Line |
Branch |
Exec |
Source |
1 |
|
|
// |
2 |
|
|
// Copyright (c) 2017 CNRS |
3 |
|
|
// |
4 |
|
|
// This file is part of tsid |
5 |
|
|
// tsid is free software: you can redistribute it |
6 |
|
|
// and/or modify it under the terms of the GNU Lesser General Public |
7 |
|
|
// License as published by the Free Software Foundation, either version |
8 |
|
|
// 3 of the License, or (at your option) any later version. |
9 |
|
|
// tsid is distributed in the hope that it will be |
10 |
|
|
// useful, but WITHOUT ANY WARRANTY; without even the implied warranty |
11 |
|
|
// of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
12 |
|
|
// General Lesser Public License for more details. You should have |
13 |
|
|
// received a copy of the GNU Lesser General Public License along with |
14 |
|
|
// tsid If not, see |
15 |
|
|
// <http://www.gnu.org/licenses/>. |
16 |
|
|
// |
17 |
|
|
|
18 |
|
|
#include "tsid/solvers/solver-HQP-eiquadprog-fast.hpp" |
19 |
|
|
#include "tsid/math/utils.hpp" |
20 |
|
|
#include "eiquadprog/eiquadprog-fast.hpp" |
21 |
|
|
#include "tsid/utils/stop-watch.hpp" |
22 |
|
|
|
23 |
|
|
// #define PROFILE_EIQUADPROG_FAST |
24 |
|
|
|
25 |
|
|
using namespace eiquadprog::solvers; |
26 |
|
|
|
27 |
|
|
namespace tsid { |
28 |
|
|
namespace solvers { |
29 |
|
|
|
30 |
|
|
using namespace math; |
31 |
|
✗ |
SolverHQuadProgFast::SolverHQuadProgFast(const std::string& name) |
32 |
|
|
: SolverHQPBase(name), |
33 |
|
✗ |
m_hessian_regularization(DEFAULT_HESSIAN_REGULARIZATION) { |
34 |
|
✗ |
m_n = 0; |
35 |
|
✗ |
m_neq = 0; |
36 |
|
✗ |
m_nin = 0; |
37 |
|
|
} |
38 |
|
|
|
39 |
|
✗ |
void SolverHQuadProgFast::sendMsg(const std::string& s) { |
40 |
|
✗ |
std::cout << "[SolverHQuadProgFast." << m_name << "] " << s << std::endl; |
41 |
|
|
} |
42 |
|
|
|
43 |
|
✗ |
void SolverHQuadProgFast::resize(unsigned int n, unsigned int neq, |
44 |
|
|
unsigned int nin) { |
45 |
|
✗ |
const bool resizeVar = n != m_n; |
46 |
|
✗ |
const bool resizeEq = (resizeVar || neq != m_neq); |
47 |
|
✗ |
const bool resizeIn = (resizeVar || nin != m_nin); |
48 |
|
|
|
49 |
|
✗ |
if (resizeEq) { |
50 |
|
|
#ifndef NDEBUG |
51 |
|
✗ |
sendMsg("Resizing equality constraints from " + toString(m_neq) + " to " + |
52 |
|
✗ |
toString(neq)); |
53 |
|
|
#endif |
54 |
|
✗ |
m_qpData.CE.resize(neq, n); |
55 |
|
✗ |
m_qpData.ce0.resize(neq); |
56 |
|
|
} |
57 |
|
✗ |
if (resizeIn) { |
58 |
|
|
#ifndef NDEBUG |
59 |
|
✗ |
sendMsg("Resizing inequality constraints from " + toString(m_nin) + " to " + |
60 |
|
✗ |
toString(nin)); |
61 |
|
|
#endif |
62 |
|
✗ |
m_qpData.CI.resize(2 * nin, n); |
63 |
|
✗ |
m_qpData.ci0.resize(2 * nin); |
64 |
|
|
} |
65 |
|
✗ |
if (resizeVar) { |
66 |
|
|
#ifndef NDEBUG |
67 |
|
✗ |
sendMsg("Resizing Hessian from " + toString(m_n) + " to " + toString(n)); |
68 |
|
|
#endif |
69 |
|
✗ |
m_qpData.H.resize(n, n); |
70 |
|
✗ |
m_qpData.g.resize(n); |
71 |
|
✗ |
m_output.x.resize(n); |
72 |
|
|
} |
73 |
|
|
|
74 |
|
✗ |
if (resizeVar || resizeIn || resizeEq) { |
75 |
|
✗ |
m_solver.reset(n, neq, nin * 2); |
76 |
|
✗ |
m_output.resize(n, neq, 2 * nin); |
77 |
|
|
} |
78 |
|
|
|
79 |
|
✗ |
m_n = n; |
80 |
|
✗ |
m_neq = neq; |
81 |
|
✗ |
m_nin = nin; |
82 |
|
|
} |
83 |
|
|
|
84 |
|
✗ |
void SolverHQuadProgFast::retrieveQPData(const HQPData& problemData, |
85 |
|
|
const bool hessianRegularization) { |
86 |
|
✗ |
if (problemData.size() > 2) { |
87 |
|
✗ |
PINOCCHIO_CHECK_INPUT_ARGUMENT( |
88 |
|
|
false, "Solver not implemented for more than 2 hierarchical levels."); |
89 |
|
|
} |
90 |
|
|
|
91 |
|
|
// Compute the constraint matrix sizes |
92 |
|
✗ |
unsigned int neq = 0, nin = 0; |
93 |
|
✗ |
const ConstraintLevel& cl0 = problemData[0]; |
94 |
|
✗ |
if (cl0.size() > 0) { |
95 |
|
✗ |
const unsigned int n = cl0[0].second->cols(); |
96 |
|
✗ |
for (ConstraintLevel::const_iterator it = cl0.begin(); it != cl0.end(); |
97 |
|
✗ |
it++) { |
98 |
|
✗ |
auto constr = it->second; |
99 |
|
✗ |
assert(n == constr->cols()); |
100 |
|
✗ |
if (constr->isEquality()) |
101 |
|
✗ |
neq += constr->rows(); |
102 |
|
|
else |
103 |
|
✗ |
nin += constr->rows(); |
104 |
|
|
} |
105 |
|
|
// If necessary, resize the constraint matrices |
106 |
|
✗ |
resize(n, neq, nin); |
107 |
|
|
|
108 |
|
✗ |
unsigned int i_eq = 0, i_in = 0; |
109 |
|
✗ |
for (ConstraintLevel::const_iterator it = cl0.begin(); it != cl0.end(); |
110 |
|
✗ |
it++) { |
111 |
|
✗ |
auto constr = it->second; |
112 |
|
✗ |
if (constr->isEquality()) { |
113 |
|
✗ |
m_qpData.CE.middleRows(i_eq, constr->rows()) = constr->matrix(); |
114 |
|
✗ |
m_qpData.ce0.segment(i_eq, constr->rows()) = -constr->vector(); |
115 |
|
✗ |
i_eq += constr->rows(); |
116 |
|
|
|
117 |
|
✗ |
} else if (constr->isInequality()) { |
118 |
|
✗ |
m_qpData.CI.middleRows(i_in, constr->rows()) = constr->matrix(); |
119 |
|
✗ |
m_qpData.ci0.segment(i_in, constr->rows()) = -constr->lowerBound(); |
120 |
|
✗ |
i_in += constr->rows(); |
121 |
|
✗ |
m_qpData.CI.middleRows(i_in, constr->rows()) = -constr->matrix(); |
122 |
|
✗ |
m_qpData.ci0.segment(i_in, constr->rows()) = constr->upperBound(); |
123 |
|
✗ |
i_in += constr->rows(); |
124 |
|
✗ |
} else if (constr->isBound()) { |
125 |
|
✗ |
m_qpData.CI.middleRows(i_in, constr->rows()).setIdentity(); |
126 |
|
✗ |
m_qpData.ci0.segment(i_in, constr->rows()) = -constr->lowerBound(); |
127 |
|
✗ |
i_in += constr->rows(); |
128 |
|
✗ |
m_qpData.CI.middleRows(i_in, constr->rows()) = |
129 |
|
✗ |
-Matrix::Identity(m_n, m_n); |
130 |
|
✗ |
m_qpData.ci0.segment(i_in, constr->rows()) = constr->upperBound(); |
131 |
|
✗ |
i_in += constr->rows(); |
132 |
|
|
} |
133 |
|
|
} |
134 |
|
|
} else |
135 |
|
✗ |
resize(m_n, neq, nin); |
136 |
|
|
|
137 |
|
✗ |
EIGEN_MALLOC_NOT_ALLOWED; |
138 |
|
|
|
139 |
|
|
// Compute the cost |
140 |
|
✗ |
if (problemData.size() > 1) { |
141 |
|
✗ |
const ConstraintLevel& cl1 = problemData[1]; |
142 |
|
✗ |
m_qpData.H.setZero(); |
143 |
|
✗ |
m_qpData.g.setZero(); |
144 |
|
|
|
145 |
|
✗ |
for (ConstraintLevel::const_iterator it = cl1.begin(); it != cl1.end(); |
146 |
|
✗ |
it++) { |
147 |
|
✗ |
const double& w = it->first; |
148 |
|
✗ |
auto constr = it->second; |
149 |
|
✗ |
if (!constr->isEquality()) |
150 |
|
✗ |
PINOCCHIO_CHECK_INPUT_ARGUMENT( |
151 |
|
|
false, "Inequalities in the cost function are not implemented yet"); |
152 |
|
|
|
153 |
|
✗ |
EIGEN_MALLOC_ALLOWED; |
154 |
|
✗ |
m_qpData.H.noalias() += |
155 |
|
✗ |
w * constr->matrix().transpose() * constr->matrix(); |
156 |
|
✗ |
EIGEN_MALLOC_NOT_ALLOWED; |
157 |
|
|
|
158 |
|
✗ |
m_qpData.g.noalias() -= |
159 |
|
✗ |
w * constr->matrix().transpose() * constr->vector(); |
160 |
|
|
} |
161 |
|
|
|
162 |
|
✗ |
if (hessianRegularization) { |
163 |
|
✗ |
double m_hessian_regularization(DEFAULT_HESSIAN_REGULARIZATION); |
164 |
|
✗ |
m_qpData.H.diagonal().array() += m_hessian_regularization; |
165 |
|
|
} |
166 |
|
|
} |
167 |
|
|
} |
168 |
|
|
|
169 |
|
✗ |
const HQPOutput& SolverHQuadProgFast::solve(const HQPData& problemData) { |
170 |
|
✗ |
SolverHQuadProgFast::retrieveQPData(problemData); |
171 |
|
|
|
172 |
|
|
START_PROFILER_EIQUADPROG_FAST(PROFILE_EIQUADPROG_SOLUTION); |
173 |
|
|
// min 0.5 * x G x + g0 x |
174 |
|
|
// s.t. |
175 |
|
|
// CE x + ce0 = 0 |
176 |
|
|
// CI x + ci0 >= 0 |
177 |
|
✗ |
EIGEN_MALLOC_ALLOWED |
178 |
|
|
eiquadprog::solvers::EiquadprogFast_status status = |
179 |
|
✗ |
m_solver.solve_quadprog(m_qpData.H, m_qpData.g, m_qpData.CE, m_qpData.ce0, |
180 |
|
✗ |
m_qpData.CI, m_qpData.ci0, m_output.x); |
181 |
|
|
|
182 |
|
|
STOP_PROFILER_EIQUADPROG_FAST(PROFILE_EIQUADPROG_SOLUTION); |
183 |
|
|
|
184 |
|
✗ |
if (status == EIQUADPROG_FAST_OPTIMAL) { |
185 |
|
✗ |
m_output.status = HQP_STATUS_OPTIMAL; |
186 |
|
✗ |
m_output.lambda = m_solver.getLagrangeMultipliers(); |
187 |
|
✗ |
m_output.iterations = m_solver.getIteratios(); |
188 |
|
|
// m_output.activeSet = |
189 |
|
|
// m_solver.getActiveSet().tail(2*m_nin).head(m_solver.getActiveSetSize()-m_neq); |
190 |
|
✗ |
m_output.activeSet = m_solver.getActiveSet().segment( |
191 |
|
✗ |
m_neq, m_solver.getActiveSetSize() - m_neq); |
192 |
|
|
#ifndef NDEBUG |
193 |
|
✗ |
const Vector& x = m_output.x; |
194 |
|
|
|
195 |
|
✗ |
const ConstraintLevel& cl0 = problemData[0]; |
196 |
|
✗ |
if (cl0.size() > 0) { |
197 |
|
✗ |
for (ConstraintLevel::const_iterator it = cl0.begin(); it != cl0.end(); |
198 |
|
✗ |
it++) { |
199 |
|
✗ |
auto constr = it->second; |
200 |
|
✗ |
if (constr->checkConstraint(x) == false) { |
201 |
|
|
// m_output.status = HQP_STATUS_ERROR; |
202 |
|
✗ |
if (constr->isEquality()) { |
203 |
|
✗ |
sendMsg("Equality " + constr->name() + " violated: " + |
204 |
|
✗ |
toString((constr->matrix() * x - constr->vector()).norm())); |
205 |
|
✗ |
} else if (constr->isInequality()) { |
206 |
|
✗ |
sendMsg( |
207 |
|
✗ |
"Inequality " + constr->name() + " violated: " + |
208 |
|
✗ |
toString( |
209 |
|
✗ |
(constr->matrix() * x - constr->lowerBound()).minCoeff()) + |
210 |
|
✗ |
"\n" + |
211 |
|
✗ |
toString( |
212 |
|
✗ |
(constr->upperBound() - constr->matrix() * x).minCoeff())); |
213 |
|
✗ |
} else if (constr->isBound()) { |
214 |
|
✗ |
sendMsg("Bound " + constr->name() + " violated: " + |
215 |
|
✗ |
toString((x - constr->lowerBound()).minCoeff()) + "\n" + |
216 |
|
✗ |
toString((constr->upperBound() - x).minCoeff())); |
217 |
|
|
} |
218 |
|
|
} |
219 |
|
|
} |
220 |
|
|
} |
221 |
|
|
#endif |
222 |
|
✗ |
} else if (status == EIQUADPROG_FAST_UNBOUNDED) |
223 |
|
✗ |
m_output.status = HQP_STATUS_INFEASIBLE; |
224 |
|
✗ |
else if (status == EIQUADPROG_FAST_MAX_ITER_REACHED) |
225 |
|
✗ |
m_output.status = HQP_STATUS_MAX_ITER_REACHED; |
226 |
|
✗ |
else if (status == EIQUADPROG_FAST_REDUNDANT_EQUALITIES) |
227 |
|
✗ |
m_output.status = HQP_STATUS_ERROR; |
228 |
|
|
|
229 |
|
✗ |
return m_output; |
230 |
|
|
} |
231 |
|
|
|
232 |
|
✗ |
double SolverHQuadProgFast::getObjectiveValue() { |
233 |
|
✗ |
return m_solver.getObjValue(); |
234 |
|
|
} |
235 |
|
|
|
236 |
|
✗ |
bool SolverHQuadProgFast::setMaximumIterations(unsigned int maxIter) { |
237 |
|
✗ |
SolverHQPBase::setMaximumIterations(maxIter); |
238 |
|
✗ |
return m_solver.setMaxIter(maxIter); |
239 |
|
|
} |
240 |
|
|
} // namespace solvers |
241 |
|
|
} // namespace tsid |
242 |
|
|
|