GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: src/solvers/solver-HQP-eiquadprog.cpp Lines: 0 114 0.0 %
Date: 2024-05-10 01:36:27 Branches: 0 354 0.0 %

Line Branch Exec Source
1
//
2
// Copyright (c) 2017 CNRS
3
//
4
// This file is part of tsid
5
// tsid is free software: you can redistribute it
6
// and/or modify it under the terms of the GNU Lesser General Public
7
// License as published by the Free Software Foundation, either version
8
// 3 of the License, or (at your option) any later version.
9
// tsid is distributed in the hope that it will be
10
// useful, but WITHOUT ANY WARRANTY; without even the implied warranty
11
// of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12
// General Lesser Public License for more details. You should have
13
// received a copy of the GNU Lesser General Public License along with
14
// tsid If not, see
15
// <http://www.gnu.org/licenses/>.
16
//
17
18
#include "tsid/solvers/solver-HQP-eiquadprog.hpp"
19
#include "tsid/math/utils.hpp"
20
#include "eiquadprog/eiquadprog.hpp"
21
#include "tsid/utils/stop-watch.hpp"
22
23
using namespace tsid::math;
24
using namespace tsid::solvers;
25
using namespace Eigen;
26
27
SolverHQuadProg::SolverHQuadProg(const std::string& name)
28
    : SolverHQPBase(name),
29
      m_hessian_regularization(DEFAULT_HESSIAN_REGULARIZATION) {
30
  m_n = 0;
31
  m_neq = 0;
32
  m_nin = 0;
33
}
34
35
void SolverHQuadProg::sendMsg(const std::string& s) {
36
  std::cout << "[SolverHQuadProg." << m_name << "] " << s << std::endl;
37
}
38
39
void SolverHQuadProg::resize(unsigned int n, unsigned int neq,
40
                             unsigned int nin) {
41
  const bool resizeVar = n != m_n;
42
  const bool resizeEq = (resizeVar || neq != m_neq);
43
  const bool resizeIn = (resizeVar || nin != m_nin);
44
45
  if (resizeEq) {
46
#ifndef NDEBUG
47
    sendMsg("Resizing equality constraints from " + toString(m_neq) + " to " +
48
            toString(neq));
49
#endif
50
    m_qpData.CE.resize(neq, n);
51
    m_qpData.ce0.resize(neq);
52
  }
53
  if (resizeIn) {
54
#ifndef NDEBUG
55
    sendMsg("Resizing inequality constraints from " + toString(m_nin) + " to " +
56
            toString(nin));
57
#endif
58
    m_qpData.CI.resize(2 * nin, n);
59
    m_qpData.ci0.resize(2 * nin);
60
  }
61
  if (resizeVar) {
62
#ifndef NDEBUG
63
    sendMsg("Resizing Hessian from " + toString(m_n) + " to " + toString(n));
64
#endif
65
    m_qpData.H.resize(n, n);
66
    m_qpData.g.resize(n);
67
    m_output.x.resize(n);
68
  }
69
70
  m_n = n;
71
  m_neq = neq;
72
  m_nin = nin;
73
}
74
75
void SolverHQuadProg::retrieveQPData(const HQPData& problemData,
76
                                     const bool /*hessianRegularization*/) {
77
  if (problemData.size() > 2) {
78
    PINOCCHIO_CHECK_INPUT_ARGUMENT(
79
        false, "Solver not implemented for more than 2 hierarchical levels.");
80
  }
81
82
  // Compute the constraint matrix sizes
83
  unsigned int neq = 0, nin = 0;
84
  const ConstraintLevel& cl0 = problemData[0];
85
  if (cl0.size() > 0) {
86
    const unsigned int n = cl0[0].second->cols();
87
    for (ConstraintLevel::const_iterator it = cl0.begin(); it != cl0.end();
88
         it++) {
89
      auto constr = it->second;
90
      assert(n == constr->cols());
91
      if (constr->isEquality())
92
        neq += constr->rows();
93
      else
94
        nin += constr->rows();
95
    }
96
    // If necessary, resize the constraint matrices
97
    resize(n, neq, nin);
98
99
    int i_eq = 0, i_in = 0;
100
    for (ConstraintLevel::const_iterator it = cl0.begin(); it != cl0.end();
101
         it++) {
102
      auto constr = it->second;
103
      if (constr->isEquality()) {
104
        m_qpData.CE.middleRows(i_eq, constr->rows()) = constr->matrix();
105
        m_qpData.ce0.segment(i_eq, constr->rows()) = -constr->vector();
106
        i_eq += constr->rows();
107
      } else if (constr->isInequality()) {
108
        m_qpData.CI.middleRows(i_in, constr->rows()) = constr->matrix();
109
        m_qpData.ci0.segment(i_in, constr->rows()) = -constr->lowerBound();
110
        i_in += constr->rows();
111
        m_qpData.CI.middleRows(i_in, constr->rows()) = -constr->matrix();
112
        m_qpData.ci0.segment(i_in, constr->rows()) = constr->upperBound();
113
        i_in += constr->rows();
114
      } else if (constr->isBound()) {
115
        m_qpData.CI.middleRows(i_in, constr->rows()).setIdentity();
116
        m_qpData.ci0.segment(i_in, constr->rows()) = -constr->lowerBound();
117
        i_in += constr->rows();
118
        m_qpData.CI.middleRows(i_in, constr->rows()) =
119
            -Matrix::Identity(m_n, m_n);
120
        m_qpData.ci0.segment(i_in, constr->rows()) = constr->upperBound();
121
        i_in += constr->rows();
122
      }
123
    }
124
  } else
125
    resize(m_n, neq, nin);
126
127
  if (problemData.size() > 1) {
128
    const ConstraintLevel& cl1 = problemData[1];
129
    m_qpData.H.setZero();
130
    m_qpData.g.setZero();
131
    for (ConstraintLevel::const_iterator it = cl1.begin(); it != cl1.end();
132
         it++) {
133
      const double& w = it->first;
134
      auto constr = it->second;
135
      if (!constr->isEquality())
136
        PINOCCHIO_CHECK_INPUT_ARGUMENT(
137
            false, "Inequalities in the cost function are not implemented yet");
138
139
      m_qpData.H += w * constr->matrix().transpose() * constr->matrix();
140
      m_qpData.g -= w * (constr->matrix().transpose() * constr->vector());
141
    }
142
    m_qpData.H.diagonal() += m_hessian_regularization * Vector::Ones(m_n);
143
  }
144
145
#ifdef ELIMINATE_EQUALITY_CONSTRAINTS
146
147
  // eliminate equality constraints
148
  const int r = m_neq;
149
  Matrix Z(m_n, m_n - m_neq);
150
  Matrix ZT(m_n, m_n);
151
  m_ZT_H_Z.resize(m_n - r, m_n - r);
152
153
  START_PROFILER("Eiquadprog eliminate equalities");
154
  if (m_neq > 0) {
155
    START_PROFILER("Eiquadprog CE decomposition");
156
    //    m_qpData.CE_dec.compute(m_qpData.CE, ComputeThinU | ComputeThinV);
157
    m_qpData.CE_dec.compute(m_qpData.CE);
158
    STOP_PROFILER("Eiquadprog CE decomposition");
159
160
    START_PROFILER("Eiquadprog get CE null-space basis");
161
    // get nullspace basis from SVD
162
    //    const int r = m_qpData.CE_dec.nonzeroSingularValues();
163
    //    const Matrix Z = m_qpData.CE_dec.matrixV().rightCols(m_n-r);
164
165
    // get null space basis from ColPivHouseholderQR
166
    //	Matrix Z = m_qpData.CE_dec.householderQ();
167
    //	Z = Z.rightCols(m_n-r);
168
169
    // get null space basis from COD
170
    // P^{-1} * y => colsPermutation() * y;
171
    //	Z = m_qpData.CE_dec.matrixZ(); // * m_qpData.CE_dec.colsPermutation();
172
    ZT.setIdentity();
173
    // m_qpData.CE_dec.applyZAdjointOnTheLeftInPlace(ZT);
174
    typedef tsid::math::Index Index;
175
    const Index rank = m_qpData.CE_dec.rank();
176
    Vector temp(m_n);
177
    for (Index k = 0; k < rank; ++k) {
178
      if (k != rank - 1) ZT.row(k).swap(ZT.row(rank - 1));
179
      ZT.middleRows(rank - 1, m_n - rank + 1)
180
          .applyHouseholderOnTheLeft(
181
              m_qpData.CE_dec.matrixQTZ().row(k).tail(m_n - rank).adjoint(),
182
              m_qpData.CE_dec.zCoeffs()(k), &temp(0));
183
      if (k != rank - 1) ZT.row(k).swap(ZT.row(rank - 1));
184
    }
185
    STOP_PROFILER("Eiquadprog get CE null-space basis");
186
187
    // find a solution for the equalities
188
    Vector x0 = m_qpData.CE_dec.solve(m_qpData.ce0);
189
    x0 = -x0;
190
191
    //    START_PROFILER("Eiquadprog project Hessian full");
192
    //    m_ZT_H_Z.noalias() = Z.transpose()*m_qpData.H*Z; // this is too slow
193
    //	STOP_PROFILER("Eiquadprog project Hessian full");
194
195
    START_PROFILER("Eiquadprog project Hessian incremental");
196
    const ConstraintLevel& cl1 = problemData[1];
197
    m_ZT_H_Z.setZero();
198
    // m_qpData.g.setZero();
199
    Matrix AZ;
200
    for (ConstraintLevel::const_iterator it = cl1.begin(); it != cl1.end();
201
         it++) {
202
      const double& w = it->first;
203
      auto constr = it->second;
204
      if (!constr->isEquality())
205
        PINOCCHIO_CHECK_INPUT_ARGUMENT(
206
            false, "Inequalities in the cost function are not implemented yet");
207
208
      AZ.noalias() = constr->matrix() * Z.rightCols(m_n - r);
209
      m_ZT_H_Z += w * AZ.transpose() * AZ;
210
      // m_qpData.g -= w*(constr->matrix().transpose()*constr->vector());
211
    }
212
    // m_ZT_H_Z.diagonal() += 1e-8*Vector::Ones(m_n);
213
    m_qpData.CI_Z.noalias() = m_qpData.CI * Z.rightCols(m_n - r);
214
    STOP_PROFILER("Eiquadprog project Hessian incremental");
215
  }
216
  STOP_PROFILER("Eiquadprog eliminate equalities");
217
#endif
218
}
219
220
const HQPOutput& SolverHQuadProg::solve(const HQPData& problemData) {
221
  // #ifndef NDEBUG
222
  //   PRINT_MATRIX(m_qpData.H);
223
  //   PRINT_VECTOR(m_qpData.g);
224
  //   PRINT_MATRIX(m_qpData.CE);
225
  //   PRINT_VECTOR(m_qpData.ce0);
226
  //   PRINT_MATRIX(m_qpData.CI);
227
  //   PRINT_VECTOR(m_qpData.ci0);
228
  // #endif
229
  SolverHQuadProg::retrieveQPData(problemData);
230
231
  //  min 0.5 * x G x + g0 x
232
  //  s.t.
233
  //  CE^T x + ce0 = 0
234
  //  CI^T x + ci0 >= 0
235
  m_objValue = eiquadprog::solvers::solve_quadprog(
236
      m_qpData.H, m_qpData.g, m_qpData.CE.transpose(), m_qpData.ce0,
237
      m_qpData.CI.transpose(), m_qpData.ci0, m_output.x, m_activeSet,
238
      m_activeSetSize);
239
240
  if (m_objValue == std::numeric_limits<double>::infinity())
241
    m_output.status = HQP_STATUS_INFEASIBLE;
242
  else {
243
    m_output.status = HQP_STATUS_OPTIMAL;
244
#ifndef NDEBUG
245
    const Vector& x = m_output.x;
246
    const ConstraintLevel& cl0 = problemData[0];
247
    if (cl0.size() > 0) {
248
      for (ConstraintLevel::const_iterator it = cl0.begin(); it != cl0.end();
249
           it++) {
250
        auto constr = it->second;
251
        if (constr->checkConstraint(x) == false) {
252
          if (constr->isEquality()) {
253
            sendMsg("Equality " + constr->name() + " violated: " +
254
                    toString((constr->matrix() * x - constr->vector()).norm()));
255
          } else if (constr->isInequality()) {
256
            sendMsg(
257
                "Inequality " + constr->name() + " violated: " +
258
                toString(
259
                    (constr->matrix() * x - constr->lowerBound()).minCoeff()) +
260
                "\n" +
261
                toString(
262
                    (constr->upperBound() - constr->matrix() * x).minCoeff()));
263
          } else if (constr->isBound()) {
264
            sendMsg("Bound " + constr->name() + " violated: " +
265
                    toString((x - constr->lowerBound()).minCoeff()) + "\n" +
266
                    toString((constr->upperBound() - x).minCoeff()));
267
          }
268
        }
269
      }
270
    }
271
#endif
272
  }
273
274
  return m_output;
275
}
276
277
double SolverHQuadProg::getObjectiveValue() { return m_objValue; }