1 |
|
|
// |
2 |
|
|
// Copyright (c) 2017 CNRS |
3 |
|
|
// |
4 |
|
|
// This file is part of tsid |
5 |
|
|
// tsid is free software: you can redistribute it |
6 |
|
|
// and/or modify it under the terms of the GNU Lesser General Public |
7 |
|
|
// License as published by the Free Software Foundation, either version |
8 |
|
|
// 3 of the License, or (at your option) any later version. |
9 |
|
|
// tsid is distributed in the hope that it will be |
10 |
|
|
// useful, but WITHOUT ANY WARRANTY; without even the implied warranty |
11 |
|
|
// of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
12 |
|
|
// General Lesser Public License for more details. You should have |
13 |
|
|
// received a copy of the GNU Lesser General Public License along with |
14 |
|
|
// tsid If not, see |
15 |
|
|
// <http://www.gnu.org/licenses/>. |
16 |
|
|
// |
17 |
|
|
|
18 |
|
|
#include "tsid/solvers/solver-HQP-eiquadprog.hpp" |
19 |
|
|
#include "tsid/math/utils.hpp" |
20 |
|
|
#include "eiquadprog/eiquadprog.hpp" |
21 |
|
|
#include "tsid/utils/stop-watch.hpp" |
22 |
|
|
|
23 |
|
|
using namespace tsid::math; |
24 |
|
|
using namespace tsid::solvers; |
25 |
|
|
using namespace Eigen; |
26 |
|
|
|
27 |
|
|
SolverHQuadProg::SolverHQuadProg(const std::string& name) |
28 |
|
|
: SolverHQPBase(name), |
29 |
|
|
m_hessian_regularization(DEFAULT_HESSIAN_REGULARIZATION) { |
30 |
|
|
m_n = 0; |
31 |
|
|
m_neq = 0; |
32 |
|
|
m_nin = 0; |
33 |
|
|
} |
34 |
|
|
|
35 |
|
|
void SolverHQuadProg::sendMsg(const std::string& s) { |
36 |
|
|
std::cout << "[SolverHQuadProg." << m_name << "] " << s << std::endl; |
37 |
|
|
} |
38 |
|
|
|
39 |
|
|
void SolverHQuadProg::resize(unsigned int n, unsigned int neq, |
40 |
|
|
unsigned int nin) { |
41 |
|
|
const bool resizeVar = n != m_n; |
42 |
|
|
const bool resizeEq = (resizeVar || neq != m_neq); |
43 |
|
|
const bool resizeIn = (resizeVar || nin != m_nin); |
44 |
|
|
|
45 |
|
|
if (resizeEq) { |
46 |
|
|
#ifndef NDEBUG |
47 |
|
|
sendMsg("Resizing equality constraints from " + toString(m_neq) + " to " + |
48 |
|
|
toString(neq)); |
49 |
|
|
#endif |
50 |
|
|
m_qpData.CE.resize(neq, n); |
51 |
|
|
m_qpData.ce0.resize(neq); |
52 |
|
|
} |
53 |
|
|
if (resizeIn) { |
54 |
|
|
#ifndef NDEBUG |
55 |
|
|
sendMsg("Resizing inequality constraints from " + toString(m_nin) + " to " + |
56 |
|
|
toString(nin)); |
57 |
|
|
#endif |
58 |
|
|
m_qpData.CI.resize(2 * nin, n); |
59 |
|
|
m_qpData.ci0.resize(2 * nin); |
60 |
|
|
} |
61 |
|
|
if (resizeVar) { |
62 |
|
|
#ifndef NDEBUG |
63 |
|
|
sendMsg("Resizing Hessian from " + toString(m_n) + " to " + toString(n)); |
64 |
|
|
#endif |
65 |
|
|
m_qpData.H.resize(n, n); |
66 |
|
|
m_qpData.g.resize(n); |
67 |
|
|
m_output.x.resize(n); |
68 |
|
|
} |
69 |
|
|
|
70 |
|
|
m_n = n; |
71 |
|
|
m_neq = neq; |
72 |
|
|
m_nin = nin; |
73 |
|
|
} |
74 |
|
|
|
75 |
|
|
void SolverHQuadProg::retrieveQPData(const HQPData& problemData, |
76 |
|
|
const bool /*hessianRegularization*/) { |
77 |
|
|
if (problemData.size() > 2) { |
78 |
|
|
PINOCCHIO_CHECK_INPUT_ARGUMENT( |
79 |
|
|
false, "Solver not implemented for more than 2 hierarchical levels."); |
80 |
|
|
} |
81 |
|
|
|
82 |
|
|
// Compute the constraint matrix sizes |
83 |
|
|
unsigned int neq = 0, nin = 0; |
84 |
|
|
const ConstraintLevel& cl0 = problemData[0]; |
85 |
|
|
if (cl0.size() > 0) { |
86 |
|
|
const unsigned int n = cl0[0].second->cols(); |
87 |
|
|
for (ConstraintLevel::const_iterator it = cl0.begin(); it != cl0.end(); |
88 |
|
|
it++) { |
89 |
|
|
auto constr = it->second; |
90 |
|
|
assert(n == constr->cols()); |
91 |
|
|
if (constr->isEquality()) |
92 |
|
|
neq += constr->rows(); |
93 |
|
|
else |
94 |
|
|
nin += constr->rows(); |
95 |
|
|
} |
96 |
|
|
// If necessary, resize the constraint matrices |
97 |
|
|
resize(n, neq, nin); |
98 |
|
|
|
99 |
|
|
int i_eq = 0, i_in = 0; |
100 |
|
|
for (ConstraintLevel::const_iterator it = cl0.begin(); it != cl0.end(); |
101 |
|
|
it++) { |
102 |
|
|
auto constr = it->second; |
103 |
|
|
if (constr->isEquality()) { |
104 |
|
|
m_qpData.CE.middleRows(i_eq, constr->rows()) = constr->matrix(); |
105 |
|
|
m_qpData.ce0.segment(i_eq, constr->rows()) = -constr->vector(); |
106 |
|
|
i_eq += constr->rows(); |
107 |
|
|
} else if (constr->isInequality()) { |
108 |
|
|
m_qpData.CI.middleRows(i_in, constr->rows()) = constr->matrix(); |
109 |
|
|
m_qpData.ci0.segment(i_in, constr->rows()) = -constr->lowerBound(); |
110 |
|
|
i_in += constr->rows(); |
111 |
|
|
m_qpData.CI.middleRows(i_in, constr->rows()) = -constr->matrix(); |
112 |
|
|
m_qpData.ci0.segment(i_in, constr->rows()) = constr->upperBound(); |
113 |
|
|
i_in += constr->rows(); |
114 |
|
|
} else if (constr->isBound()) { |
115 |
|
|
m_qpData.CI.middleRows(i_in, constr->rows()).setIdentity(); |
116 |
|
|
m_qpData.ci0.segment(i_in, constr->rows()) = -constr->lowerBound(); |
117 |
|
|
i_in += constr->rows(); |
118 |
|
|
m_qpData.CI.middleRows(i_in, constr->rows()) = |
119 |
|
|
-Matrix::Identity(m_n, m_n); |
120 |
|
|
m_qpData.ci0.segment(i_in, constr->rows()) = constr->upperBound(); |
121 |
|
|
i_in += constr->rows(); |
122 |
|
|
} |
123 |
|
|
} |
124 |
|
|
} else |
125 |
|
|
resize(m_n, neq, nin); |
126 |
|
|
|
127 |
|
|
if (problemData.size() > 1) { |
128 |
|
|
const ConstraintLevel& cl1 = problemData[1]; |
129 |
|
|
m_qpData.H.setZero(); |
130 |
|
|
m_qpData.g.setZero(); |
131 |
|
|
for (ConstraintLevel::const_iterator it = cl1.begin(); it != cl1.end(); |
132 |
|
|
it++) { |
133 |
|
|
const double& w = it->first; |
134 |
|
|
auto constr = it->second; |
135 |
|
|
if (!constr->isEquality()) |
136 |
|
|
PINOCCHIO_CHECK_INPUT_ARGUMENT( |
137 |
|
|
false, "Inequalities in the cost function are not implemented yet"); |
138 |
|
|
|
139 |
|
|
m_qpData.H += w * constr->matrix().transpose() * constr->matrix(); |
140 |
|
|
m_qpData.g -= w * (constr->matrix().transpose() * constr->vector()); |
141 |
|
|
} |
142 |
|
|
m_qpData.H.diagonal() += m_hessian_regularization * Vector::Ones(m_n); |
143 |
|
|
} |
144 |
|
|
|
145 |
|
|
#ifdef ELIMINATE_EQUALITY_CONSTRAINTS |
146 |
|
|
|
147 |
|
|
// eliminate equality constraints |
148 |
|
|
const int r = m_neq; |
149 |
|
|
Matrix Z(m_n, m_n - m_neq); |
150 |
|
|
Matrix ZT(m_n, m_n); |
151 |
|
|
m_ZT_H_Z.resize(m_n - r, m_n - r); |
152 |
|
|
|
153 |
|
|
START_PROFILER("Eiquadprog eliminate equalities"); |
154 |
|
|
if (m_neq > 0) { |
155 |
|
|
START_PROFILER("Eiquadprog CE decomposition"); |
156 |
|
|
// m_qpData.CE_dec.compute(m_qpData.CE, ComputeThinU | ComputeThinV); |
157 |
|
|
m_qpData.CE_dec.compute(m_qpData.CE); |
158 |
|
|
STOP_PROFILER("Eiquadprog CE decomposition"); |
159 |
|
|
|
160 |
|
|
START_PROFILER("Eiquadprog get CE null-space basis"); |
161 |
|
|
// get nullspace basis from SVD |
162 |
|
|
// const int r = m_qpData.CE_dec.nonzeroSingularValues(); |
163 |
|
|
// const Matrix Z = m_qpData.CE_dec.matrixV().rightCols(m_n-r); |
164 |
|
|
|
165 |
|
|
// get null space basis from ColPivHouseholderQR |
166 |
|
|
// Matrix Z = m_qpData.CE_dec.householderQ(); |
167 |
|
|
// Z = Z.rightCols(m_n-r); |
168 |
|
|
|
169 |
|
|
// get null space basis from COD |
170 |
|
|
// P^{-1} * y => colsPermutation() * y; |
171 |
|
|
// Z = m_qpData.CE_dec.matrixZ(); // * m_qpData.CE_dec.colsPermutation(); |
172 |
|
|
ZT.setIdentity(); |
173 |
|
|
// m_qpData.CE_dec.applyZAdjointOnTheLeftInPlace(ZT); |
174 |
|
|
typedef tsid::math::Index Index; |
175 |
|
|
const Index rank = m_qpData.CE_dec.rank(); |
176 |
|
|
Vector temp(m_n); |
177 |
|
|
for (Index k = 0; k < rank; ++k) { |
178 |
|
|
if (k != rank - 1) ZT.row(k).swap(ZT.row(rank - 1)); |
179 |
|
|
ZT.middleRows(rank - 1, m_n - rank + 1) |
180 |
|
|
.applyHouseholderOnTheLeft( |
181 |
|
|
m_qpData.CE_dec.matrixQTZ().row(k).tail(m_n - rank).adjoint(), |
182 |
|
|
m_qpData.CE_dec.zCoeffs()(k), &temp(0)); |
183 |
|
|
if (k != rank - 1) ZT.row(k).swap(ZT.row(rank - 1)); |
184 |
|
|
} |
185 |
|
|
STOP_PROFILER("Eiquadprog get CE null-space basis"); |
186 |
|
|
|
187 |
|
|
// find a solution for the equalities |
188 |
|
|
Vector x0 = m_qpData.CE_dec.solve(m_qpData.ce0); |
189 |
|
|
x0 = -x0; |
190 |
|
|
|
191 |
|
|
// START_PROFILER("Eiquadprog project Hessian full"); |
192 |
|
|
// m_ZT_H_Z.noalias() = Z.transpose()*m_qpData.H*Z; // this is too slow |
193 |
|
|
// STOP_PROFILER("Eiquadprog project Hessian full"); |
194 |
|
|
|
195 |
|
|
START_PROFILER("Eiquadprog project Hessian incremental"); |
196 |
|
|
const ConstraintLevel& cl1 = problemData[1]; |
197 |
|
|
m_ZT_H_Z.setZero(); |
198 |
|
|
// m_qpData.g.setZero(); |
199 |
|
|
Matrix AZ; |
200 |
|
|
for (ConstraintLevel::const_iterator it = cl1.begin(); it != cl1.end(); |
201 |
|
|
it++) { |
202 |
|
|
const double& w = it->first; |
203 |
|
|
auto constr = it->second; |
204 |
|
|
if (!constr->isEquality()) |
205 |
|
|
PINOCCHIO_CHECK_INPUT_ARGUMENT( |
206 |
|
|
false, "Inequalities in the cost function are not implemented yet"); |
207 |
|
|
|
208 |
|
|
AZ.noalias() = constr->matrix() * Z.rightCols(m_n - r); |
209 |
|
|
m_ZT_H_Z += w * AZ.transpose() * AZ; |
210 |
|
|
// m_qpData.g -= w*(constr->matrix().transpose()*constr->vector()); |
211 |
|
|
} |
212 |
|
|
// m_ZT_H_Z.diagonal() += 1e-8*Vector::Ones(m_n); |
213 |
|
|
m_qpData.CI_Z.noalias() = m_qpData.CI * Z.rightCols(m_n - r); |
214 |
|
|
STOP_PROFILER("Eiquadprog project Hessian incremental"); |
215 |
|
|
} |
216 |
|
|
STOP_PROFILER("Eiquadprog eliminate equalities"); |
217 |
|
|
#endif |
218 |
|
|
} |
219 |
|
|
|
220 |
|
|
const HQPOutput& SolverHQuadProg::solve(const HQPData& problemData) { |
221 |
|
|
// #ifndef NDEBUG |
222 |
|
|
// PRINT_MATRIX(m_qpData.H); |
223 |
|
|
// PRINT_VECTOR(m_qpData.g); |
224 |
|
|
// PRINT_MATRIX(m_qpData.CE); |
225 |
|
|
// PRINT_VECTOR(m_qpData.ce0); |
226 |
|
|
// PRINT_MATRIX(m_qpData.CI); |
227 |
|
|
// PRINT_VECTOR(m_qpData.ci0); |
228 |
|
|
// #endif |
229 |
|
|
SolverHQuadProg::retrieveQPData(problemData); |
230 |
|
|
|
231 |
|
|
// min 0.5 * x G x + g0 x |
232 |
|
|
// s.t. |
233 |
|
|
// CE^T x + ce0 = 0 |
234 |
|
|
// CI^T x + ci0 >= 0 |
235 |
|
|
m_objValue = eiquadprog::solvers::solve_quadprog( |
236 |
|
|
m_qpData.H, m_qpData.g, m_qpData.CE.transpose(), m_qpData.ce0, |
237 |
|
|
m_qpData.CI.transpose(), m_qpData.ci0, m_output.x, m_activeSet, |
238 |
|
|
m_activeSetSize); |
239 |
|
|
|
240 |
|
|
if (m_objValue == std::numeric_limits<double>::infinity()) |
241 |
|
|
m_output.status = HQP_STATUS_INFEASIBLE; |
242 |
|
|
else { |
243 |
|
|
m_output.status = HQP_STATUS_OPTIMAL; |
244 |
|
|
#ifndef NDEBUG |
245 |
|
|
const Vector& x = m_output.x; |
246 |
|
|
const ConstraintLevel& cl0 = problemData[0]; |
247 |
|
|
if (cl0.size() > 0) { |
248 |
|
|
for (ConstraintLevel::const_iterator it = cl0.begin(); it != cl0.end(); |
249 |
|
|
it++) { |
250 |
|
|
auto constr = it->second; |
251 |
|
|
if (constr->checkConstraint(x) == false) { |
252 |
|
|
if (constr->isEquality()) { |
253 |
|
|
sendMsg("Equality " + constr->name() + " violated: " + |
254 |
|
|
toString((constr->matrix() * x - constr->vector()).norm())); |
255 |
|
|
} else if (constr->isInequality()) { |
256 |
|
|
sendMsg( |
257 |
|
|
"Inequality " + constr->name() + " violated: " + |
258 |
|
|
toString( |
259 |
|
|
(constr->matrix() * x - constr->lowerBound()).minCoeff()) + |
260 |
|
|
"\n" + |
261 |
|
|
toString( |
262 |
|
|
(constr->upperBound() - constr->matrix() * x).minCoeff())); |
263 |
|
|
} else if (constr->isBound()) { |
264 |
|
|
sendMsg("Bound " + constr->name() + " violated: " + |
265 |
|
|
toString((x - constr->lowerBound()).minCoeff()) + "\n" + |
266 |
|
|
toString((constr->upperBound() - x).minCoeff())); |
267 |
|
|
} |
268 |
|
|
} |
269 |
|
|
} |
270 |
|
|
} |
271 |
|
|
#endif |
272 |
|
|
} |
273 |
|
|
|
274 |
|
|
return m_output; |
275 |
|
|
} |
276 |
|
|
|
277 |
|
|
double SolverHQuadProg::getObjectiveValue() { return m_objValue; } |