction\n" |
126 |
|
|
" ^\n" |
127 |
|
|
" - input(vector)::y_pred: observation prediction: h (x )\n" |
128 |
|
|
" k|k-1\n" |
129 |
|
|
" - input(matrix)::F: partial derivative wrt x of f\n" |
130 |
|
|
" - input(vector)::y: measure \n" |
131 |
|
|
" - input(matrix)::H: partial derivative wrt x of h\n" |
132 |
|
|
" - input(matrix)::Q: variance of noise w\n" |
133 |
|
|
" k-1\n" |
134 |
|
|
" - input(matrix)::R: variance of noise v\n" |
135 |
|
|
" k\n" |
136 |
|
|
" - output(matrix)::P_pred: variance of prediction\n" |
137 |
|
|
" ^\n" |
138 |
|
|
" - output(vector)::x_est: state estimation x\n" |
139 |
|
✗ |
" k|k\n"; |
140 |
|
|
} |
141 |
|
|
|
142 |
|
|
protected: |
143 |
|
|
Matrix &computeVarianceUpdate(Matrix &P_k_k, const int &time); |
144 |
|
|
Vector &computeStateUpdate(Vector &x_est, const int &time); |
145 |
|
|
|
146 |
|
✗ |
void setStateEstimation(const Vector &x0) { |
147 |
|
✗ |
stateEstimation_ = x0; |
148 |
|
✗ |
stateUpdateSOUT.recompute(0); |
149 |
|
|
} |
150 |
|
|
|
151 |
|
✗ |
void setStateVariance(const Matrix &P0) { |
152 |
|
✗ |
stateVariance_ = P0; |
153 |
|
✗ |
varianceUpdateSOUT.recompute(0); |
154 |
|
|
} |
155 |
|
|
// Current state estimation |
156 |
|
|
// ^ |
157 |
|
|
// x |
158 |
|
|
// k-1|k-1 |
159 |
|
|
Vector stateEstimation_; |
160 |
|
|
// Variance of current state estimation |
161 |
|
|
// P |
162 |
|
|
// k-1|k-1 |
163 |
|
|
Matrix stateVariance_; |
164 |
|
|
|
165 |
|
|
// ^ |
166 |
|
|
// Innovation: z = y - H x |
167 |
|
|
// k k k k|k-1 |
168 |
|
|
Vector z_; |
169 |
|
|
|
170 |
|
|
// F P |
171 |
|
|
// k-1 k-1|k-1 |
172 |
|
|
Matrix FP_; |
173 |
|
|
|
174 |
|
|
// Variance prediction |
175 |
|
|
// P |
176 |
|
|
// k|k-1 |
177 |
|
|
Matrix Pk_k_1_; |
178 |
|
|
|
179 |
|
|
// Innovation covariance |
180 |
|
|
Matrix S_; |
181 |
|
|
|
182 |
|
|
// Kalman Gain |
183 |
|
|
Matrix K_; |
184 |
|
|
|
185 |
|
|
public: |
186 |
|
|
Kalman(const std::string &name); |
187 |
|
|
/* --- Entity --- */ |
188 |
|
|
void display(std::ostream &os) const; |
189 |
|
|
}; |
190 |
|
|
|
191 |
|
|
} // namespace sot |
192 |
|
|
} // namespace dynamicgraph |
193 |
|
|
|
194 |
|
|
/*! |
195 |
|
|
\file Kalman.h |
196 |
|
|
\brief Extended kalman filter implementation |
197 |
|
|
*/ |
198 |
|
|
|
199 |
|
|
#endif |
200 |
|
|
|